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Increased peak detection accuracy 
in over‑dispersed ChIP‑seq data with supervised 
segmentation models
Arnaud Liehrmann1,2*, Guillem Rigaill1,2 and Toby Dylan Hocking3 

Background
Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-
seq) is amongst the most widely used methods in molecular biology [15]. This method 
aims to identify transcription factor binding sites [20, 22] or post-translational histone 
modifications [24, 25], referred to as histone marks, underlying regulatory elements. 
Consequently, this method is essential to deepen our understanding of transcriptional 
regulation. The ChIP-seq assay yields a set of DNA sequence reads which are aligned to 

Abstract 

Background:  Histone modification constitutes a basic mechanism for the genetic 
regulation of gene expression. In early 2000s, a powerful technique has emerged that 
couples chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq). 
This technique provides a direct survey of the DNA regions associated to these modifi-
cations. In order to realize the full potential of this technique, increasingly sophisticated 
statistical algorithms have been developed or adapted to analyze the massive amount 
of data it generates. Many of these algorithms were built around natural assumptions 
such as the Poisson distribution to model the noise in the count data. In this work we 
start from these natural assumptions and show that it is possible to improve upon 
them.

Results:  Our comparisons on seven reference datasets of histone modifications 
(H3K36me3 & H3K4me3) suggest that natural assumptions are not always realistic 
under application conditions. We show that the unconstrained multiple changepoint 
detection model with alternative noise assumptions and supervised learning of the 
penalty parameter reduces the over-dispersion exhibited by count data. These mod-
els, implemented in the R package CROCS (https://​github.​com/​aLieh​rmann/​CROCS), 
detect the peaks more accurately than algorithms which rely on natural assumptions.

Conclusion:  The segmentation models we propose can benefit researchers in 
the field of epigenetics by providing new high-quality peak prediction tracks for 
H3K36me3 and H3K4me3 histone modifications.

Keywords:  ChIP-seq, Histone modifications, Over-dispersion, Peak calling, Multiple 
changepoint detection, Likelihood inference, Supervised learning
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a reference genome and then counted at each genomic position. This results in a series 
Y = (y1, . . . , yn) of n non-negative integer count data (yi ∈ Z+) , hereafter called cover-
age profile, ordered along a chromosome. The binding sites or histone marks of interest 
appear as regions with high read density referred to as peaks in the coverage profile.

Since there is a biological interest in detecting these peaks, several methods, hereaf-
ter called peak callers (c), have been developed / adapted and used to filter out back-
ground noise and accurately identify the peak locations in the coverage profile. They take 
a coverage profile of length n and classify each base from it as a part of the background 
noise (0) or peak (1), i.e. c : Y → {0, 1}n . Among these peak callers we can mention 
MACS [26] and HMCan [2], two heuristics which are computationally fast but typically 
accurate only for a specific pattern, i.e. respectively sharp and broad peaks [7]. More 
recently, it has been proposed to solve the peak detection problem using either opti-
mal constrained or unconstrained multiple changepoint detection methods [8, 12]. The 
constraints ensure that the segmentation model can be interpreted in terms of peaks 
and background noise which is a practitioner’s request. The unconstrained one doesn’t 
have an output segmentation with a straightforward interpretation in terms of peaks 
and needs to be followed by an ad-hoc post-processing rule to infer the start and end of 
peaks (see Fig. 2). For each of these methods, there are one or more tuning parameters 
that need to be set before solving the peak detection problem and that may affect the 
results accuracy.

In a supervised learning approach, Hocking et al. [7] introduced seven labeled histone 
mark datasets that are composed of samples from two different ChIP-seq experiments 
directed at histone modifications H3K36me3 and H3K36me3. In a recent study, after 
training different peak callers using these datasets, Hocking et al. [12] compared them 
and showed that the constrained segmentation model with count data following a Pois-
son distribution outperforms standard bioinformatics heuristics and the unconstrained 
segmentation model on these datasets.

Modeling question

From a modeling perspective the constrained segmentation model and the Poisson noise 
are certainly the most natural assumptions to detect peaks in coverage profiles. How-
ever, it is not clear that they are realistic:

•	 By looking at the shapes of the peaks in coverage profiles (see for instance in Fig. 1), 
we can see that the background noise and the top of the peaks are sometimes sepa-
rated by one or more subtle changes. In contrast to the constrained segmentation 
model, the unconstrained one should be able to capture these subtle changes. One 
major issue is that the output segmentation of the unconstrained model does not 
have a straightforward interpretation in terms of peaks.

•	 Parametric models such as the negative binomial [14, 17] or the Gaussian, following 
a proper transformation of the count data for the latter [1, 13], are preferred over the 
Poisson one for the analysis of many high-througput sequencing datasets. Indeed, 
count data often exhibit more variability than the Poisson model expects which 
changes the interpretation of the model and makes it difficult to estimate its param-
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eters. These alternative parametric models are well known to reduce this phenom-
enon, also called over-dispersion.

In this work we try to start from these natural assumptions and show that it is possible 
to improve upon them.

