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ABSTRACT Crop pests are among the greatest threats to food security, generating broad economic, social,
and environmental impacts. These pests interact with their hosts and the environment through complex
pathways, and it is increasingly common to find professionals from different areas gathering into projects
that attempt to deal with this complexity. We propose a framework called FramePests guiding steps and
activities for crop pest modeling and forecasting. From theoretical references about carrying out mappings
and systematic reviews of the literature, the framework proposes a series of steps leading to a state of science
as a knowledge base for modeling tasks. Then, two modeling solutions, based on data and knowledge are
used. Finally, the model outputs and performances are compared. The application of the proposed framework
was demonstrated for coffee leaf rust modeling, for which we obtained a data-based model built using a
gradient boosting algorithm (XGBoost) with a mean absolute error of 7.19% and a knowledge-based model
represented by a hierarchical multi-criteria decision structure with an accuracy of 56.03%. A complementary
study for our case study allowed us to explore how elements of a data-basedmodel can improve a knowledge-
based model, improving its accuracy by 7.07%. and showed that knowledge-based modeling can be an
alternative to data-based modeling when the available dataset has approximately 60 instances. Data-based
models tend to have better performance, but their replicability is conditioned by the diversity in the dataset
used. Knowledge-based models may be simpler but allow expert supervision, and these models are not
usually tied to specific sites.

INDEX TERMS Crop pest forecasting, data-based model, knowledge-based model, smart farming.

I. INTRODUCTION
According to the Food and Agriculture Organization (FAO),
pests are among the greatest threats to food security, gener-
ating broad economic, social, and environmental impacts [1].
For integrated pest management, the term Pest refers to any
living being (diseases caused by pathogens, fungi, viruses,
insects, nematodes, etc.) that cause damage to crop plants [2].
These pests interact with their hosts and the environment at
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different spatial and temporal scales through complex path-
ways, and it is increasingly common to find professionals
from different areas (farmers, technicians, plant pathologists,
computer scientists, economists, etc.) gathering into projects
that attempt to deal with this complexity. This complexity
increases when multiple pests are simultaneously analyzed at
the same time. If professionals’ profiles are diverse, the chal-
lenge is to achieve a mutual understanding of the agroecosys-
tem and coordination of activities within the work team.

Forecasting pest development is required for three reasons:
economic impact, food safety, and justification of control

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 115579

https://orcid.org/0000-0002-4950-5048
https://orcid.org/0000-0001-8313-6728
https://orcid.org/0000-0003-1983-9431
https://orcid.org/0000-0002-5608-9097
https://orcid.org/0000-0001-6835-5981


E. Lasso et al.: FramePests: Comprehensive Framework for Crop Pests Modeling and Forecasting

methods [3]. Pest forecasting can be addressed by construct-
ing models that describe the conditions for pest propaga-
tion and the damage caused to host crops. Pest development
modeling can provide explanatory models of pathosystems
and/or predictive models that can be used in early warn-
ing systems [4]. The models can be built either from data
or expert knowledge (expertise, literature, technical reports,
expert interview) of the mechanisms involved in the interac-
tions between the hosts, the pests, and the environment.

In the model generation, three contrasting situations were
highlighted. In the first situation, few data exist on the
pathosystem, but knowledge is available, allowing the devel-
opment of knowledge-based models (e.g., mechanistic and
qualitative) without the possibility of using data for model
evaluation and validation. In the second situation, a large
amount of data is available, but exhaustive knowledge of the
pathosystem is lacking, which can be handled by exhaustive
data processing through the induction of data-based models.
In the ideal third situation, both sufficient knowledge and
data are available, which allows evaluation of the knowledge-
based models using the data, as well as the improvement of
the data-based models with available knowledge. Knowledge
and models are often found in academic publications, as well
as in gray literature, but not directly available for the vast
majority of farmers, the first actor implementing strategies
for pest management.

Stenberg [5] highlighted the need for a conceptual frame-
work that takes advantage of modern science to approach
integrated pest management and thus optimize plant protec-
tion solutions. According to Jabareen [6], a conceptual frame-
work (CF) is a set of concepts related to each other, explaining
a phenomenon to achieve an understanding of it, which has
had different applications in agriculture. Robert et al. [7]
proposed a conceptual framework for data acquisition and
analysis, integrated with expert knowledge and decision-
making. The framework consists of four steps: definition of
the problem, case selection, data collection and analysis, and
model formalization.

There are methodologies for the construction of a knowl-
edge base from scientific literature. Petersen et al. [8] pre-
sented a guide for carrying out an engineering systematic
map.Mapping is a method of building a classification scheme
and categorizing research reports and published literature.
This methodology can be complemented by a systematic
review proposed byKitchenham [9]. This review is conducted
to identify gaps in current research and appropriately posi-
tion new research activities. Several methodologies are avail-
able for modeling. For knowledge-based modeling, Aubertot
and Robin [10] proposed a multi-criteria qualitative model-
ing approach, called the injury profile simulator framework
(IPSIM). IPSIM allows the building of knowledge-based
models to predict injury profiles in crops as a function of
cropping practices and the environment. In the case of data-
based modeling, Chapman et al. [11] proposed the cross-
industry standard process for data mining (CRISP-DM),
a methodology to carry out data mining, as the induction

of models from data, which is a topic of interest in the
application of big data in smart farming [12].

