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Abstract 

Mid-Infrared reflectance spectroscopy (MIRS, 4000–400 cm-1) is being considered to provide 

accurate estimations of soil inorganic carbon (SIC) contents, based on prediction models when the 

test dataset is well represented by the calibration set, with similar SIC range and distribution and 

pedological context. This work addresses the case where the test dataset, here originating from 

France, is poorly represented by the calibration set, here originating from Tunisia, with different SIC 

distributions and pedological contexts. It aimed to demonstrate the usefulness of 1) classifying test 

samples according to SIC level based on the height of the carbonate absorbance peak at 

2510 cm-1, and then 2) selecting a suitable prediction model according to SIC level. Two regression 

methods were tested: Linear Regression using the height of the carbonate peak at 2510 cm-1, 

called Peak-LR model; and Partial Least Squares Regression using the entire MIR spectrum, 

called Full-PLSR model. First, our results showed that Full-PLSR was 1) more accurate than Peak-

LR on the Tunisian validation set (R2
val = 0.99 vs. 0.86 and RMSEval = 3.0 vs. 9.7 g kg-1, 

respectively), but 2) less accurate than Peak-LR when applied on the French dataset (R2
test = 0.70 

vs. 0.91 and RMSEtest = 13.7 vs. 4.9 g kg-1, respectively). Secondly, on the French dataset, 

predictions on SIC-poor samples tended to be more accurate using Peak-LR, while predictions on 

SIC-rich samples tended to be more accurate using Full-PLSR. Thirdly, the height of the carbonate 

absorbance peak at 2510 cm-1 might be used to discriminate SIC-poor and SIC-rich test samples 

(< 5 vs. > 5 g kg-1): when this height was > 0, Full-PLSR was applied; otherwise Peak-LR was 

applied. Coupling Peak-LR and Full-PLSR models depending on the carbonate peak yielded the 

best predictions on the French dataset (R2
test = 0.95 and RMSEtest = 3.7 g kg-1). This study 

underlined the interest of using a carbonate peak to select suitable regression approach for 

predicting SIC content in a database with different distribution than the calibration database.
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1. Introduction 

In recent decades, a huge number of studies have focused on carbon storage evaluations locally, 

regionally, and globally, and five main global Carbon pools have been identified (oceanic, 38 

103 Pg; geological, 5 103 Pg; soil, 2.5 103 Pg; atmospheric, 0.76 103 Pg; and biotic, 0.56 103 Pg; 

Lal, 2004). The soil carbon pool comprises the Soil Organic Carbon (SOC) and Soil Inorganic 

Carbon (SIC) pools, and represents 1.7 times more carbon than atmospheric and vegetation 

Carbon combined (Yang et al., 2012). At global scale, about one third of total soil carbon is 

inorganic (Batjes, 1996) and calcareous soils cover more than 30% of the continental surface 

(Romanyà and Rovira, 2011). The SIC is the dominant form of carbon in arid and semiarid areas 

(e.g., Mi et al., 2008), with a potential reservoir from 2 to 10 times larger than that of SOC (e.g., 

Bernoux and Chevallier, 2014). Quantifying SOC in calcareous soils often requires determining 

SIC, SOC being then calculated by difference between total carbon and SIC. Even if more 

attention is paid to SOC estimation, as SOC is a key determinant of major soil functions (e.g., 

carbon sequestration, Lal, 2004, Minasny et al., 2017; erosion, Lal, 2003), SIC pool quantification 

and an understanding of SIC pool dynamics are important for global carbon budget (Zamanian et 

al., 2021). 

Several analytic methods have been developed to quantify SIC contents in soils (Apesteguia et 

al., 2018). SIC content has usually been measured by calcimetry (ISO10693, 1995a), but can also 

be measured by dry combustion with a CNH elemental analyzer equipped with a specific module 

(CO3-C module) after phosphoric acid dissolution of SIC (Mc Crea, 1950; Hannam et al., 2016). 

Mid-Infrared reflectance spectroscopy (MIRS, 4000–400 cm-1), based on the study of absorption 

bands corresponding to fundamental molecular vibrations (Williams and Norris, 1987), has been 

proposed as an alternative method to SIC analytic methods (e.g., Viscarra Rossel et al., 2006; 

Wijewardane et al., 2018). In the MIR range, strong absorbance peaks related to carbonate and 

associated with fundamental vibrational states have been identified at 700, 880, and 1450 cm-1 

(Legodi et al., 2001). Several additional bands, for instance at 3000–2900 cm-1 due to overtones, 

and at 2600–2500 and 1830–1760 cm-1
, due to combinations of fundamental vibrations, have also 

been attributed to carbonates (Nguyen et al., 1991; Legodi et al., 2001; Comstock et al., 2019). 

Legodi et al. (2001) reported high coefficients of correlation (between 0.985 and 0.993) between 

four absorbance peaks centred at 2510, 1799, 876 and 800 cm-1 and soil sample SIC content, with 

highest correlation for the peak centred at 2510 cm-1. 

Several methodologies have been successfully tested to link MIR soil spectra to SIC content. 

Initially, some developments were done using simple linear regression (LR) using specific 

absorbance peaks (e.g., Legodi et al., 2001). Currently, the most common MIRS calibration 

method for building SIC prediction models is based on partial least squares regression (PLSR; 

e.g., Tasbek et al., 2010, Grinand et al., 2012; Wijewardane et al., 2018; Comstock et al. 2019; 

Barthès et al., 2020) using entire spectra. Some other calibration methods, part of the machine 

learning algorithms, have been more recently tested such as artificial neural networks, support 



3 

 

vector machines, Cubist (i.e. regression and decision trees), random forest and memory-based 

learning (e.g., Wijewardane et al., 2018; Dangal et al., 2019). 

