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Abstract

Plant breeding programs design new crop cultivars which, while developed for distinct populations of
environments, are nevertheless grown over large areas during their careers. Over its cultivation area, the
crop is exposed to highly diverse stress patterns caused by climatic uncertainty and multiple management
options, which often leads to decreased expected crop performance.

In this study, we aim is to assess how finer spatial management of genetic resources could reduce the
genotype-phenotype mismatch in cropping environments and ultimately improve the efficiency and stability
of crop production. We used modeling and simulation to predict the crop performance resulting from
the interaction between cultivar growth and development, climate and soil conditions, and management
practices. We designed a computational experiment that evaluated the performance of a collection of
commercial sunflower cultivars in a realistic population of cropping conditions in France, built from
extensive agricultural surveys. Distinct farming locations that shared similar simulated abiotic stress
patterns were clustered together to specify environment types. Optimization methods were then used to
search for cultivars x environments combinations that lead to increased yield expectations.

Results showed that a single cultivar choice adapted to the most frequent environment-type in the
population is a robust strategy. However, the relevance of cultivar recommendations to specific locations
was gradually increasing with the knowledge of pedo-climatic conditions. We argue that this approach
while being operational on current genetic material could act synergistically with plant breeding as
more diverse material could enable access to cultivars with distinctive traits, more adapted to specific
conditions.



Introduction

Context

The use of fertilizers, irrigation, and pesticides mitigated the effects of climatic hazards and had a large
and positive impact on crop yield gains between 1960 and 2000 (Tilman et al., 2002; Foley et al., 2005 ).
Currently, because of the simultaneous need to reduce inputs in agricultural systems, and the climatic
uncertainty caused by climate change, the variability of cropping conditions increased as compared to late
century conditions. Over its global cultivation area, a crop is thus exposed to highly diverse biotic and
abiotic stress patterns, which can often lead to decreased crop performance regarding the expected level
and cause yield gap. Reducing these yield gaps could be achieved by two conflicting strategies: increase
inputs or increase the crop resource-use efficiency (Sadras and Denison, 2016).

Plant breeding is a key asset to increase crop resource use efficiency by designing new cultivars adapted to
distinct populations of environments (e.g. Voss-Fels et al., 2019 for wheat; Vear et al., 2003 for sunflower).
Cultivars are nevertheless grown over large areas during their careers, which can encompass locations and
management practices for which the cultivars were not designed for. In continental Europe, sunflower is
mostly cultivated in eastern and southern regions (18.7 M hectares in 2018). In 2018, Russian Federation,
Ukraine (together 49%, 26.9 Mt), and UE-28 (18%, 9.9 Mt) were the largest sunflower grain producers in
the world accounting for 68% of global volume (FAO, 2020). In the last 30 years, the production area for
the sunflower crop surged in Central and Eastern Europe (Ukraine, Russian Federation, + 9.6 M hectares
together) while it decreased in Western Europe (France, Spain, - 1.1 M hectares together) (FAO, 2020).
These changes in global acreage, while accounted for in plant breeding programs can lead to sub-optimal
use of the developed genetic resources.

Phenotypic plasticity is defined as the range of phenotypes a single genotype can express as a function of
its environment (Nicotra et al., 2010). At the population level, this process underlies the relative variation
in performance of cultivars across environments. It is commonly referred as genotype X environment
interactions in plant breeding and agricultural extension (Van Eeuwijk et al., 2016), which can outweigh
main genotype effect and can explain up to 20% of total yield variance observed in multi-environment
trials (e.g. Foucteau et al., 2001, for sunflower). Consequently, yield gap reduction is limited by our ability
to identify favorable combinations of cultivars and cropping conditions, given the resources available
to experiment among possible combinations in the target population of environments (Comstock, 1976;
Hammer and Jordan, 2007). Crop improvement can be viewed as a search strategy on a genotype-
environment space (Hammer et al., 2006) to manage the genetic and environmental resources more
efficiently by taking advantage of phenotypic plasticity.

Plant modeling approaches have emerged as a method to complement and improve the resource-limited
experimental exploration of the adaptation landscape (Chapman et al., 2003; Messina et al., 2006, 2011;
Hammer et al., 2006). Such models represent biological processes linked to plant growth and development
as a function of time, environment (climate, soil, and management), and genetic diversity. Crop simulation
models have the capacity to explore consequences of potential agronomic and breeding interventions in
the design of crops for production systems (Sinclair et al., 2019; Hammer et al., 2019) and have been
successfully used in a number of cases (see Chenu et al., 2017 for a review in wheat).