Contribution

1.	 We show that the distribution of counts from H3K36me3 and H3K4me3 datasets 
exhibits over-dispersion which invalidates the Poisson assumption. The two alterna-
tive noise models we propose (negative binomial with constant dispersion parameter 
& Gaussian after Anscombe transformation) effectively reduce the over-dispersion 
on these datasets (see Fig. 4).

Fig. 1  Examples of ChIP-seq coverage profiles from the histone mark H3K36me3 and H3K4me3 datasets. 
(Top) In blue , a piecewise constant function affected by three unconstrained abrupt changes shown in red 

. (Bottom) In blue , a piecewise constant function affected by two constrained abrupt changes shown in 
red 

Fig. 2  (Top) Segmentation of a coverage profile containing one peak using the unconstrained model. 
The location of the changepoints on the chromosome are shown by red dotted lines . The mean of 
the segments are shown in blue . According to this segmentation there are two alternative starts and 
two alternative ends of the peak, i.e. four alternative variants of the same peak formed by the regions: 
[Start1:End1], [Start1:End2], [Start2:End1] and [Start2:End2]. (Bottom) Three different rules are proposed to 
interpret the segmentation as peaks. Thinnest peak: the resulting peak is defined by the region [Start2:End1]. 
Largest peak: the resulting peak is defined by the region [Start1:End2]. Max jump: the resulting peak is defined 
by the region [Start1:End1]
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2.	 We propose a new and rather natural post-processing rule to predict the start and 
end of peaks in an estimated unconstrained segmentation (see Fig. 2). Indeed, in the 
unconstrained segmentation we can observe several up (respectively down) changes 
and it is not obvious which one should be considered as the start or end of the peak. 
We show that this new post-processing rule improves the accuracy of the uncon-
strained segmentation model in both H3K36me3 and H3K4me3 datasets compared 
to the same model with previous rules described by Hocking et al. [12] (see Fig. 5).

3.	 Hocking et al. [11] described a procedure to extract all optimal constrained segmen-
tations for a range of peaks. It is an essential internal step in the supervised approach 
for learning the penalty parameter of segmentation models. In this work we general-
ize this procedure so that it works with the unconstrained segmentation model and 
the post-processing rule mentioned in the previous point (see Algorithm 1).

4.	 We describe a method to learn jointly both the penalty and dispersion parameters of 
segmentation models with a negative binomial noise. We then compare the accuracy 
of unconstrained and contrained segmention models with different noise distribu-
tions on the labeled H3K36me3 and H3K4me3 datasets (see Fig. 6).

Methods
Segmentation models for ChIP‑seq data

Unconstrained segmentation model

The observed data (y1, . . . , yn) are supposed to be a realization of an independent ran-
dom process (Y1, . . . ,Yn) . This process is drawn from a probability distribution F  which 
depends on two parameters: θ is assumed to be affected by K − 1 abrupt changes called 
changepoints and φ is constant. We denote τk the location of the kth changepoint with 
k = {1, . . . ,K − 1} . By convention we introduce the fixed indices τ0 = 0 and τK = n . The 
kth segment is formed by the observations (yτk−1+1, . . . , yτk ) . θk stands for the parameter 
of the kth segment (see Fig. 1). Formally the unconstrained segmentation model [5], can be 
written as follows:

Constrained segmentation model

In order to have a segmentation model with a straightforward interpretation in terms 
of peaks, we add inequality constraints to the successive segment specific parameters 
(θ1, . . . , θK ) so that non-decreasing changes in these parameters are always followed by 
non-increasing changes. Therefore, we formally assume the following constrained segmen-
tation model [8], hereafter called Up–Down:

(1)∀i | τk−1 + 1 ≤ i ≤ τk , Yi ∼ F(θk ,φ).

(2)
∀i | τk−1 + 1 ≤ i ≤ τk , Yi ∼ F(θk ,φ)

subject to

{

θk−1 ≤ θk ∀k ∈ {2, 4, . . . }
θk−1 ≥ θk ∀k ∈ {3, 5, . . . }

.
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Probability distributions

In the case of the Poisson distribution we have F(θk ,φ) = Pois(�k ,φ = ∅) where �k 
stands for the mean and the variance of the kth segment. In the case of the Gaussian 
distribution we have F(θk ,φ) = N (µk , σ

2) where µk is the mean of the kth segment 
and σ 2 is the variance assumed constant across the segments. Also in this case, the 
non-negative integer count data have been transformed in real values (Z+ → R+) 
through an Anscombe transformation (

√

Y + 3
8 ) which is a useful variance-stabilizing 

transformation for count data following a Poisson distribution [1]. In the case of the 
negative binomial distribution we have F(θk ,φ) = NB(µk ,φ) where µk is the the mean 
of the kth segment and φ is the dispersion parameter that needs to be learned on the 
data. In this parametrization σ 2

k  , the variance of the kth segment, is µk + φ−1µ2
k.