MIR spectra-based regression models calibrated on samples from a region A have been 

reported to provide accurate SIC predictions when applied on test soil samples from the same 

region A, so where soil and climate conditions could be considered similar (e.g., Tasbek et al., 

2010; Grinand et al., 2012; Comstock et al., 2019). Regression models calibrated on samples 

collected on a region A have also been reported to provide accurate SIC predictions when applied 

on test soil samples collected on a region B, where A and B have no common area, so have 

potential differences in soil and climate (McCarty et al., 2002; Gomez et al., 2020). Several 

statistical methods have been applied to adapt the prediction model to sample specificities, for 

example local calibration (e.g., Gogé et al., 2012; Nocita et al., 2014; Gomez et al., 2020), or 

spiking, which consist to enrich the calibration set with some representative soil samples from the 

prediction set (e.g., Guerrero et al., 2010; Barthès et al., 2020). A discrimination of soil types before 

applying a regression model for SOC prediction has been proposed by Liu et al. (2018). Liu et al. 

(2018) discriminated five soil types through partial least squares discriminant analysis (PLS-DA) 

and then calibrated a PLSR model using (I) the entire dataset or (II) a subset by soil type. In these 

previous studies, the test dataset was well represented by the calibration set, with similar soil 

properties range and distribution and the number of calibration samples was always much larger 

than the one of the test samples (e.g., Gomez et al., 2020; Barthès et al., 2020).  

This work aims at developing an approach for MIRS prediction of SIC when the calibration and 

test sets have different SIC distributions and originate from different contexts, here Tunisian 

samples, mostly carbonated, and French samples, mostly non-carbonated, respectively. It 

proposes to (i) pre-analyze the test soil spectra to separate samples into two classes (a-priori SIC-

poor and SIC-rich test samples) based on the height of the carbonate absorbance peak at 

2510 cm-1, and then (ii) select suitable prediction model for each test sample depending on its 

absorbance peak at 2510 cm-1. Two regression methods were tested for SIC prediction: a simple 

Linear Regression using the height of the carbonate absorbance peak at 2510 cm-1 and a Partial 

Least Squares Regression using the entire MIR spectrum.  

 

2. Materials  

  2.1. Soil datasets 

    2.1.1. The Tunisian soil samples 

Ninety-six soil samples were collected in the northern half of Tunisia over approximately 80,000 

km² (from 35 to 37°N and 08 to 11°E) within few months in late 2010 (Barthès et al., 2016; Gomez 

et al., 2020). The soil sampling was designed to represent the main soil types and land uses over 

the studied region based on previous studies carried out at the Tunis El Manar University. The soil 

sampling covered 45 localities, and the field samples within the same locality were kilometres apart 

and under different land uses. Each soil sample was collected at 0-10 cm depth using a spade. 
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The soil samples were mainly Calcaric Cambisols and Regosols, Kastanozems, and Chromic and 

Vertic Cambisols (IUSS Working Group WRB, 2014). This Tunisian set, called DB_Tunisia, was 

used to calibrate and validate the regression models. 

 

    2.1.2. The French national soil collection 

This collection included 2178 soil samples collected over the 552,000 km² of the French 

metropolitan territory (Corsica included) from 41 to 51°N and from 5.0°W to 9.5°E, and constitutes 

the national soil collection, provided by the French national soil quality monitoring network (RMQS; 

Arrouays et al., 2002). This RMQS collection is composed of all main soil types encountered over 

the French metropolitan territory. According to the French soil classification, 33 soil reference 

groups were sampled, including three dominant major soil types: Cambisols (IUSS Working Group 

WRB, 2014; 27% of the sample set), calcareous soils (Calcosols, 22%) and Luvisols (16%). As 

described in Arrouays et al. (2002) and Jolivet et al. (2006), the sampling design was based on a 

square grid with 16-km spacing. At the centre of each square, 25 individual core samples were 

taken from 0 to 30 cm depth using an unaligned sampling design within a 20 × 20 m area. Core 

samples were bulked to obtain a composite sample for each site. This French national set, called 

DB_RMQS, was used to test the SIC model calibrated on Tunisian samples. 

 

  2.2. Laboratory Analyses  

    2.2.1. Soil inorganic carbon analyses 

The 96 Tunisian soil samples were air-dried, sieved to 2 mm and then finely ground (< 0.2 mm) 

using mortar and pestle. Their SIC content was calculated as the difference between total carbon 

content (TC) determined by dry combustion using a CHN analyser (Thermo Fischer Scientific CHN 

NA2000, Waltham, MA, USA) and SOC content determined by dry combustion after 

decarbonatation using chlorhydric acid, following the standard procedure ISO 10694 (ISO, 1995a).  

The 2178 RMQS samples were also air dried, 2-mm sieved and then finely ground (< 0.25 

mm) using mortar and pestle. Their SIC content was calculated as 0.12 times the soil calcium 

carbonate content, which was determined on these finely ground (< 0.25 mm) air-dried samples 

using a Bernard calcimeter according to the standard procedure NF ISO 10693 (ISO, 1995b). The 

carbonate content was calculated after calibration with a pure calcium carbonate standard and was 

expressed as equivalent calcium carbonate content.  

As the SIC contents of Tunisian and RMQS samples were analyzed by two different 

methods (difference between TC and SOC vs. calcimetry, respectively), 30% of the DB_Tunisia 

were re-analyzed following the method used for the RMQS samples, the calcimetry method, to 

check the correspondence of the SIC values. The close correlation between both SIC 

determinations (R = 0.997) was presented in Gomez et al. (2020).  