For a group of researchers who want to start modeling
work, there is no guide that considers all the elements to
take into account to generate models from data or knowledge,
depending on the conditions of the research to be carried
out (presence or absence of data and formalized knowledge
about pests) and taking into account the multiple entities
and interactions that can affect the development of pests.
Furthermore, a comparative and complementary study of
models generated from knowledge versus those generated
from data is necessary to understand the scope of each model
and how these could complement each other.

FIGURE 1. FramePests framework overview composed of three
macroprocesses.

In this paper, we propose a comprehensive framework,
FramePests, for crop pest development modeling and fore-
casting. FramePest is intended for interdisciplinary groups
that are composed of both users without modeling experience
(as a guided and ordered process), as well as for those with
experience in that domain (as a formalization of all the tasks
carried out in modeling). FramePest can be individually exe-
cuted for various crop pests. This framework groups various
methodologies developed in the field of conceptual frame-
work construction, literature mappings and reviews, and
modeling solutions [6], [8]–[11]. FramePests is described by
three macroprocesses shown in Figure 1. The macroprocess
study of pre-feasibility starts the FramePests execution. This
is followed by the macroprocess state of science, which is an
in-depth search in literature and expert knowledge described
by two sub-processes: (i) the systematic mapping (module
SM) describing the evolution of Pest Modeling and (ii) the
Systematic Review (module SR) describing the relevant con-
cepts related to the Pest. Then, based on the results obtained,
we pass to the modeling macroprocess composed of three
sub-processes: (i) knowledge-based modeling (module KM),
(ii) Data-based modeling (module DM), and (iii) the com-
plementarity of models (module CM) to compare the results
of the two modeling approaches and explore how they can
complement each other, both in the integration of knowledge
in a data-based modeling process, as well as the use of
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data analysis in the definition of a knowledge-based model.
Finally, we present the functioning of FramePests through a
coffee leaf rust case study.

The remainder of this paper is organized as follows.
In Section 2, we describe the proposed framework.
Section 3 discusses the application of the framework to a case
study. Section 4 concludes the paper with some remarks.

II. THE FRAMEPESTS FRAMEWORK
This section presents the components of the FramePests
framework.

A. STUDY OF PRE-FEASIBILITY
The study of pre-feasibility provides the necessary elements
to start the FramePests execution (Figure 2).

FIGURE 2. Study of pre-feasibility.

The components and activities are:

i. Definition of the modeling objective: This activity
defines the scope of modeling in terms of the crop pest
to be addressed, the scale of the analysis, the response
variable, for what and for whom the modeling is carried
out, among others.

ii. Characterization of human competences: This activity
aims to identify the available human talent to execute the
modeling macroprocess.

iii. Data Source Availability Assessment: This activity aims
to identify the knowledge and datamonitored in the crops
required for pest modeling. The available data must be
described, and it must be determined whether they are
sufficient to carry out data-based modeling.

iv. Modeling approach: This preparation parameter sets the
type of modeling that will be carried out: data-driven,
knowledge-based, or both. If there are no databases
describing the effect of variables on the pathosystem,
data-based modeling cannot be performed, and only
knowledge-based modeling can be carried out.

v. Start State of Science: this connector represents the
beginning of processes in FramePests.

In the following sections, themacroprocesses are framed in
one or more phases according to the Jabareen’s methodology
for conceptual framework building [6] described in seven
steps: (i) the mapping of the selected sources, (ii) the exten-
sive reading and categorization of the selected data, (iii) the
identification and naming of concepts, (iv) the deconstruction
and categorization of the concepts, (v) the integration of
concepts, (vi) synthesis and resynthesis, and (vii) validation
of the framework.

B. THE STATE OF SCIENCE
1) SYSTEMATIC MAPPING (SM) TO DESCRIBE THE
EVOLUTION OF PEST MODELING
This sub-process aims to explore the studies that have
addressed the pest’s development (dynamics, patterns, tem-
poral evolution) modeling in crops, based on the systematic
mapping proposed by Petersen et al. [8] (Figure 3).

FIGURE 3. Systematic Mapping (SM) describing the evolution of Pest
Modeling.

The definition of the research questions (SM-1) establishes
the research scope. The questions should be oriented to what
has been the evolution of the studies that addressed the pest
and the most used research topics (multidisciplinary). Some
recommended questions are as follows:

• What has been the evolution of pest modeling
approaches?

• Which modeling techniques have been used for pest
development forecasting?

The search for primary studies (SM-2) uses the defined
scope to create search strings and submit them to biblio-
graphic source systems. Since many results of experiments
related to a pest have been published in technical bulletins,
gray literature should be considered and can be characterized
as basic knowledge.