Two cases are particularly relevant to leverage phenotypic plasticity and support cultivar deployment
strategies. The first one, referred as environmental characterization or envirotyping (see Xu, 2016 for a
review), aims to analyze environmental impacts on crop and produce a set of categories (environment-
types) grouping multiple cropping conditions (e.g. distinct locations and years) into comparable stress
scenarios. While climate, soil, and management data could directly be used as classifiers, simulation
was successfully used to generate new variables representing abiotic stress per se by accounting for the
interactions between the plants and their environments (Chenu et al., 2013), potentially more informative
than raw environmental data (Mangin et al., 2017). These variables, such as time series of water
supply:demand ratio, can then be clustered into distinct stress scenarios over a large spatial and temporal
scale (Chenu et al., 2013; Gosseau et al., 2019). In the second case, crop models are at the core of
numerical experiments, aiming to complement and extend field experiments such as multi-environment
trials (MET). The capacity to sample the target population of environments for a set of cultivars along
with the possibility to formalize optimization problems enabled applications in cultivar selection (e.g. Li
et al., 2013), trait evaluation in multiple environment types (Chapman et al., 2002), or trait optimization



for performance or resistance criteria (Semenov and Stratonovitch, 2013; Paleari et al., 2015; Picheny et
al., 2017a).

Problem and aim

In France, the commercial sunflower cultivars are a subset of those developed for the European market,
while the French cropping conditions does not necessarily reflect those for which European cultivars were
developed for (Debaeke et al., 2017; Gosseau et al., 2019). In this study, our aim is to assess how finer
spatial management of available genetic resources could reduce the genotype-phenotype mismatch in
actual cropping conditions and ultimately improve the efficiency and stability of crop production.

For that we developed an approach (outlined in Figure 1) where we used postal surveys to describe
the cultivation area and crop management practices at the farm scale, over the national acreage. We
then designed a realistic numerical experiment based on these informations, as a factorial combination
of distinct farm locations (including crop management) and a collection of commercial cultivars. High-
resolution climate and soil gridded datasets were used to complete survey data and enhance climatic
coverage. Simulation allowed to predict the crop performance resulting from the interaction between
cultivar growth and development, climate and soil conditions, and management practices. Finally, we
defined and solved optimization problems to assess different cultivar deployment strategies leading to
increased yield expectations.

Material and methods

Data Design Simulation Analysis
f A e N e A
Catalog Genotype Crop model Envirotyping
commercial diversity (114) factorial design clustering on stress type
list genotypes available for sale combine genetic diversity, locations summarize time-series
incl. management, and years cluster to define environment-types
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ize for simulati . . clustering on stress freq.
simulated output variables compute environment-type frequency
N J time-series for abiotic stress cluster to define zones
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Figure 1. Outline of the approach used to compare cultivar deployment strategies.
A synthetic view of the design, simulation, and analysis steps (columns). In the design step,
each box presents the number of modalities used for genotype, locations, climate, and
management factors along with a summary of the method used. In the simulation step, the
box summarizes the design of the numerical experiment along with simulated variables. The
analysis step illustrates how the envirotyping and optimization methods are linked together
and how yield gains are computed.



Farm data

Farming data concerning the sunflower crop in France were collected from extensive postal surveys
conducted by an agricultural extension institute (Terres Inovia). Between 1997 and 2013, 11 years of
data were gathered, representing 11969 farming situations in total (from 1077 distinct locations). In
total, 14 crop management variables related to the sunflower crop were collected, including qualitative
(e.g. cultivar, fungicide application, soil depth class) and quantitative variables (e.g. sowing date and
density, nitrogen fertilization amount). We focused the study on variables linked to abiotic stress (water,
radiation, temperature, nitrogen).

Description of farming locations

The farm data featured the ZIP code, which was used as an approximation of the actual farm geographical
location (not collected).

We used the European Soil Database derived data (Hiederer, 2013, http://esdac.jrc.ec.europa.eu/content
/esdb-derived-data, 1x1 km grid cells) to obtain the quantitative soil properties corresponding to each
location, i.e. total available water content, soil depth available to roots, bulk density, coarse fragments for
two soil layers ([0, 30 cm], |30 cm, rooting depth]).

A 20 year period (1994-2013) of climatic data was obtained from the French national center for meteoro-
logical research (CNRM), using a 8x8 km grid dataset based on the interpolation of observed climatic
data (Quintana-Segui et al., 2008, Meteo-France SAFRAN). Farm locations were associated with the
closest climate grid point. Five climatic variables were used: minimal and maximal temperature (°C),
evapotranspiration (mm), global radiation (MJ m2), and precipitation (mm).

Cluster analysis of management practices

In order to reduce the number of modalities in surveyed management practices, we used a classification
analysis to cluster farming situations that shared similar management practices. First, a factor analysis
for mixed data (FAMD, Pages, 2004) was performed on the data to simplify variables that are correlated.
We then performed a hierarchical cluster analysis (HCA, Kaufman and Rousseeuw, 2009) on the variables
resulting from FAMD to cluster management practices.