The SIC content of the Tunisian samples (DB_Tunisia) ranged from 0.0 to 92.9 g kg−1, 

averaged 43.3 g kg−1, had a median of 48.5 g kg-1 and a skewness value close to -0.2 (Table 1). 
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The SIC content of the RMQS samples (DB_RMQS) ranged from 0 to 103.9 g kg−1, averaged 6.4 g 

kg−1, had a median of 0 g kg-1 and a skewness value close to 3.1 (Table 1). Moreover, SIC 

distributions of both datasets were different (Figure 1A and B): the SIC values of DB_RMQS 

followed a non-normal distribution, due to a very large number of null values (Figure 1A), whereas 

the SIC values of DB_Tunisia followed a bimodal distribution with modes at 0 and 55 g kg-1, 

respectively (Figure 1B). 

 

[Table 1] 

 

[Figure 1] 

 

    2.2.3. Mid-infrared spectroscopy 

The Mid-infrared (MIR) spectra were acquired following the same procedure on both soil datasets, 

DB_Tunisia and DB_RMQS, using a Fourier transform Nicolet 6700 spectrophotometer (Thermo 

Fischer Scientific, Madison, WI, US). The spectrophotometer is equipped with a silicon carbide 

source, a Michelson interferometer as a dispersive element, and a deuterated triglycine sulfate 

detector. The soil samples were air-dried, sieved to 2-mm, then 0.2-mm ground aliquots were 

oven-dried at 40°C for twelve hours and then placed in a 17-well plate. The soil samples surface 

was flattened with the flat section of a glass cylinder, and each sample was then scanned using an 

auto-sampler (soil surface area scanned: ca. 10 mm²). Each spectrum resulted from 32 co-added 

scans, and the body of the plate (next to the wells) was used as a reference standard and scanned 

once per plate (i.e., every 17 samples).  

The MIR reflectance was collected at 934 wavenumbers between 4000 and 400 cm−1 with a 

3.86 cm−1 spectral resolution. Due to noise in the spectrum, twenty wavenumbers were removed, 

resulting in 914 wavenumbers from 4000 to 478 cm−1 used in this study. Reflectance was 

converted into “absorbance” (log10[1/reflectance]), and a standard normal variate (SNV) correction 

was applied to remove additive and multiplicative effects (Barnes et al., 1989).  

 

3. Methods 

The Tunisian dataset (96 samples) was used to calibrate and validate SIC prediction models, and 

the French dataset (2178 samples) was used to test them. The large SIC range of the Tunisian 

dataset represented reasonable conditions for calibrating prediction models. The larger size and 

diversity of the French dataset provided great opportunity to test strategies for optimizing SIC 

predictions when SIC distribution differs between calibration and test sets. All procedures were 

performed using R software (R Core Team, 2012), and both the ade4 (Dray and Dufour, 2007) and 

pls packages (Mevik and Wehrens, 2007) were used. Figure 2 illustrates the process flow. 
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  3.1. Dataset preparation for regression models 

The DB_Tunisia dataset was divided into a calibration set (3/4 of the dataset) and a validation set 

(1/4 of the dataset; Figure 2a) according to the following procedure. The samples were ranked 

according to ascending observed SIC. The sample with the lowest SIC was put in the calibration 

set, the next sample in the validation set, and then the next three samples in the calibration set. 

The procedure was continued by alternately placing the next sample in the validation set and the 

following three samples in the calibration set. Following this process, distributions of Tunisian 

calibration and validation datasets (DB_Calib_Tunisia and DB_Valid_Tunisia, respectively) were 

similar. 

A principal component analysis (PCA) was applied to the spectra of DB_Calib_Tunisia to 

identify and remove spectral outliers, which are defined as samples spectrally different from the 

rest of the samples (e.g., Pearson, 2002). These spectral outliers were identified by calculating the 

Mahalanobis distance (Mark and Tunnell, 1985) to data condensed by PCA. Each spectrum with 

Mahalanobis distance higher than 3.5 was identified as spectral outlier and removed from the 

calibration dataset. 

 

[Figure 2] 

 

  3.2. Carbonate absorbance peak calculation 

As Legodi et al. (2001) reported high coefficients of correlation (between 0.985 and 0.993) 

between four absorbance peaks centred at 2510, 1799, 876 and 800 cm-1 and SIC content of soil 

samples, with the highest correlation for the peak centred at 2510 cm-1, the MIR spectra were 

analyzed regarding this absorbance peak at 2510 cm-1. In the literature, the peak area centred at 

2510 cm-1 has been reported to cover different ranges depending on the spectral library, from 2646 

to 2462 cm-1 (Legodi et al., 2001), 2611 to 2423 cm-1 (Tatzber et al., 2010), and 2680 to 2424 cm-1 

(Comstock et al., 2019), and has been attributed to the combination of symmetric and asymmetric 

stretching vibrations (Socrates, 2001). In our study and considering our own spectra (Figure 3), we 

calculated the absorbance peak using the absorbance values at 2510 and 2650 cm-1 as follows: 

Peak2510 = (A2510) - (A2650)     (1) 

where A2510 and A2650 are absorbance values at 2510 and 2650 cm-1, respectively, after SNV 

correction. High peak may correspond to high SIC content and conversely, low peak to low SIC 

content (Figure 3). The spectral domain centered at 2510 cm-1 relates to carbonate due to 

combinations of fundamental vibrations (Nguyen et al., 1991; Reeves and Smith, 2009).  