Optimization problems

In both unconstrained and constrained optimal multiple changepoint detection prob-
lems, the goal is to estimate the changepoint locations (τ1, . . . , τK−1) and the param-
eters (θ1, . . . , θK ) both resulting from the segmentation. Runge et al. [19] introduced 
gfpop (Graph-Constrained Functional Pruning Optimal Partitioning), an algorithm 
that solves both problems using penalized maximum likelihood inference. It imple-
ments several loss functions including the Gaussian, Poisson and negative binomial 
that allowed us to compare different noise models for the count data. The number of 
changepoints in a coverage profile being unknown, gfpop takes a non-negative penalty 
� ∈ R+ parameter that controls the complexity of the output segmentation. Larger 
penalty � values result in models with fewer changepoints. The extreme penalty val-
ues are � = 0 which yields n− 1 changepoints, and � = ∞ which yields 0 changepoint. 
The time complexity of gfpop is empirically O(Vn log(n)) . Intuitively, V stands for the 
number states you will need to encode your priors about the form of the output seg-
mentation, e.g. with the Up–Down model at each time the signal can be a part of the 
background noise (Down) or a peak (Up). Consequently, the empirical time complex-
ity of gfpop with the Up–Down model is O(2n log(n)) while with the unconstrained 
model it is O(n log(n)).

Rules for inferring the start and end of peaks with the unconstrained segmentation model

As mentioned before, one of the main motivation of the Up–Down model is that it 
can be interpreted in terms of peaks which is a practitioner’s request. In the case of 
the unconstrained model, the output segmentation may results in successive non-
decreasing changes ( Up∗ ), e.g. in Fig.  2: Up∗ = {Start1, Start2} , and successive non-
increasing changes ( Dw∗ ), e.g. in Fig.  2: Dw∗ = {End1, End2} , in the signal. Thus, it 
is necessary to specify a post-processing rule to select the start and end of peaks 
among the returned changepoints in respectively each Up∗ and Dw∗ . This results in 
|Up∗| × |Dw∗| alternatives of the same peak. Rules. We propose three different rules to 
select the start and end of peaks (see Fig. 2):

•	 thinnest peak: we select the last up change in Up∗ and the first down change in Dw∗ ;
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•	 largest peak rule: we select the first up change in Up∗ and the last down change in 
Dw∗ ;

•	 max jump: we select the up and down change with the largest mean-difference in 
Up∗ and Dw∗.

Hocking et al. [12] introduced similar rules to the thinnest peak and largest peak.

Labeled data for supervised learning peak detection

Tuning parameters

For each peak callers there are one or more tuning parameters that need to be set before 
solving the peak detection problem and that may greatly affect the result accuracy. For 
segmentation methods this parameter is the penalty � which controls the number of 
peaks in the resulting segmentation, while for heuristics, such as MACS or HMCan, 
they use a threshold parameter whose value allows to only consider the top p peaks 
given their significance. Moreover, if we want to model the over-dipersion phenomenon 
observed in the count data using a negative binomial probability distribution, this is 
done at the cost of another parameter (φ) that we need to set as well. Its value may also 
affect the number of peaks in the resulting segmentation. In theory, if the correct noise 
model was known, it would be possible to use statistical arguments to choose the param-
eter to use. However, in practice the correct noise model is complex and unknown. There 
are many factors that influence the signal and noise patterns in real ChIP-seq data, e.g. 
experimental protocols, sequencing machines, alignment software. These factors results 
in poor accuracy for the detection of peaks [7]. Therefore, we will consider the super-
vised peak detection problem in which the value of tuning parameters can be learned 
using manually determined labels that indicate a presence or absence of peaks.

Benchmark datasets

Introduced by Hocking et  al. [7], these seven labeled histone mark datasets are com-
posed of samples from two different ChIP-seq experiments directed at modifications 
found on the histone 3 N-terminal tails. The first experiment is directed at histone H3 
lysine 4 tri-methylation (H3K4me3), a modification localized in promoters. The sec-
ond one is directed at histone H3 lysine 36 tri-methylation (H3K36me3), a modification 
localized in transcribed regions. Both these modifications are involved in the regula-
tion of gene expression [21]. The histone modifications H3K4me3 and H3K36me3 are 
respectively characterized by sharp and broad peak patterns in coverage profiles. Expert 
biologists, with visual inspection, have annotated some regions by indicating the pres-
ence or absence of peaks. Then, they grouped the labels to form 2752 distinct labeled 
coverage profiles. Standard used for labeling by the expert biologists is described in Sup-
plementary Text 1 of Hocking et al. [10].

Definition of labeled coverage profiles and errors

In the context of supervised peak detection each labeled coverage profile of 
size n, denoted w ∈ Z

n
+ , is a problem. Formally we have a set of M problems 

(w1, . . . ,wM) where M = 2752 . Each problem wm is associated with a set of N labels 
Hm = {(s1, e1, h1) . . . , (sN , eN , hN )} where s is the start genomic location of the label, e is 
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the end genomic location of the label and h is the type of the label. There are four types 
of labels that allow some flexibility in the annotation (see Fig. 3):

•	 noPeaks label stands for a region that contains only background noise with no peak. 
If any peak is predicted in this region, the label counts as a false positive ;

•	 peaks label means there is at least one overlapping peak in that region. Hence, one or 
more peaks in that region is acceptable. If there is not at least one overlapping peak 
predicted in this region, it counts as a false negative ;

•	 peakStart and peakEnd labels stand for regions which should contain exactly one 
peak start or end. If more than one peak start / end is predicted in this region, the 
label counts as a false positive. Conversely, if less than one peak start / end is pre-
dicted in this region, the label counts as a false negative.