Crop modeling and simulation
Model description

We used crop modeling and simulation to predict the grain yield in non-observed field environments.
SUNFLO is a process-based simulation model for sunflower that was developed to simulate grain yield
and oil concentration as a function of time, environment (soil and climate), management practices, and
genetic diversity (Casadebaig et al., 2011; Lecoeur et al., 2011). Predictions with the model are restricted
to potential or attainable yield (Van Ittersum and Rabbinge, 1997): only the main limiting abiotic factors
(temperature, radiation, water, and nitrogen) are included in the algorithm. Weeds, pests, and diseases
are therefore not accounted for in this study. The model simulates the main soil and plant functions: root
growth, soil water and nitrogen dynamics, plant transpiration and nitrogen uptake, leaf expansion and
senescence, and biomass accumulation. Four climatic variables are used as daily inputs for simulation:
mean air temperature (°C, 2m height), global incident radiation (MJ.m™2), potential evapotranspiration
(mm, Penman—-Monteith) and precipitation (mm). Soil properties are defined by its texture, maximum
depth and daily nitrogen mineralization potential, while initial soil conditions are defined by residual
mineral nitrogen and initial water content. The needed management practices include sowing date and
density, irrigation and nitrogen fertilization (timing and amount). Globally, the SUNFLO crop model has
about 50 equations and 64 parameters split into 33 species-dependent, 10 genotype-dependent, and 21
environment-related parameters. A report that summarizes the equations and parameters used in the
model is available as supplementary information in Picheny et al. (2017a).
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SUNFLO was evaluated both on specific research trials (40 trials, 110 cultivar x environment combinations)
and on agricultural extension trials that were representative of its targeted use (96 trials, 888 cultivar x
environment combinations). Over these two datasets, the model was able to simulate significant G x E
interactions and rank genotypes (Casadebaig et al., 2011, 2016). From these evaluations, we considered
that SUNFLO was accurate enough to support optimization methods, i.e. allows discrimination between
two given cultivars.

Experimental design and numerical experimentation.

To describe a realistic target population of environments for sunflower cropping in France, we used a
factorial design crossing a cultivar list of commercial sunflower hybrids (¢ = 38), the surveyed farming
locations (soil and crop management, e = 1077) and 20 years of historical climate data (1994-2013, ¢ = 20).
The resulting design represented 818520 virtual fields (n =g x e X t).

Genetic diversity was represented with g = 38 cultivars resulting from the intersection of the list of
cultivars actually available for sale in 2017 (n=125, Terres Inovia, 2017) and those whose morphological
and physiological characteristics were assessed for simulation (n=69). Such characteristics were necessary
to simulate genotype x environment interaction with the SUNFLO crop model, which uses measured
phenotypic traits as genotype-dependent parameters. The estimation of these parameters is based on
plant phenotyping, with methodology and protocols fully described for field (Casadebaig et al., 2011,
2016) and controlled conditions (Casadebaig et al., 2008; Gosseau et al., 2019).

Surveyed management practices were depicted with eight management systems resulting from the cluster
analysis. These management systems were used for the simulation analysis, and qualified by the sowing
date, plant density, and the amount of mineral nitrogen applied. (modalities indicated in Table 2).
As some farms with different management systems shared the same postal code, the most frequent
management system for each location-year combination was selected to assign a single management
system to each location-year combination. Because the surveys were not conducted every years, the
management systems missing from the factorial design were imputed assuming that management on the
location did not change until the next surveyed date (last observation carried forward, LOCF).

For each genotype x location x year combination, five output variables were simulated by the SUNFLO
crop model: seed yield at harvest, and four time-series corresponding to the impact of abiotic stressors
on crop photosynthesis, i.e. heat stress as a function of mean air temperature, cold stress as a function
of mean air temperature, water stress as a function of water deficit (simulated with the fraction of
transpirable soil water, FTSW) and nitrogen stress as a function of nitrogen deficit (simulated by the
nitrogen nutrition index, NNI, Debaeke et al., 2012).

Ounly in a few cases, the SUNFLO crop model failed to simulate seed production (~ 4.5% of genotype x
environment combinations) either because of excessive water deficit or the predicted maturity date was
too late in the season for a realistic harvest date. One cultivar was discarded from the analysis because
simulated yield value were outliers in all environments. The difference between modalities in studied
factors (locations, genotypes) for each step of the study is reported in Table 1.

level location station year genotype environment
survey 1077 1028 11 4574
design 1077 1028 20 38 21540
simulation 1075 1026 20 37 20566

Table 1. Sampled cropping conditions at the survey, numerical design, and sim-
ulation levels. The modalities of the sampled factors are reported at different steps of the
study: postal survey, numerical design of experiments, and actual simulated results. Columns
correspond to the number of distinct farm geographical locations (location), the distinct grid
points used as climate data source (station), the distinct climatic years and genotypes (survey
data did not include the genotype name, only the maturity group), and environments defined
as the distinct combinations of locations and years.



Clustering of environments.

Each cropping condition (location-year combination), referred as environment, was characterized by four
indices that were computed by integrating the simulated time series of abiotic stressors (X.) over the crop
cycle (d days between sowing and harvest) and averaging for genetic diversity (g genotypes) (equation 1).

n d

Se= 331X, ()

g=1t=1

with S, level of abiotic stressor e, i.e. for cold (LTRUE), heat (HTRUE), water (WRUE) or nitrogen
(NRUE) stress. X., corresponding time series of the simulated impact of abiotic stressors on crop
photosynthesis.