 

[Figure 3] 
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  3.3. Linear model regression (Peak-LR) 

A simple linear regression was built to model the relationship between SIC content (Y-variable; 

response variable) and the carbonate absorbance peak using the absorbance values at 2510 and 

2650 cm-1 (Peak2510) as calculated in equation (1) (X-variable; predictor variable) on 

DB_Calib_Tunisia, validated on DB_Valid_Tunisia, and tested on DB_RMQS (Figure 2b). This 

linear regression was called the Peak-LR model. 

 

  3.4. Partial least squares regression 

A Partial least squares regression (PLSR) was built to model the relationship between SIC content 

(Y-variable; response variable) and the entire MIR spectra (X-variables; predictor variables) on 

DB_Calib_Tunisia, validated on DB_Valid_Tunisia, and tested on DB_RMQS (Figure 2c). The 

general concept of PLSR is to extract a small number of orthogonal variables (called latent 

variables) that are linear combinations of MIRS absorbance, account for the maximum variation in 

the X-variables, and have maximum covariance with the Y-variable (Tenenhaus, 1998). A detailed 

description of the PLSR procedure can be found in Wold et al. (2001).  

The maximum possible number of latent variables was defined as 30. A leave-one-out 

cross-validation (LOOCV) procedure was adopted to verify the prediction capability of the PLSR 

model for the calibration set. In LOOCV, n−1 samples are used to build a regression model, which 

is applied to the sample not used for developing the model; then the procedure is repeated for all n 

samples, resulting in predictions for all n samples. The optimal number of latent variables of the 

model was that which minimized the prediction residual error sum of squares (PRESS) of LOOCV, 

to avoid under- and over-fitting. Then, all calibration samples were used to build the prediction 

model with the appropriate number of latent variables, and this model was applied to 

DB_Valid_Tunisia and DB_RMQS. This PLSR model was called the Full-PLSR model. 

Finally, a wavelength was considered as significant contributor to the prediction model 

when the values of both the regression coefficient and variable importance in the projection (VIP) 

were sufficiently large: the threshold for the VIP was set to 1 (Chong and Jun, 2005; Wold et al., 

1993, 2001), and the thresholds for the regression coefficients were their standard deviations 

(Viscarra Rossel et al., 2008).  

 

  3.5. Prediction by class according to absorbance peak at 2510 cm-1 

The Peak2510 values of the RMQS soil samples were used to separate the N1 spectra with low 

Peak2510 value, hypothesizing they corresponded to SIC-poor samples, and the N2 spectra with 

higher Peak2510 value, hypothesizing they corresponded to SIC-rich samples (Figure 2e). Five 

values M of Peak2510 were tested for separating samples: -0.05, -0.025, 0, 0.025, 0.05. The N1M 

test samples having a Peak2510 value lower than M were predicted by the Peak-LR model while the 

N2M test samples having a Peak2510 value higher than M were predicted by the Full-PLSR model. 
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This process would allow a coupling of Peak-LR and Full-PLSR models, depending on the value M 

of Peak2510. 

 

  3.6. Models evaluation 

The performance of SIC prediction models was evaluated according to figures of merit described in 

Bellon-Maurel et al. (2010), for DB_Calib_Tunisia, DB_Valid_Tunisia and DB_RMQS (Figure 2d). 

Before calculating the figures of merit, negative predicted SIC values were replaced by 0. 

 The coefficient of determination (R²cal) and root mean square error (RMSEcal) were used 

for DB_Calib_Tunisia. R²cal was computed as 1-ESS/TSS, where ESS is the error sum of squares 

and TSS the total sum of squares. The ratio of performance to deviation in DB_Calib_Tunisia 

(RPDcal) was calculated as the ratio between the standard deviation in DB_Calib_Tunisia and 

RMSEcal. The ratio of performance to interquartile range of DB_Calib_Tunisia (RPIQcal) was 

calculated as the ratio between interquartile range (difference between the third and first quartiles) 

of DB_Calib_Tunisia and RMSEcal. This parameter has been proposed for variables with non-

normal distributions (Bellon-Maurel et al., 2010).  

The coefficient of determination and root mean square error of prediction were used for 

DB_Valid_Tunisia, and denoted R²val and RMSEval, respectively. R²val was also computed as 1-

ESS/TSS. The ratio of performance to deviation in DB_Valid_Tunisia (RPDval) was calculated as 

the ratio between the standard deviation in DB_Valid_Tunisia and RMSEval. The ratio of 

performance to interquartile range of DB_Valid_Tunisia (RPIQval) was calculated as the ratio 

between interquartile range of DB_Valid_Tunisia and RMSEval. And the bias, which is the mean 

difference between observations and predictions, was also calculated for DB_Valid_Tunisia 

(biasval).  

 The coefficient of determination and root mean square error of prediction were also used 

for DB_RMQS, and denoted R²test and RMSEtest, respectively. R²test was also computed as 1-

ESS/TSS. The ratio of performance to deviation in DB_RMQS (RPDtest) was calculated as the ratio 

between the standard deviation in DB_RMQS and RMSEtest. The ratio of performance to 

interquartile range of DB_RMQS (RPIQtest) was calculated as the ratio between the interquartile 

range of DB_RMQS and RMSEtest. And the bias was also calculated for DB_RMQS (biastest). The 

RMSEtest was also calculated for eleven regular sub-ranges of observed SIC (namely < 5, 5-10, 10-

15, 15-20, 20-25, 25-30, 30-35, 35-40, 40-45, 45-50 and > 50 g kg-1) to study the variation of 

prediction performances according to SIC level. 