The set of labels Hm is used to quantify the error Em , i.e. the total number of incorrectly 
predicted labels (false positive + false negative) in the coverage profile wm given the set 
of peaks returned by a peak caller.

Supervised algorithms for learning tuning parameters of negative binomial segmentation 

models

Objective function

The error function for a given problem wm , denoted Em : R2
+ → Z+ , is a mapping 

from the tuning parameters (φ, � ) of negative binomial segmentation models to the 
number of incorrectly predicted labels in the resulting optimal segmentation. With 
the supervised peak detection approach the goal is to provide predictions of φ and � 
that minimize Em(φ, �) . The exact computation of the 2-dimensional defined Em(φ, �) 
is intractable with respect to φ . Thus, we computed it over 16 φ values evenly placed 
on the log scale between 1 and 10,000, � = (φ1 = 1, . . . ,φ16 = 10,000) . Our results 
suggest that this grid of values is a good set of candidates to test in order to calibrate 
the dispersion parameter φ (see Additional file 1: Fig. 2). The exact computation of 
the error rate as a function of � ( φ remains constant), a piecewise constant function, 

Fig. 3  (Top) Example of a ChIP-seq coverage profile annotated by an expert biologist. The labels represented 
by colored rectangles indicate the absence  or presence of a peak, here characterized by its start  and 
its end . (Bottom) The model with 1 peak in its output segmentation has an associated error of 2 ( 2× False 
Negative ). The model with 3 peaks has an associated error of 1 ( 1× False Positive ). The model with 2 
peaks is a good model for which all the labels optimized on this coverage profile are correct 
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requires to retrieve all optimal segmentations up to 9 peaks. This way, on the advice 
of the biologists who annotated the benchmark datasets, we ensure that for each 
problem there is a segmentation with at least one false positive label and another 
with one false negative label. A procedure that retrieves one optimal segmenta-
tion for each targeted number of peaks P∗ has already been described by Hock-
ing et al. [11]. It can be used with the Up–Down model for which there is at most 
one optimal segmentation that results in P∗ peaks but not with the unconstrained 
model for which there can be several ones. Indeed, the constraints in the Up–Down 
model require it to add, if the associated cost is optimal, 2 changepoints that lead to 
the formation of a new peak. With the unconstrained model adding a changepoint 
can either refine an already existing peak or, in combination with another change-
point, form a new peak. More generally there is a need of an algorithm that takes 
as input any penalized changepoint detection solver S with a penalty � constant 
along the changepoints, optionally the dispersion parameter φ , and outputs all opti-
mal segmentations between two peak bounds denoted P  and P  . We present CROCS 
(Changepoints for a Range of ComplexitieS), an algorithm that meets this need.

Discussion of pseudocode

CROCS (Algorithm 1).(i) The algorithm begins by calling SequentialSearch [described 
underneath] to search two penalty bounds � (line 6) and � (line 5) that result in a seg-
mentation with respectively P − 1 (line 3) and P + 1 (line 4) peaks. Indeed, using gfpop 
with the Up–Down model as solver S , the number peaks in the resulting optimal seg-
mentations is a non-increasing function of � . This propriety guarantees that with the 
previous penalty bounds we can reach every optimal model from P to P peaks. For 
unconstrained segmentation models, we suspect it also should be true in the vast major-
ity of cases. (ii) Then, the algorithm calls CROPS [described underneath] (line 7) to 
retrieve all the optimal segmentations between these two penalty bounds. (iii) Finally, 
a simple post-processing step (not shown in the algorithm) allows to remove segmen-
tations with P − 1 and P + 1 peaks. The time complexity of the CROCS algorithm is 
bounded by the time complexity of the CROPS procedure, i.e. O(O(S)(K� − K

�
)) , where 

K
�
 and K� are the number of segments in optimal segmentations associated to respec-

tively � and � . O(S) is the time complexity of the solver S , e.g. empirically O(2n log(n)) 
for gfpop with the Up–Down model.

•	 SequentialSearch is a procedure described by Hocking et al. [11] that takes as input a 
problem wm , a target number of peaks P∗ and outputs an optimal segmentation with 
P∗ peaks in addition to the penalty � for reaching it.

•	 CROPS is a procedure described by Haynes et al. [6] that takes as input a problem 
wm , as well as two penalty bounds � & � and outputs all the optimal segmentations 
between these two bounds.