We then proceeded with two successive hierarchical cluster analysis, based on Euclidian distances and
Ward’s variance clustering method. The final cluster number was defined according to the between:total
sum of square ratio and ecophysiological interpretability. The first step of clustering was applied on
the matrix of scaled abiotic stress index, to identify groups of environments with similar abiotic stress
patterns, referred to as environment-types (e.g. see Chenu et al., 2013 for water-deficit patterns). For
the sunflower crop, this method was also used in previous studies about environmental characterization
(Mangin et al., 2017; Gosseau et al., 2019). The second step of clustering was applied on the frequency of
environment types per location, to identify groups of geographical locations with a similar frequency of
environment types, independently of climatic variability, referred as agricultural zones (Beillouin et al.,
2018).

Baseline and optimization for cultivar deployment strategies.

Here, our aim was to evaluate the impact of different cultivar deployment strategies on the distribution of
grain yield across the population of cropping conditions. For that, we compared baseline with optimized
deployment strategies (Table 3).

Two baseline deployment strategies were defined: random, a random choice of cultivar per cropping
condition, and reference, based on surveyed cultivar acreage data. The random strategy was only used as
a control and the more realistic reference strategy was the one used as a reference for the comparison with
optimized strategies. We defined the reference strategy to represent the current cultivar recommendations
and farmers’ choices. In this strategy, we assumed that the best cultivars were those that had a major
commercial success. This list was obtained by selecting s distinct cultivars among the five most-grown
cultivars (based on the actual sown area) and for each of the last five years of the study (2009-2013). The
reference yield (Yp) for each cropping condition under this strategy was the average of this cultivar list,
ie Yy = % 22:1 Y, with Y, simulated grain yield, and g, genotypes from the cultivated list.

We defined four optimization strategies to recommended cultivars, ranging from a global adaptation
strategy to a local one. The resolution of strategies differed by the number of decisions (cultivar choice)
made according to the level of knowledge about the cropping conditions:

(1) global, one choice for all the population of environments;

(2) zone, one choice per agricultural zone (4 choices, see the previous section);
(3) farm, one choice per farm location (1075 choices);

(4) farm__year, one choice per farm:year combination (20566 choices).

Using the zone strategy as an illustration, the optimization algorithm first computes the mean values
by cultivars for each agricultural zones (Z1, Z2, Z3, Zj), and the best cultivar is then selected for each
zone, thus providing a list of optimized choices (4 cultivars, potentially distinct). This list is then used to
obtain the optimized yield (Y;,) distribution, by filtering all simulated cultivar X environments on optimal
cultivar choices. The relative yield gain distribution was computed as (0-Yim) -~ The performance of
optimization strategies was estimated by computing the median value of the relative yield gain distribution.
The distance between strategies was computed with the rooted-mean-squared differences between yield
gain distributions. We evaluated yield stability in a conservative way, focusing on the less profitable

outcomes by computing the mean of yield values below the 0.1 quantile value (expected shortfall, Acerbi



and Tasche, 2002) of the yield gain distribution. The Expected Shortfall was computed for the yield
distribution at the population of environment level and at the farm level, over the sampled years.

To avoid using all the data to select and evaluate the performance of strategies, we used a k-fold cross-
validation resampling strategy (with folds corresponding to the year factor) to select optimal cultivars on
a partition of the data (all years minus one) and estimate the performance of these choices on the other
partition (one year).

Software and data analysis

All data processing, statistical analysis and visualization were performed with the R software version
4.0.2 (R Core Team, 2018) with additional R packages dplyr (data processing, Wickham et al., 2018),
ggplot2 (visualization, Wickham, 2016), rsample (resampling, Kuhn et al., 2019), and knitr (reporting,
Xie, 2015). Both Factor Analysis For Mixed Data (FAMD) and Hierarchical Cluster Analysis (HCA)
were performed with the FactoMineR R package (Lé et al., 2008). The source code for the SUNFLO
simulation model is available on INRA software repository [https://forgemia.inra.fr/record/sunflo.git)].
The INRA VLE-RECORD software environment (Quesnel et al., 2009; Bergez et al., 2013) was used as
simulation platform.

Results

Cropping conditions for the sunflower crop in France

The surveyed farms were globally matching the main regions of sunflower production (Figure 2), with
sampled regions (i.e. containing sampling points) representing over 95% of the total cumulated acreage
(14.9 Mha over 1994-2013).
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Figure 2. Map of sampled locations in the sunflower farm-level surveys. Points
are the location of the 1077 unique farms sampled over 11 years (source: Terres Inovia surveys)
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with contour curves approximating the point density. Colors indicate the cumulated cropped
area (Mha) on each French sub-regions (départements) for sampled years (1994-2013).