The coefficient of determination and root mean square error of prediction calculated on 

DB_RMQS after coupling Full-PLSR and Peak-LR models, depending on the value M of Peak2510 

(section 3.5), were noted R²test_M and RMSEtest_M, respectively. 
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4. Results 

  4.1. Preliminary analysis of MIR spectra 

A PCA was performed on pre-treated spectra of DB_Tunisia, and the pre-treated spectra of 

DB_RMQS were projected onto the plan made by the first and second components. Most of the 

spectra of RMQS soil samples with high SIC values (orange and red points, Figure 4) overlapped 

the spectra of DB_Tunisia (black stars, Figure 4). Conversely, most of the RMQS soil samples with 

low SIC values (blue and cyan points, Figure 4) did not overlap the spectra of DB_Tunisia (black 

stars, Figure 4), which is consistent with the scarcity of SIC-poor samples in DB_Tunisia (cf. 

Figure 1). Moreover, RMQS soil samples with low SIC values (blue and cyan points, Figure 4) had 

no overlapping with those of RMQS soil samples with high SIC values (orange and red points, 

Figure 4).  

 

[Figure 4] 

 

Soil samples with high SIC content were characterized by a high peak centered at 2510 cm-1 due 

to combinations of fundamental vibrations of carbonates (Nguyen et al., 1991; Reeves et al., 

2009), whatever the dataset (red spectra, Figure 3). Conversely, soil samples with low SIC 

contents were characterized by an absence of peak centered at 2510 cm-1 (blue spectra, Figure 3). 

So the higher was SIC content, the higher was this peak (Figure 3). Furthermore, the coefficient of 

determination between observed SIC contents and Peak2510 values was around 0.91 for the 2718 

samples of DB_RMQS and 0.84 for the 96 soil samples of DB_Tunisia.  

 

  4.2. SIC prediction models applied to DB_Valid_Tunisia  

One spectral outlier was identified within DB_Calib_Tunisia so 95 Tunisian soil samples were kept 

to build the SIC prediction models (Peak-LR and Full-PLSR). The Full-PLSR model for SIC 

prediction was built using DB_Calib_Tunisia and an optimal number of 8 latent variables, and then 

validated on DB_Valid_Tunisia. The performance of this prediction model was very accurate, with 

an R²cal of 0.99 and RMSECal of 2.4 g kg-1 in the calibration step (Figure 5A, Table 2) and an R²val of 

0.99, RMSEval of 3.0 g kg-1, RPDval of 8.7 and RPIQval of 13.9 when applied to DB_Valid_Tunisia 

(Figure 5B, Table 2). One hundred and forty-two spectral bands were considered as important 

according to their b-coefficients and VIP values (Figure 5D). These bands included the expected 

peaks centred at 2510 cm-1 and 1800 cm-1 corresponding to carbonate peaks (Nguyen,et al., 1991; 

Legodi et al., 2001; Du and Zhou, 2009). These bands also included ranges from 3600 to 

3700 cm-1, which might correspond to clay mineralogy, 1850 to 2020 cm-1, which might correspond 

to quartz and clay mineralogy, and from 500 to 1100 cm-1, which might correspond to soil minerals 

such as iron oxides (Le Guillou et al., 2015). 

 

 [Figure 5] 
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[Table 2] 

 

The Peak-LR model for SIC prediction, based on Peak2510, was built using DB_Calib_Tunisia and 

then validated on DB_Valid_Tunisia. The performance of Peak-LR prediction model was modest, 

with an R²cal of 0.83 and RMSEcal of 10.4 g kg-1 in the calibration step (Figure 6A, Table 2) and an 

R²val of 0.86, RMSEval of 9.7 g kg-1, RPDval of 2.7 and RPIQval of 4.2 when applyed to 

DB_Valid_Tunisia (Figure 6B, Table 2). So Full-PLSR model provided better performances than 

Peak-LR on Validation dataset (Table 2). 

 

[Figure 6] 

 

  4.3. SIC prediction models tested on BD_RMQS database  

The performance of Full-PLSR model applied to DB_RMQS provided moderate accuracy, with an 

R²test of 0.71, RMSEtest of 13.7 g kg-1 and RPDtest of 1.2 (Figure 5C, Table 2). These SIC predictions 

were strongly biased (biastest = -10.6 g kg-1, Figure 5C, Table 2). As expected, the RPIQtest was very 

low (0.1, Table 2), due to non-normal SIC distribution in DB_RMQS (Figure 1A). When considering 

SIC sub-ranges, RMSEtest obtained with Full-PLSR model varied strongly, from 4.4 g kg-1 (for 

samples with observed SIC values between 45 and 50 g kg-1, Table 3) to 14.8 g kg-1 (for samples 

with observed SIC values under 5 g kg-1, Table 3).  

 The performance of Peak-LR model applied to DB_RMQS provided good accuracy with an 

R²test of 0.91, RMSEtest of 4.9 g kg-1 and RPDtest of 3.3 (Figure 6C, Table 2). As expected and as 

also obtained with Full-PLSR, the RPIQtest was very low (0.2, Table 2), due to non-normal SIC 

distribution in DB_RMQS (Figure 1A). Thus Peak-LR model provided better performances than 

Full-PLSR model on DB_RMQS (Table 2). The RMSEtest obtained with Peak-LR model varied 

strongly between observed SIC sub-ranges, from 1.5 g kg-1 (for samples with SIC values under 

5 g kg-1, Table 3)  to 14 g kg-1 (for samples with SIC values between 40 and 45 g kg-1, Table 3).  

 The predicted SIC values were more accurate with Peak-LR than with Full-PLSR model for 

SIC-poor samples (< 15 g kg-1). Conversely, they were more accurate with Full-PLSR than with 

Peak-LR model for carbonated samples (SIC > 15 g kg-1) (Table 3).  