We slightly modified the original implementation of both SequentialSearch and CROPS 
in such way that they can work with any penalized changepoint detection solver S pro-
vided by the user.
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Learning jointly φ and �

Once the error function Em(φ ∈ �, �) is computed for each problem of the training set, 
a natural way to learn the dispersion and penalty parameters is to select the pair of val-
ues (φ ∈ �, �) that achieves the global minimum error. We denote these values φ∗ and 
�
∗ . Recall that Em(φ ∈ �, �) is piecewise constant on � . The sum of Em(φ ∈ �, �) over 

all problems is still piecewise constant on � . Therefore, φ∗ and �∗ can be easily retrieved 
using a sequential search. We refined the previous learning method, hereafter called 
constant � , by taking advantage of the piecewise constant propriety of Em(φ ∈ �, �) . 
Indeed, the minimum error is not reached for a unique penalty value �∗ but an interval 
denoted I�,m . After fixing φ∗ , we can use I�,m computed for each problem of the training 
set in order to learn a function that predicts problem-specific � values. This function is 
a solution of the interval regression problem described by Rigaill et al. [16]. We denote 
this learning method linear �.

In the case of segmentation models with a Poisson or a Gaussian noise, the only tuning 
parameter that we need to learn is � . Thus, the objective function becomes a 1-dimen-
sional defined function denoted Em(�) . The methods we used to learn � are similar than 
those presented above (see Hocking et al. [12] for more details).

Empirical results
Cross‑validation setup and evaluation metric

In the following section, for each model compared, a 10-fold or 4-fold1 cross-val-
idation was performed on each of the seven datasets. Here, the results are shown 
by type of experiments (H3K36me3 & H3K4me3). The metric we used to evalu-
ate the performance of our models is the test accuracy which can be formally written 
1−

(
∑

m∈ test set Em /
∑

m∈ test set |Hm|
)

 . One may be concerned about the size of the 
datasets used for supervised learning of the tuning parameters. We have shown in Addi-
tional file 1: Fig. 1 that only a dozens of labels are enough to learn tuning parameters and 
associated segmentations close to the model-specific maximum accuracy. By increas-
ing the number of labels in the learning set, the accuracy also becomes more consistent 
between test folds.

1  In order to satisfy the assumption about the independence between the training and test set in the cross-validation, 
we could not exceed 4-fold in two of the seven benchmark datasets (for more details see caption of Additional file 1: 
Table 1).
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Learning of tuning parameters

In previous section we have described two methods for learning the tuning param-
eters of segmentation models. Based on results shown in Additional file 1: Fig. 3, for 
the rest of this section, the parameters of the models compared on H3K36me3 data-
sets are learned through the constant � method. The parameters of the models com-
pared on H3K4me3 datasets are them learned through the linear � method.

The over‑dispersion exhibited by count data under a Poisson noise model can be 

effectively reduced using a negative binomial or a Gaussian transformed noise model

Initially, we wanted to validate the presence of over-dispersion in count data follow-
ing a Poisson distribution. In a second step, we wanted to confirm that alternative 
noise models such as the negative binomial or the Gaussian one, following an Ans-
combe transformation of the counts for the latter, could allow us to reduce this over-
dispersion. A simple way to highlight the over-dispersion is to plot the log2 -ratio of 
the empirical and theoretical variances of count data. If the log2 -ratio is positive, the 
distribution of count data exhibits over-dispersion. If it is negative, the distribution 
of count data exhibits under-dispersion. If it is null, the dispersion of the count data 
does not show inconsistency with respect to the noise model. In Fig. 4, each observa-
tion corresponds to a segment from the segmentations selected during the cross-val-
idation procedure for the 2752 coverage profiles. The segmentation were computed 
using CROCS with gfpop and the unconstrained model as solver. Then, We estimated 
the empirical and theoretical variances for each of the selected segments. In the case 
of the Poisson noise model, the estimated theoretical variance is formally written 
σ̂k

2 = µ̂ , where µ̂ stands for the estimation of the mean of count data belonging to the 
same segment. For the negative binomial one it is formally written σ̂ 2 = µ̂+ φ−1µ̂2 , 
where φ stands for the dispersion parameter learned during the cross-validation 

Fig. 4  The over-dispersion exhibited by count data under a Poisson noise model can be effectively 
reduced using a negative binomial or a Gaussian transformed noise model. The red  indicator line stands 
for the equality of the theoretical and empirical variances. (Left) Observations above this line stand for 
over-dispersed count data. Observations under this line stand for under-dispersed count data. (Right) A 
zoom on the Left distributions
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procedure. For the Gaussian one, the theoretical variance is assumed constant across 
the segments. We estimated it using the mean squared error computed over all 
segments. In Fig.  4 we can see that in both H3K36me3 and H3K4me3 datasets the 
median of the log2 -ratio is above 1 with the Poisson noise model. Hence, For most 
observations the empirical variance is at least two times larger than the theoretical 
variance. Therefore, count data under the Poisson noise model shows a clear over-
dispersion phenomenon. In both H3K36me3 and H3K4me3 datasets, the median of 
the log2 -ratio is slightly closest to 0 with the negative noise model than with Poisson 
noise one (from 1.19 to 0.70 in H3K36me3 and 1.69 to 1.39 in H3K4me3). Therefore, 
the negative noise model helps partially correct this over-dispersion. The reduction 
is even greater with the Gaussian transformed noise model (from 1.19 to 0.16 in 
H3K36me3 and 1.69 to 0.18 in H3K4me3).