The classification analysis on management practices resulted in 8 clusters (labeled from M1 to M8 in
Table 2) common to to the 11 years and the five regions of survey. Clusters were roughly balanced with
average proportions between 8 and 15% of farmers. Among the 14 variables of the survey, the amount
and type (organic/mineral) of nitrogen fertilization, fungicide use, and the precocity of cultivars were the
main discriminative variables acting on clusters.

group label p sowing density nitrogen boron fungicide precocity
M1 Low chemical inputs 13 20/04 6 15 19 5 64
M2 Early cultivar use 14 15/04 6 46 31 1 89
M3 Early sowings 13 20/04 6 45 12 6 72
M4 Early sowings, boron 8 05/04 6 50 85 36 80
M5 Very late sowings, very early cultivars 12 10/05 6 38 13 5 66
M6 Late cultivars 15 15/04 5 53 13 7 9
M7 Late sowings, early cultivars 11  01/05 6 62 22 11 68
M8 High chemical inputs 14 20/04 5 60 82 82 0

Table 2. Classification of management practices for sunflower in France. Eight
management types (named M1-M8) resulted from the cluster analysis of agricultural survey
results (14 management-related variables, 11k observations), with their proportion indicated
in percent (p). Six variables were used to characterize the management type: sowing date
(dd/mm), crop density (plants.m2), mineral nitrogen fertilization (kg.ha™!), frequency of
boron application (%), frequency of fungicide application (%) and frequency of early cultivar
use (%). Label was assigned a posteriori, based on the interpretation of those six variables.

M1 management type could be considered as low input (lowest nitrogen fertilization, low fungicide
use). On the opposite, M8 type could be considered as high input management: farmers systematically
use a fungicide with high nitrogen fertilization and frequent boron application. Other management
modalities were less discriminated by input levels and were differing mostly by the crop sowing dates
(early implantation for M4 or very late for M5), and cultivar precocity (e.g. early cultivar to compensate
for late implantation in M5).

Regarding the cultivated genetic diversity, we observed a strong decrease in the cumulated proportion
of area for the five most sown cultivars, going from 47% to 18% (rate was -2.5% per year, p=1.2¢-7,
R2=0.89).

Environmental characterization
Climatic and soil variability

Globally, a large proportion of the sunflower cropping area is exposed to climatic water deficit, particularly
in the South-West and West regions (Figures 2 and 3A).

For the considered climatic conditions (20560 stations x year population), weather records during the
cropping season (Figure 3B) indicated that the mean sum of rainfall was 319 + 94 mm, ranging from
80mm to 993mm. Mean temperature was 17.9 °C, ranging from 9.9 °C to 23.8 °C. In this population
of environments, 1.6% corresponds to semi-arid conditions (aridity index €]0.2;0.5]) and 8.6% to dry
sub-humid (aridity index € ]0.5;0.65]), according to Middleton et al. (1997) boundaries for dryland
classification. Mean soil water capacity in the population of environments was 141 mm, ranging from 38
mm to 350 mm (sd of 51 mm)
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Figure 3. Climatic variability in the sampled cropping conditions. The left panel
(A) displays a map of potential evapotranspiration to precipitation ratio (1 / aridity index,
data from Zomer et al. (2008)). The white contour line corresponds to a PET:P ratio of 1.2,
indicating geographical locations prone to water deficit. The right panel (B) shows climatic
variability in the sampled gridded points (1028) over 20 years (n=20560). Color is the 2D
density estimate of the sum of precipitations as a function of the mean temperature for the
population of environments. Mean and sum were computed between average sowing and
harvest dates (April 15th to September 15th).

Simulated abiotic variables allowed to define coherent environment types

Figure 4 displays the variability of the simulated abiotic stressors as a function of environment type
resulting from the clustering of the population of environments. Cutting the dendrogram to four groups
gave a ratio between:total sum of square of 63 % and allowed a sensible interpretation of stress patterns.
Stress patterns were contrasted between groups, allowing to comment and name environment types
(left to right in Figure 3) based on their distributions. The first group (optimal) was characterized by
comparatively low mean stress levels corresponding to near-optimal cropping conditions. The second
group (cold) displayed a high level of cold stress, while the other stresses were at a very low level. The
third group (heat and drought), was the only group with an important level of heat stress which was
associated to moderate level of water deficit. The fourth group (drought and nitrogen) was characterized
by unfavorable cropping conditions, with the strongest level of water deficit associated with nitrogen
deficit.
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Figure 4. Distribution of abiotic stress levels as a function of defined environment
types. Simulation was used to characterize the seasonal abiotic stress patterns at the crop
level. Each environment was characterized by a vector of four abiotic indices, i.e. stressors
integrated over the cropping season (high and low temperatures, nitrogen, and water deficit
impact on crop photosynthesis). Hierarchical clustering was used to group abiotic patterns
into four environment types, a posteriori named after the observed stress pattern. Values
of abiotic stressors were rescaled (unity-based normalization) to allow comparisons between
stressors.

Temporal and spatial distributions of environment types are highly variable.