 

[Table 3] 

 

  4.4. Full-PLSR and Peak-LR coupling depending on Peak2510 

The Peak-LR model was applied to the N1M test samples having a Peak2510 value equal to or lower 

than M, while the Full-PLSR model was applied on the N2M test samples having a Peak2510 value 

higher than M (Figure 2e), where M was equal to -0.05, -0.025, 0, 0.025 or 0.05. The higher the M 

value, the higher the prediction performances of the coupling of Peak-LR and Full-PLSR models, 
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up to a threshold at M = 0 above which there was no improvement (Figure 7A and B). The higher 

the M value, the higher the number of test samples N2M predicted by the Full-PLSR model (Figure 

7C). As expected and whatever the value M, the RPIQtest was very low (around 0.3, Figure 7B), 

due to non-normal SIC distribution in DB_RMQS (Figure 1A). 

 The coupling of Peak-LR and Full-PLSR models provided the best performances for a M 

value of 0, with R²test_0 of 0.95, RMSEtest_0 of 3.7 g kg-1, RPDtest_0 of 4.4. and RPIQtest_0 of 0.3 (Figure 

7A and B; Figure 8). Depending on SIC sub-range, RMSEtest_0 obtained with this coupling of Peak-

LR and Full-PLSR models and M=0 varied from 2.1 g kg-1 (for samples with observed SIC values 

< 5 g kg-1) to 11.4 g kg-1 (for samples with observed SIC values between 40 and 45 g kg-1, Table 3).  

 Using this optimal M value of 0, 452 test samples were predicted by the Full-PLSR model 

while 1726 test samples were predicted by the Peak-LR model (Figure 7C). The 452 test samples 

predicted by the Full-PLSR model corresponded mostly to SIC-rich test samples: their SIC 

distribution was characterised by a minimum of 0 g kg-1, a maximum of 103.92 g kg-1, a mean of 

29.6 g kg-1, a standard deviation of 23.2 g kg-1 and a skewness of 0.9 g kg-1. The 1726 test 

samples predicted by the Peak-LR model corresponded mostly to SIC-poor test samples, 

characterised by a minimum of 0 g kg-1, a maximum of 44.6 g kg-1, a mean of 0.3 g kg-1, a standard 

deviation of 1.6 g kg-1 and a skewness of 17.7 g kg-1. Among these 1726 test samples having a 

Peak2510 value equal to or lower than 0, 98.9 % had an observed SIC content lower than 5 g kg-1. 

Among the 452 test samples having a Peak2510 value higher than 0, 89.9 % had an observed SIC 

content higher than 5 g kg-1. So the Peak2510 allowed separating SIC-poor and SIC-rich test 

samples before applying suitable prediction model. 

 

[Figure 7] 

 

[Figure 8] 

 

5. Discussion 

  5.1. Peak-LR and Full-PLSR performances on the Tunisian Validation set 

Before being applied to the French RMQS database, the Full-PLSR and Peak-LR models were 

calibrated and validated on the Tunisian set. Such PLSR regression models calibrated from a 

region A and then validated on samples from the same region A, where soil and climate conditions 

could be considered similar, have been slightly developed and analyzed in the literature. The 

results obtained from the Full-PLSR model are in accordance with the literature (Table 2, Figures 

5A and B). Barthès et al. (2016) obtained similar performances for SIC prediction (R² of 0.98 and 

RPD of 7.8 in six-group cross-validation) using the same Tunisian MIRS database. McCarty et al. 

(2002) obtained similar performances (R²val = 0.98) using a Central United State MIRS database 

characterised by SIC range from 0 to 65.4 g kg-1.  
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The validation performance of the Peak-LR model was lower than the one obtained with the 

Full-PLSR model (R²val of 0.85 and 0.99 for the Peak-LR and Full-PLSR model, respectively, Table 

2, Figures 5B and 6B). This is in accordance with the result previously obtained by Gomez et al. 

(2008), who also compared a SIC Full-PLSR model based on the entire visible, near- infrared and 

shortwave infrared spectra (VNIR-SWIR, 400–2500 nm) and a SIC Peak-LR model based on 

spectral absorption band centred at 2341 nm. Higher performance obtained by Full-PLSR model 

might be explained by the higher content of spectral information used. While the Peak-LR model 

benefits only from the absorption peak centred at 2510 cm−1, the Full-PLSR model used this same 

absorption peak with additional spectral ranges, such as bands centred at 1800 cm-1 (Figure 5D) 

corresponding to another carbonate peak in the MIR range (e.g., Nguyen,et al., 1991; Legodi et al., 

2001). Moreover, the Full-PLSR model used also spectral ranges from 3600 to 3700 cm-1, 1850 to 

2020 cm-1 and 500 to 1100 cm-1, which might correspond to clay mineralogy, quartz and clay 

mineralogy, and soil mineralogy such as iron oxides, respectively (Le Guillou et al., 2015).  

 

  5.2. Peak-LR and Full-PLSR performances on French test set 

Once calibrated and validated on the Tunisian set, both Full-PLSR and Peak-LR models were 

tested on the French RMQS dataset. Such MIR spectra-based regression models calibrated from a 

region A and then tested on samples from a region B, where A and B have no common area so 

have potential differences in soil and climate, have been little developed and analyzed in the 

literature. The test performance obtained with the Full-PLSR model calibrated from the Tunisian 

subset and applied to the French RMQS dataset (R²test and RMSEtest of 0.71 and 13.7 g kg-1, Table 

2, Figure 5C) was lower than the one obtained with a PLSR model calibrated from the French 

RMQS dataset and applied to the Tunisian dataset (same methodology but inverted datasets, 

Gomez et al., 2020). So a Full-PLSR model provided better performance when the test set was 

well-represented by the calibration set (as in Gomez et al., 2020) than when the test set was 

poorly-represented by the calibration set. 