Max jump is the most accurate rule for inferring the peaks in segmentations obtained 

through the unconstrained model

Solving the peak detection problem with the unconstrained model requires to introduce 
a rule for selecting the changepoints corresponding to the start and end of the peaks in 
the output segmentation. We wanted to compare the peak detection accuracy of the new 
rule we propose (max jump) against the others (largest peak & thinnest peak) which have 
an equivalence in Hocking et al. [12]. In the user guide of how to create labels in ChIP-
seq coverage profiles [7], the authors strongly advise to label peaks which are obviously 
up with respect to the background noise. Hence, we expected that the max jump rule, 
which sets the start and end of the peaks on the change with the largest mean-difference, 
performs at least as well as the other two rules. In Fig. 5, we look at the mean of dif-
ferences in accuracy between each model with either the largest peak or thinnest peak 
rule, denoted target models, against the same model with the max jump rule, denoted 
reference model. In agreement with our expectation, we observe that for the different 
models in both H3K36me3 & H3K4me3 datasets, the mean accuracy of the max jump 

Fig. 5  Max jump is the most accurate rule for inferring the peaks in segmentations obtained through a 
unconstrained model. The mean of differences in accuracy and its 95% CI computed on the test folds pooled 
by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences in accuracy is 
negative (left side of the blue indicator line ), the max jump rule is better in average than the target rule. The 
results of the paired t-test used to assess the difference of mean accuracy are summarized in the following 
way: non significant (ns) means adjusted p-value > 0.05 ; * means adjusted p-value ≤ 0.05 ; *** means 
adjusted p-value ≤ 0.001
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rule is greater than the mean accuracy of the largest peak rule (3.66–12.36% more accu-
rate on average). Except for the unconstrained model with a Poisson noise in H3K4me3 
(0.11% less accurate on average), the mean accuracy of the max jump rule is also greater 
than the mean accuracy of the thinnest peak (0.38–3.03% more accurate on average). 
In order to test if the mean accuracy of the target and the reference models are signifi-
cantly different, we performed a paired t-test. The accuracy of each fold were previously 
pooled by type of experiments as it is suggested in Fig. 5. After correcting the p-values 
of the paired t-test with the Benjamini & Hochberg method, eight differences were still 
significant (adjusted p-value < 0.05 ). As a result of these observations, for the next com-
parisons we will infer the peaks in the output segmentations obtained with the uncon-
strained model using the new max jump rule we propose.

The unconstrained model with a negative binomial or a Gaussian transformed noise 

is more accurate than previous state‑of‑the‑art

We wanted to compare the peak detection accuracy of the Up–Down model with a Pois-
son noise2 against other segmentation models such as the unconstrained or Up–Down 
model with either a negative binomial or a Gaussian transformed noise. HMCan, MACS 
and other heuristics have already been compared to the Up–Down model with a Poisson 
noise in Hocking et al. [12]. We included them again as a baseline from the bioinformat-
ics literature. Both of them use a threshold that affects their peak detection accuracy and 
whose learning is also described in the previous cited study. Because we saw in previ-
ous results that a negative binomial or Gaussian transformed noise effectively reduces 
the over-dispersion exhibited by count data under a Poisson noise, we expected that 
the unconstrained or Up–Down model with these alternative noises will improve the 
peak detection accuracy on the test set. In Fig. 6 we look at the mean of differences in 

Fig. 6  The unconstrained model with a negative binomial or a Gaussian transformed noise is more accurate 
than previous state-of-the-art. The mean of differences in accuracy and its 95% CI computed on the test 
folds pooled by types of experiment (H3K36me3 & H3K4me3) are shown in red . If the mean of differences 
in accuracy is negative (left side of the blue indicator line ), the Up–Down model with a Poisson noise is 
better in average than the target model. The results of the paired t-test used to assess the difference of mean 
accuracy are summarized in the following way: non significant (ns) means adjusted p-value > 0.05 ; * means 
adjusted p-value ≤ 0.05

2  Model built on natural assumptions to detect peaks in coverage profiles and actual state-of-the-art on H3K36me3 and 
H3K4me3 datasets.
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accuracy between the Up–Down model with a Poisson noise, denoted reference model, 
against other segmentation models and heuristics, denoted target models. In agreement 
with our expectation, we can see that the unconstrained model with a negative bino-
mial noise has a mean accuracy greater than the reference model in both H3K36me3 
and H3K4me3 datasets (respectively 2.0% and 0.86% more accurate on average). It has 
also a greater mean accuracy with a Gaussian transformed noise (respectively 2.15% and 
1.77% more accurate on average). As described previously, in order to test if the mean 
accuracy of the target and the reference models are significantly different, we performed 
a paired t-test. After correcting the p-values, the unconstrained model with a Gaussian 
transformed noise was still significant (adjusted p-value < 0.05 ). Note that the uncon-
strained model with a Poisson noise has a mean accuracy similar to reference model 
(the mean of differences in accuracy < 0.5% in both datasets). Thus, the improvement in 
accuracy cannot be attributed solely to the unconstrained model with the max jump rule 
but also to the distribution chosen for the noise. In disagreement with our expectation, 
with the Up–Down model the use of alternative noise distributions does not improve 
significantly the accuracy compared to the Poisson one (mean of differences in accuracy 
< 1% in H3K36me3 and < 0.1% in H3K4me3).