The first cluster analysis allowed to assign a distinct type of environment to each location for each year
(1075 locations x 20 years, 20566 cropping environments). To better understand how these environment
types were related to actual cropping conditions, we displayed the evolution of the proportion of each
environment type as a function of time (Figure 5A) and the succession of environment types for each
geographical location through years (Figure 5, panels C-F). At the national scale, cold and optimal
environment types were the most frequent (average frequency of 51% and 28% respectively), followed
by drought and nitrogen type (17%). The frequency of occurrence of environment types was varying
strongly with time, with some peculiar years such as 2003 (very high proportion of heat and drought
type), 2007 and 2011 (high cumulated proportion of environment types with low water deficit), and 2012
(the highest proportion of unfavorable drought and nitrogen environment type). From a geographical
point of view (Figure 5, panels C-F), the location of optimal environment types matched the area with
the most sunflower acreage (South-West France). In contrast, drought and nitrogen environments were
not specifically bound to climate and could be located anywhere in the cropping area (e.g. panel F), with
however some recurring locations (South-East). Even if the frequency of environment types could be
related to national yield for specific years (low national yield in 2003 associated with high-temperature
stress and record years in 2007 and 2011), we did not find a strong relationship between the frequency of
environment types and the national yield (Figure 5B).
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Figure 5. Temporal and spatial distribution of environment types. Panel A displays
the evolution of the relative proportion of environment types over 20 years. For reference,
panel B is the national sunflower yield. The right panels (C-F) display the spatial distribution
of environment types for each individual cropping condition, for a subset of four contrasted
years.

The second cluster analysis allowed to group locations with a similar frequency of occurrence of environment
types, i.e. locations with predictable abiotic stress patterns. We found that using four groups in the cluster
analysis (between:total sum of squares of 86.9 %) yielded contrasted agricultural zones with balanced
proportions: from locations with consistently optimal environment types (South-West, Figure 6, Z2) to
counsistently drought and nitrogen deficit environment types (West, South-East, Figure 6, Z3). Still, about
30% of the locations were characterized by an unstable pattern of environment types within the years
(labeled with Z1, Figure 6).
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Figure 6. Identification of agricultural zones with a similar frequency of occur-
rence of environment types. Upper panels represent the frequency of environment types
over 20 years (using stacked bars) for each farming location (ordered by increasing longitude).
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Hierarchical clustering was applied to the frequency of environment types per location, in
order to identify groups of locations with a similar frequency of environment types, referred
to as agricultural zones (Z1-Z4). In lower panels, the identified agricultural zones are mapped
to visualize which geographical positions are sharing common and predictable abiotic stress
patterns over the years.

Optimization of cultivar choice

Using the most frequently sown cultivars in France during the studied period (2009-2013) as a baseline to
represent the actual deployment strategy (Figure 7, reference strategy), we showed that it was a much
better strategy than randomly choosing a cultivar (among the 38 studied and available for sale) for each
environment, where yield expectation was lowered by 5.7% (Table 3).

Figure 7 shows that the grain yield distribution was shifted towards higher yields when changing the
deployment strategy from the reference to optimized cultivar choices, whether it was by choosing a
single cultivar across all the population of environments or fine-tuning cultivar choice according to yearly
cropping conditions on the farm. While the difference among yield distributions was clearly visible
between the reference and optimized strategies, differences within optimized strategies were more tenuous
and occurred mainly for low yield levels.

1.009  baseline
random
D reference
optimization
0.751
global
zone
|:| farm
> |:| farm:year
£ 0.50 4
o)
°
0.251
0.00 A

1 2 3 4
Grain yield (tha™)

Figure 7. Impact of different cultivar deployment strategies on the distribution
of grain yield across the population of cropping conditions. Two baseline deployment
strategies are presented: random, a random choice of cultivar per farm X year combination
(20566 choices), and reference, the mean of the most frequently sown cultivars during the
studied period. The optimized deployment strategies differed by the number of cultivar choices
made across the population of cropping conditions: global, one decision for all conditions;
zone, one decision per agricultural zone (4 choices); farm, one decision per farm (1075 choices)
and farm:year, one decision per farm x year combination (20566 choices).

Yield gain was defined as the relative difference between the considered strategy and reference one. Over
the population of environments, the median gain ranged from 7% for the global strategy to 8.5% for the
farm:year strategy (Table 3). The major improvement in overall crop performance was observed between
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the reference and global strategy, while other strategies brought additional but more substantial gains,
with the greatest difference (0.57%) between year and farm:year strategies. The expected shortfall, a risk
measure focusing on the less profitable outcomes, increased more strongly than median gains with more
precise deployment strategies. At the farm scale, the yield stability over the 20 sampled years was also
increased by 6 - 9.4% when the cultivar choice was optimized.

strategy decision diversity distance gain_tpe es_tpe es_farm
random 20566 37 3.4 -5.7 -5.8 -10.2
global 1 1 2.2 7.0 4.0 6.1
env_ zone 4 2 2.5 7.8 12.5 7.5
farm 1075 18 2.6 7.9 12.7 7.5
farm__year 20566 29 2.8 8.5 13.3 94

Table 3. Summary table of the comparison between reference and tested culti-
var deployment strategies. The cultivar deployment strategies (column strategy) were
characterized by the number of decisions taken to adapt cultivars to the cropping conditions
(decision), the number of distinct cultivars that were actually chosen (diversity), the distance
between the reference and each optimized strategy (distance, in q.ha™!), the median value of
the yield gain at the population level (gain_tpe, in %), the expected shortfall gain at the
population level (es_tpe, in %) and at the farm level (over the 20 sampled years, es_farm, in
%). Expected shortfall is a risk measure focusing on the less profitable outcomes (here, the
mean gain for the 10% worst cases).