The test performance of the Peak-LR model was higher than the one obtained with the Full-

PLSR model (R²test of 0.91 and 0.71 for the Peak-LR and Full-PLSR model, respectively, Table 2, 

Figures 5C and 6C). So a Peak-LR model provided better performance than a Full-PLSR model on 

a test set poorly represented by the calibration set. In particular, the prediction performances for 

SIC-poor test soil samples (SIC < 15 g kg-1), poorly represented by the calibration set, were lower 

based on the Full-PLSR model than based on the Peak-LR model. Conversely the prediction 

performances for SIC-rich test soil samples (SIC > 15 g kg-1) well represented by the calibration set 

were higher based on the Full-PLSR model than based on the Peak-LR model (Table 3).  

The Full-PLSR model used spectral bands corresponding to carbonate peaks (centred at 

2510 cm−1 and 1800 cm-1) and additional spectral bands corresponding to soil mineralogy specific 

to the pedological Tunisian context (Figure 5D). While these additional spectral bands brought 

information and improved Full-PLSR model compared to the Peak-LR model when applied to the 
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Tunisian Validation dataset, they seemed to affect the SIC predictions negatively when applied to 

SIC-poor French soil samples. Most test soil samples were SIC-poor, and these SIC-poor samples 

had a very diverse mineralogy (Arrouays et al., 2002). In contrast, the calibration dataset included 

few SIC-poor samples, which therefore could not represent the wide diversity of SIC-poor test 

samples (Figure 4). So a regression procedure based on full spectra of all calibration samples (i.e. 

Full_PLSR) could hardly be applied successfully to SIC-poor test samples that might have very 

different mineralogies and thus very different spectra (cf. samples with SIC = 0 g kg-1, Figure 3A vs. 

3B), because much spectral information from most SIC-poor test samples could hardly be 

managed using a calibration set that lacked such information. For SIC prediction on SIC-poor test 

samples poorly represented by the calibration set, basic regression procedure using one carbonate 

peak height (i.e. Peak_LR) was by far more appropriate as the carbonate peak height was present 

in all spectra. 

In contrast, SIC-rich samples from calibration and test sets had comparable spectra 

(cf. spectra plotted in red corresponding to samples with SIC = 90-100 g kg-1, Figure 3A vs. 3B); so 

such test samples were much better represented by the calibration set (cf. RMQS samples with 

SIC ≥ 45 g kg-1 vs. Tunisian samples in Figure 4). In addition, the calibration set included many 

carbonated samples. This may explain the benefit of using the full spectrum (i.e. full information) 

instead of one peak only (basic information) for SIC prediction on SIC-rich test samples, most of 

which were correctly represented by the calibration set. 

 

  5.3. Carbonate absorbance peak as a driver to discriminate SIC-poor and SIC-rich samples 

The SIC contents and Peak2510 values were highly correlated for both DB_RMQS and DB_Tunisia 

dataset (R² of 0.91 and 0.84, respectively), as suggested by Legodi et al. (2001), who also 

reported high correlation (0.993) between MIR carbonate peak centred at 2510 cm-1 and SIC 

contents (description of their carbonate peak calculation not found in Legodi et al., 2001). Based 

on this observation, the use of this MIR carbonate peak allowed to separate the SIC-poor and SIC-

rich test samples, as 98.9 % of samples with Peak2510 ≤ 0 had an observed SIC content lower than 

5 g kg-1 and 89.9 % of samples with Peak2510 > 0 had an observed SIC content higher than 

5 g kg-1. So the Peak2510 value could be used as a simple proxy of SIC absence/presence in soil 

samples, like the acid test consisting in placing a drop of dilute (5% to 10%) hydrochloric acid on a 

soil sample and watching for bubbles of carbon dioxide gas to be released (Soil Survey Staff, 

1993). As the absence of bubbles of carbon dioxide evidences low SIC content, absence of a 

carbonate peak at 2510 cm-1 (which corresponds to Peak2510 ≤ 0) indicated a SIC content lower 

than 5 g kg-1. 

Considering the development of large soil laboratory VNIR-SWIR spectral libraries (at 

national, Knadel et al., 2012; continental, Toth et al., 2013, Stevens et al., 2013 and even global 

scale, Viscarra Rossel et al., 2016), similar condition of dissimilarity between calibration and test 

datasets might be met and a pre-analysis of test soil VNIR-SWIR spectra might be considered to 
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separate SIC-poor and SIC-rich samples, using the carbonate absorption band centred at 2341 nm 

(Gaffey, 1986; Gomez et al., 2008). 

Finally, future works could study several parameters to optimize discrimination between 

SIC-rich and SIC-poor samples. In addition to our Peak2510, some other ways to characterize this 

peak could be explored, such as the area of the peak or a peak height considering the right side of 

the peak around 2450 cm-1. 

 

6. Conclusion 

This work highlighted that when the test set was poorly represented by the calibration set, a simple 

linear regression based on the height of a carbonate peak provided better SIC predictions than 

PLSR using the full spectrum. However, when the test set was well represented by the calibration 

set, PLSR provided better SIC predictions than that simple linear regression. This work also 

highlighted the interest of pre-analyzing the test set to separate it in two classes (a-priori SIC-poor 

vs. SIC-rich test samples) based on the height of the carbonate absorbance peak at 2510 cm-1. 