The Up–down segmentation models are more robust than the heuristics 

from the bioinformatics literature HMCan and MACS

In addition to comparing the peak detection accuracy, we wanted to assess the robust-
ness of segmentation models against the heuristics HMCan and MACS. To assess the 
robustness of the segmentation models and heuristics we used the coverage profiles 
from biological replicates available in each of the seven labeled histone mark datasets. 
The value of tuning parameters for the segmentation models and heuristics are the same 
as those learned during the cross-validation procedure. As explained in the introduction, 
the peak calling problem can be seen as a binary classification problem. In this frame-
work each base from the coverage profiles are classified as a part of the background 
noise (0) or peak (1). Hence, the robustness can be assessed by computing the distance 
between partitions of the coverage profiles from the biological replicates. The more the 
distance between these partitions is close to zero the more the segmentation model or 
the heuristic is robust. As a metric we used the normalized information distance, or 
NID, which has a range between 0 and 1 [3, 23]. For each genomic chunk we computed 
the NID between all pairs of biological replicates. In Fig. 7 we look a the mean of dif-
ferences of NID between segmentation models and the heuristics HMCan or MACS. 
We can see that the mean of the NID of Up–Down models, independently of the noise 
model, is lower than with the heuristics HMcan and MACS in both H3K36me3 and 
H3K4me3 datasets (respectively from 0.09 to 0.12 and 0.02 to 0.03 less distant on aver-
age). After correcting the p-values of the paired t-test with the Benjamini & Hochberg 
method, five differences were still significant (adjusted p-value < 0.05 ). Regarding the 
unconstrained models, except for the negative binomial noise model in the H3K24me3 
datasets (NID is lower by 0.09 in average & paired t-test with adjusted p-value < 0.01 ), 
there is no clear improvement in robustness compared to the heuristics HMCan or 
MACS. With the Poisson model, which do no reduce the over-dispersion, we conclude 
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even the opposite in the H3K4me3 datasets (NID is longer by 0.05 in average, paired 
t-test with adjusted p-value < 0.01).

Discussion
Modeling of over‑dispersed ChIP‑seq count data

We have seen in Fig. 4 that count data under a Poisson noise model exhibit over-disper-
sion in H3K36me3 and H3K4me3 datasets. We have shown that this over-dispersion can 
be effectively reduced in these datasets using either a negative binomial or a Gaussian 
transformed noise model.

The use of a negative binomial noise model implies that we must be able to estimate a 
suitable value for the φ dispersion parameter. We have proposed to learn it jointly with 
the penalty of the segmentation model directly on the labeled coverage profiles. More 
precisely, a constant φ is selected because it minimizes the label errors of the training 
set. The negative binomial combined with the constant dispersion parameter allows the 
phenomenon of over-dispersion to be slightly reduced.

With the Gaussian noise model there are no additional parameters than the penalty of 
the segmentation model to set. This is an advantage compared to the negative binomial 
one. In this study, in order to satisfy the Gaussian proprieties, we transformed the count 
data with an Anscombe transformation which is highly appreciated for its variance sta-
bilization properties. Gaussian transformed noise model allowed to reduce the over-dis-
persion even more efficiently than the negative binomial noise model on the H3K4me3 
and H3K36me3 datasets, while being simpler to implement.

Segmentation models for peak detection in ChIP‑seq count data

The unconstrained model seems to capture more subtle changes in count data than the 
Up–Down one which have sometimes a poor fit to the signal (see Fig.  1). One major 
issue of the unconstrained model is its output segmentation which doesn’t have a 
straightforward interpretation in terms of peaks compared to the Up–Down one. The 
introduction of the max jump rule (see Fig. 2), which have shown to perform at least as 

Fig. 7  The Up–down segmentation models are more robust than the heuristics from the bioinformatics 
literature HMCan and MACS. The mean of differences of the normalized information distance (NID) and its 
95% CI are shown in red . If the mean of differences in NID is negative (left side of the blue indicator line 
), the target segmentation model is more robust in average than HMCan (H3K36me3) or MACS (H3K4me3). 
The results of the paired t-test used to assess the difference of mean of NID are summarized in the following 
way: non significant (ns) means adjusted p-value > 0.05 ; * means adjusted p-value ≤ 0.05 ; ** means adjusted 
p-value ≤ 0.01
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well as rules proposed in Hocking et al. [12] (thinnest peak & largest peak), helps to cor-
rect this weakness (see Fig. 5).