Finally, we analyzed the yield gain distribution stratified by environment types to further understand
how the deployment strategies were differing (Figure 8).

We found that moving from a single cultivar choice to specific recommendations had a stronger positive
effect when applied to the less productive situations (lowest quantiles). For all environment-types, gains up
to 15% can occur. However, with higher yield potential (highest quantiles), the gains allowed by specific
recommendations are reduced to match those allowed by the global strategy. For the most unfavorable
environment-type (drought and nitrogen, Figure 8), gains permitted by specific recommendations were
higher than with a single cultivar choice, for all the yield quantiles.
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Figure 8. (Gain achieved for different cultivar deployment strategies as a function
of yield level. For each deployment strategy, the yield gain was computed as the relative
difference between a given yield percentile for the tested strategy and the same percentile
for the reference strategy. Deployment strategies involving an increased number of cultivar
choices are represented with darker shades. The global yield gain distribution was stratified
by environment-type and presented in different panels.

Discussion

We proposed a methodology relying on crop modeling, simulation, and optimization to predict phenotypic
plasticity and to decide which cultivar to grow, given environmental conditions and predicted crop
performance. This methodology was applied to the sunflower crop at a countrywide scale to assess
whether targeted recommendations of cultivars could be considered as a lever to improve crop performance
and stability. Working from farmer survey data, we described a large range of climate, soil, and
management practices representing various cropping conditions over the country. We then used simulation
to extend this initial sampling with a numerical experimental design featuring new cultivars and climates.
Computational experiments showed a potential for local recommendations, with gains increasing with the
knowledge of pedo-climatic conditions. But the sole pedo-climatic context was not enough to inform the
cultivar choice, yield gains were increased when decisions could be made based on environment types,
i.e. when diverse geographical locations and years yet experiencing similar abiotic stress patterns were
grouped together.

The proposed recommendations are dependent not only on soil and climate data used to build the
numerical experiment, but also on the methods and model used for the simulation and optimization step.
When using two sets of climate data, differing by the downscaling method used in gridded data, we found
that the results were robust to these variations. The ranking of deployment strategies was not impacted
and the differences between strategies with different climate datasets was 0.45 % maximum. As the crop
model directly drives the phenotypic prediction, its ability to capture cultivar differences in response
to environment and management drivers is essential. The algorithm of the crop model was evaluated
on agricultural extension trials corresponding to a subset of the population of cropping environments
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simulated in the numerical experiment (Casadebaig et al., 2016). As reviewed by Wang et al. (2019),
further progress in the functional modeling of phenotypic plasticity and therefore prediction accuracy is
related to the extension of systems biology to plant and crop scale (Hammer et al., 2004; Keurentjes et al.,
2011; Poorter et al., 2013). Lastly, the cultivar recommendations based on environment types depend on
the methodology used to group similar environments. In this study, we summarized four abiotic drivers
over the whole crop cycle, thereby integrating multiple abiotic stresses but missing phenological effects.
In Australia, the clustering method used by Chenu et al. (2013) emphasized phenological effects with
several sampling points over the crop cycle, by using a moving average on the simulated time serie but
focused only on water deficit. In France, Beillouin et al. (2018) did not use a simulation model and acted
in two steps: (1) fit a regression model (partial least square regression) to select climatic factors that
best explained yield variability and (2) then use the weighted coordinates of the selected model to group
environments according to these characteristics. Their approach emphasized the selection of factors that
were actually impacting yield on their dataset. Another option is the clustering method used in Picheny
et al. (2017b), where the distance between environments (years) was computed on the complete time serie
using a non-Euclidian method (dynamic time warping). While the method was applied on raw climatic
variables rather than simulated abiotic time serie it would take better account of phenology for clustering
environments.

Tactical agronomy

Choosing a cultivar far before sowing is a demanding problem because there is no reliable seasonal weather
forecasting for the incoming cropping season on this date. The global, zone, and farm strategies accounted
for this constraint and were based on information available at sowing date, i.e. the environmental zone or
the geographical location. However, the farm:year cultivar deployment strategy operates as if a perfect
forecast of the incoming climate was available to choose the cultivar. While unrealistic, this strategy
allowed to assess the gains expected from a perfect fit of a cultivar and an environment and revealed that
this was the only strategy strongly reducing the probability of low yield outcomes at the population level
(Figure 8A) and at the farm level (Table 3).

Another strong assumption of our method is that we do not account for the effect of the distribution
system on the actual cultivars made available for each individual farmer. In France, farmers essentially
buy seeds through agricultural cooperative groups, selling different seeds in different regions. In a way, at
the farm scale, access to the full genetic diversity is thus reduced, but this distribution system also filters
adapted cultivars. On this subject, Sadras and Denison (2016) highlighted how optimization approaches
for decision making in crop management are constrained by various trade-offs ultimately impacting
the expected gain from these approaches. They suggest that results from optimization methods are
particularly useful as null hypothesis, i.e. that the divergence between actual and optimal solutions can
help to identify constraints that are relevant to further explore. We could assume that spatial deployment
strategies could be nevertheless promoted because national cultivar evaluation is a common feature in
Europe (Van Waes, 2009). Official cultivars trials are arranged by dedicated institutes for the examination
of Value for Cultivation and Use (VCU). These trials result in the production of Recommended Variety
Lists and recommendations for cultivation are published either as national summaries or as regional
bulletins.