Then the most suitable prediction model might be selected for each test sample, depending on the 

class and so on how it was represented by the calibration dataset: PLSR using the full spectrum 

was selected for test samples with peak height > 0, well represented by the calibration set; and 

simple linear regression based on carbonate peak height was selected for test samples with peak 

height < 0, poorly represented by the calibration set. This study confirmed the very high 

applicability of MIRS for SIC determination, even when the calibration and test sets come from 

different pedo-climatic contexts, so when the former do not fully represent the latter spectrally.  
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Table 1. Soil datasets statistics. The SIC values set to zero correspond to values under the 

laboratory quantification limit (< 0.1 g kg-1). 

 

Dataset 

 

Number of 

soil samples 

Min 

g kg
-1

 

Max 

g kg
-1

 

Mean 

g kg
-1

 

Median 

g kg
-1

 

Standard deviation 

g kg
-1

 

Skewness 

 

DB_Tunisia 96 0.0 92.9 43.3 48.5 25.6 -0.2 

DB_RMQS 2178 0.0 103.9 6.4 0.0 16.1 3.1 

 

 

 

 

 

Table 2. Figures of merit obtained with Peak-LR and Full-PLSR models calculated on the entire 

SIC ranges over calibration, validation and test databases. 

 

 Peak-LR model Full-PLSR model 

Calibration 

R²cal 0.83 0.99 

RMSEcal (g kg-1) 10.4 2.4 

RPDcal 2.5 10.5 

RPIQcal 4.0 17.1 

Validation 

R²val 0.86 0.99 

RMSEval (g kg-1) 9.7 3.0 

RPDval 2.7 8.7 

RPIQval 4.2 13.9 

Biasval (g kg-1) 0.6 0.3 

Test 

R²test 0.91 0.71 

RMSEtest (g kg-1) 4.9 13.7 

RPDtest 3.3 1.2 

RPIQtest 0.2 0.1 

Biastest (g kg-1) 1.0 -10.6 
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Table 3. RMSEtest calculated for eleven observed SIC sub-ranges from Peak-LR. Full-PLSR. and 

Peak-LR and Full-PLSR coupling models (Peak-LR was applied if Peak2510 value ≤ M. otherwise 

Full-PLSR was applied. with M=0). 

 

Observed SIC 

sub-ranges 

Nbr of Test 

samples 

RMSEtest (g kg-1) RMSEtest_0 (g kg-1) 

Peak-LR 

model 

Full-PLSR  

model 

Peak-LR and Full-

PLSR coupling 

< 5 g kg-1 1756 1.5 14.8 2.1 

[5-10] g kg-1 75 5.4 7.9 6.4 

[10-15] g kg-1 38 7.1 7.3 7.4 

[15-20] g kg-1 48 9 7.8 7.8 

[20-25] g kg-1 37 8.4 6.4 6.8 

[25-30] g kg-1 42 8.4 7.3 7.3 

[30-35] g kg-1 33 10.2 7.6 8.1 

[35-40] g kg-1 24 6.8 5.9 5.9 

[40-45] g kg-1 20 14 10.1 11.4 

[45-50] g kg-1 27 10.7 4.4 4.4 

> 50 g kg-1 78 17 6.9 6.9 
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Figure 1. A) Frequency of SIC values for the Tunisian samples (DB_Tunisia, in green) and the RMQS samples (DB_RMQS, in pink). B) Zoom to 

highlight the distribution of DB_Tunisia. 
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Figure 2. Workflow. Peak2510 is the height of the absorbance peak at 2510 and 2650 cm-1 as defined in equation (1). M is a threshold of Peak2510 used 

for separating SIC-rich from SIC-poor Test samples and that could take the values -0.05, -0.025, 0, 0.025, 0.05. N1M and N2M are the numbers of Test 

samples with Peak2510 lower and higher than this value M, respectively. Peak-LR is a simple linear regression built to model the relationship between 

SIC content and Peak2510. Full-PLSR is a multivariate regression built to model the relationship between SIC content and the full MIR spectra. 
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Figure 3. Examples of four SNV-corrected MIR absorbance spectra of soil samples from A) DB_Tunisia and B) DB_RMQS (their SIC content is 

specified in the top-left corner). Red vertical plain and dotted lines indicate the centre of the carbonate peak at 2510 cm-1 and the boundary at 

2650 cm-1, respectively.  
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Figure 4. Projection of RMQS spectra (points, coloured depending on their SIC value) onto the first two principal components built with Tunisian 

spectra (black stars). 
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Figure 5. Observed versus predicted SIC values obtained from the Full-PLSR prediction model for 

A) DB_Calib_Tunisia, B) DB_Valid_Tunisia, C) DB_RMQS; and D) significant wavenumbers 

(represented by vertical red lines) for this model; the black circles represent a Tunisian soil 

spectrum with 57 g kg-1 of SIC. 
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Figure 6. Observed versus predicted SIC values obtained from Peak-LR model for  

A) DB_Calib_Tunisia, B) DB_Valid_Tunisia, and C) DB_RMQS. 
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Figure 7. Figures of merit obtained when using Full-PLSR and Peak-LR depending on the height 

of Peak2510: A) R²test_M (black points) and RMSEtest_M (red points), B) RPDtest_M (black points) and 

RPIQtest_M (red points), and C) number N1M of test samples having a Peak2510 value equal to or 

lower than M and being predicted by the Peak-LR model (green circles), and number N2M of test 

samples having a Peak2510 value higher than M and being predicted by the Full-PLSR model 

(orange stars). 
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Figure 8. Observed versus predicted SIC values using the Peak-LR model when Peak2510 was 

lower than M = 0 and the Full-PLSR model when Peak2510 was equal to or higher than M = 0. 

 

 

 