In Fig.  6 we have seen that when combining the unconstrained model with a nega-
tive binomial or a Gaussian transformed noise it is possible to improve upon the natural 
and current state-of-the-art on the peak detection accuracy, the Up–Down model with 
a Poisson noise, in both H3K36me and H3K4me3 datasets. We argue that this improve-
ment is likely explained by the ability of the negative binomial and the Gaussian trans-
formation to reduce the over-dispersion as illustrated in Fig. 4. In summary, we believe 
that the better we model dispersion the better we improve the accuracy of the segmenta-
tion model. Figure 7 have shown that the unconstrained segmentation model with noise 
models reducing over-dispersion are also at least as robust as MACS or HMCan heuris-
tics. It is an important criterion showing the applicability of our proposed models.

Still in Fig. 6, we have seen that the Up–Down model with a negative binomial or a 
Gaussian transformed noise, which reduce the over-dispersion phenomenon, doesn’t 
improve the accuracy upon the Up–Down model with a Poisson noise. One hypothesis 
to explain these results is that the constraints, which lead to the reduction of the space 
of optimal reachable segmentations with the Up–Down model, also reduce the probabil-
ity of adding biologically uninformative changepoints induced by the over-dispersion. 
Consequently, the Up–Down model has the advantage to be a model with good internal 
over-dipsersion resistance properties but is bounded by its poor adaptability to the sig-
nal. We argue the constraints also explain that the Up–Down model is more robust than 
the unconstrained model and the MACS and HMcan heuristics (see Fig. 7).

We have added several supplementary figures (see Additional file 1: Figs. 4–10) which 
illustrate typical results from the test folds for the MACS and HMCan heuristics as well 
as our proposed segmention models.

Segmentation models applied to other types of ChIP‑seq experiments

In this paper, the broad (H3K36me3) and sharp (H3K4me3) histone signals have been 
discussed. Previous studies already demonstrated the applicability of optimal change-
point algorithms to other types of experiment. For example, Fig. 7 in Hocking and Bour-
que [9] showed that optimal changepoint algorithms on H3K9me3 and H3K27me3 data 
typically result in peaks with intermediate sizes (3.5–3.9 kb on average) compared with 
the relatively small H3K4me3 (1.0–1.7 kb) and relatively large H3K36me3 (35.8–48.0 
kb). The peak calling of transcription factor binding sites such as MAX, SRF and NRSF 
was also previously tested (see Supplementary Fig. 3 in Hocking et al. [7]). By reducing 
the over-dispersion in count data with the Gaussian transformed or the negative bino-
mial noise models, we would expect similar improvements in accuracy for these other 
experiment types. Furthermore, we did not test our proposed models on mixed signal 
like Pol II. We leave the two last points for future research.

Conclusion
We developed the CROCS algorithm that computes all optimal models between two 
peak bounds, given any segmentation algorithm with constant penalty � for each change-
point. This set of optimal segmentations is essential to compute the error rate function, 
which is in turn used in the supervised approach for learning the tuning parameters of 
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the segmentation models. We proposed to solve the peak detection problem by using 
the unconstrained segmentation model that takes advantage of the max jump rule we 
introduced as well as the negative binomial or Gaussian transformed noise model. We 
have shown that this model improves upon the accuracy of the model built on natural 
assumptions (constrained segmentation (Up–Down) with Poisson noise model) in both 
H3K36me3 and H3K4me3 datasets. The unconstrained model with the negative bino-
mial or Gaussian transformed noise model can be used to provide new high-quality peak 
prediction tracks for H3K36me3 and H3K4me3 histone modifications. These peak pre-
diction tracks will be a more accurate reference for researchers in the field of epigenetics 
who want to analyze these data.

Future work

Our results suggest that with both negative binomial and Gaussian transformed noise 
models the over-dispersion could be further reduced. Regarding the negative binomial 
noise model, one could think about predicting a local dispersion parameter for each cov-
erage profile. Furthermore, the literature about Gaussian transformations is wide and a 
comparative study integrating segmentation models with different transformations for 
count data, e.g. the Box–Cox transformation, arcsin square root transformation or log-
transformation, would also be an interesting avenue for future work. As described in 
Anscombe [1] some of these well-known transformations have, in theory, better vari-
ance-stabilizing proprieties for over-dispersed count data than the one we used in this 
study (

√

Y + 3
8 ) . Still, they are highly dependent on the estimation of the dispersion 

parameter φ which in our case can be directly taken into account in the statistical model, 
i.e by using the negative binomial noise model implemented in gfpop.

In this paper we explored two different segmentation models, the unconstrained seg-
mentation model and a constrained segmentation model where each non-decreasing 
change is followed by an non-increasing change in the mean (Up–Down). The gfpop 
method makes it possible to model changepoints even more precisely by constraining 
for example the minimum size of jumps or the minimum size of segments. It would be 
interesting in future work to test other constrained models or to model the auto-correla-
tion [4, 18] in the context of the peak detection problem in ChIP-seq data.
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