We found that choosing a single cultivar was a good strategy, yielding important gains compared to the
reference strategy but that were only marginally lower than more demanding strategies. We explain
the relevance of this strategy because the chosen cultivar had the best adaptation to the most frequent
environment-type. Favorable environments, encompassing the optimal and arguably the cold environment
types, were very frequent among the population of environments (Figure 6). The cultivar responses to the
range of environments were estimated by regressing cultivar yield on site mean (Finlay and Wilkinson,
1963), and the optimal cultivar for the global strategy had the best adaptation to favorable environments
(i.e. the highest regression slope, which was > 1) compared to other cultivars.

However, specific types of environments supported more diverse cultivar choice (Table 3), up to 29
distinct cultivars out of 37 candidates for the most precise deployment strategy. But while the diversity
of recommended cultivars indeed increased, a list of 6 cultivars was sufficient to cover 99% of cases in the
population of cropping environments, indicating that very specific recommendation occurs rarely. We
could have expected that more recently released cultivars (after 2010) could have been more frequently
recommended because of the genetic gain but the proportion of recent cultivars was 0.63 in the candidate
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list (n=37), 0.55 in the recommended list (n=29), and 0.5 in the 6 most recommended list. When analyzing
the phenotypic features of cultivars, we found that the harvest index value, a strong productivity-related
trait (potential seed:biomass ratio), was similar in the recommended and candidate list (p = 0.353). The
fact that a recent release date and a raw productivity feature (high harvest index) are not essential for
cultivars to be recommended seems to indicate that traits suited for drought-prone environments are
available, yet not widespread in current commercial cultivars. But commercial hybrids are probably
related because breeders use successful parents for several hybrids, reducing the apparent genetic diversity
analyzed in this study. Molecular profiles of sunflower hybrids could be used in a cluster analysis to
identify groups, in a similar way that we defined environmental groups.

Synergy with plant breeding

Genetic progress on sunflower was evaluated at 1.3% per year, in the 1970-2000 period (Vear et al., 2003),
with variable gain thorough years. We quantified the median gains provided by educated genotypic
choices at 7 - 9% depending on the strategy used but even if this improvement does not scale with time,
we could reasonably suppose that it is added to genetic progress. While the exploitation of phenotypic
plasticity is often discussed with the perspective of breeding new material (Vega and Chapman, 2006;
Nicotra et al., 2010; Messina et al., 2011), model-based cultivar deployment is operational on current
genetic material. Moreover, cultivar deployment and breeding should act synergistically as breeding could
lead to cultivars with distinctive traits that are more adapted to specific environments. This might be
reflected by the steady decrease in acreage share of major cultivars observed in surveys, opening the
market to more diverse cultivars.

Regardless of the way the breeding process is organized, it would be always more difficult to assess
the specific adaptation of a cultivar to a particular cropping condition than to identify a more widely
adapted cultivar (Vincourt and Carolo, 2018). We showed that sowing a widely adapted cultivar in all
cropping conditions is an acceptable strategy, however, missing a cultivar match for an unusual cropping
condition could be viewed as a wasted opportunity. In this sense, participatory plant breeding might help
to produce the observations needed to support a local adaptation strategy (Vincourt and Carolo, 2018).

Adaptations at the farming system scale

The proposed cultivar deployment strategies considered a single cultivar choice for each farmer per year,
because growing sole crops is the mainstream practice according to surveys. The positive effect of species
or genetic diversity on ecosystem functioning (diversity—stability hypothesis) was evaluated in different
systems, from mixtures of grassland species in the plot scale (e.g. Hector et al., 2010) to mixtures of crops
at the farm (Paut et al., 2019) or national scale (Renard and Tilman, 2019). At the farm scale, farmers
can opt for a bet-hedging strategy to minimize risk, i.e. growing cultivars having different features in
distinct fields, or even by mixing cultivars in a single plot (Barot et al., 2017). In this case, adaptation
without the full knowledge of the environmental conditions would allow a better crop performance because
of the dampening of the abiotic stress effect at the population level (plants or plots). Among various
options to transition to biodiversity-based agriculture (Duru et al., 2015), mixing cultivars probably
requires a lesser adaptation for farmers and a lesser challenge for breeders.

Conclusions

Agricultural surveys were used to describe the population of environments for the sunflower crop in France.
Simulation-based optimization revealed a potential for local recommendations, with gains gradually
increasing with knowledge of cropping conditions, especially when distinct pedo-climatic conditions were
clustered into homogeneous types of environments. At the national scale, tuning the choice of cultivar
impacted crop performance the same magnitude as the effect of yearly genetic progress made by breeding.
Our results suggest that optimizing the choice of cultivars according to environmental cues deserves
consideration as a way to raise and stabilize crop yield at the national and farm scale.
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