The screening of papers for inclusion and exclusion (SM-3)
applies exclusion and inclusion criteria to the studies obtained
in the previous step. These criteria should be based on the
relevance of the studies and ensure that their context is aligned
with objective modeling. A reading of the abstracts can help
define whether the studies provide valuable knowledge for
pest modeling.
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Next, the keywording of the abstracts (SM-4) aims to
find keywords and concepts that reflect the contribution of
each study, in addition to the keywords specified by the
authors. The concepts are then analyzed to develop a high-
level understanding of the research and generate a classifica-
tion scheme according to categories of elements related to the
pest, such as meteorology, cropping practices, and crop and
pest properties.

Finally, the data from the studies were extracted, and the
mapping was generated (SM-5) from the categories of con-
cepts found. The visualization of the mapping, representing
the evolution of pest modeling, corresponds to a compari-
son of elements such as publication frequencies, affiliations,
years of publications, and main concepts.

2) SYSTEMATIC REVIEW (SR) TO DESCRIBE THE RELEVANT
CONCEPTS RELATED TO THE PEST
The systematic review corresponds to a refinement of the
results obtained in the systematic mapping, reaching a deeper
level of analysis and identifying current trends in crop pest
modeling. This sub-process deals with understanding the
fundamental concepts around the development cycle of the
Pest in crops, based on the systematic review proposed by
Kitchenham [9] (Figure 4).

FIGURE 4. Relevant concepts related to the Pest through Systematic
Review (SR).

The identification of research (SR-1) is based on the defi-
nition of research questions and search documentation. This
process can take the elements of the previous work done in
SM-1 and SM-2. At this point, the research questions seek
more specific information than those in SM. Following the
recommended questions for SM-1, the new questions are as
follows:
• What are the variables most related to the most studied
aspect of pest?

• How were the techniques used for pest development
forecasting implemented?

The selection of primary studies (SR-2) takes into
account the studies that provide direct evidence about the
work around the pest specified in the research questions.
Additionally, mapping visualization (SM-5) can help define
the time window used to identify trends in crop pest devel-
opment. The inclusion and exclusion criteria were similar to
those used in SM-3, obtaining a set of relevant studies.

A quality assessment of the relevant studies (SR-3) ensures
a more reliable filter for better contributions to pest studies.
The highlights in each study must be interpreted accord-
ing to the metrics and procedures used to compare them.
Additionally, the future works proposed in these studies can
guide current pest modeling.

Next, the information is extracted and monitored (SR-4)
through forms according to the elements analyzed in the
studies. Additionally, the databases used in the studies, their
properties, and access conditions should be identified. Public
datasets related to pests are potential resources for validating
the current research results.

Finally, the results of the previous process were collected
and summarized in a Data synthesis (SR-5). The most used
modeling techniques, how they are implemented, the predic-
tors used, the type of validation, and the principal authors
about the pest development modeling must be identified.
A document called the state of science is generated and must
contain all the relevant findings as the materials, methods,
and techniques used, principal authors, performance met-
rics, and highlights. The on-page connector start modeling
corresponds to a state that gives way to start the modeling
approaches (knowledge-based or data-based).

The application of systematic review (SR) after systematic
mapping (SM) allows starting from a base of previously
filtered and analyzed studies. Although these two method-
ologies have some similarities, we decided to use them in
a complementary manner, rather than merging them. In our
case study, human talent consisted of an interdisciplinary
group. However, this situation is not always present, and
our approach allows groups of pest/crop experts or groups
of data scientists to carry out a successful modeling process
with a crop pest knowledge base supported in the literature.
While the findings consigned in scientific production (books,
journal papers, etc.) show solid bases of knowledge on a pest,
gray literature is still very important, since many resources in
this category correspond to knowledge that is being applied
by partner institutions to the crop production in each country
or region.

C. MODELING
The modeling macroprocess describes the processes of
building models based on the state of the science macro-
process. It is composed of three sub-processes: knowledge-
based modeling, data-based modeling, and complementarity
of models.

1) KNOWLEDGE-BASED MODELING (KM) THROUGH IPSIM
This sub-process aims to build a decision structure that allows
characterization of the pest, based on the agronomic and
environmental conditions of the crop (Figure 5), based on
IPSIM [10].

The modeling is based on expert knowledge expressed
as a tree-based structure composed of attributes, aggregated
attributes, and the output variable representing the model.
KM-1 collects the state of science available on the pest to
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FIGURE 5. Knowledge-based modeling (KM) through injury profile
simulator.

be modeled and identifies the entry variables and concepts,
called basic attributes, related to the pest from the state of
science and their properties. KM-2 identifies the relationships
between the basic attributes, which are aggregated attributes.
The basic attributes correspond to the main concepts, and the
aggregated attributes correspond to the mapping categories
identified in SM-4. Each attribute is scaled by defining the
possible values it can take (KM-3). The scales are defined
by a threshold and should express the properties as a quali-
tative variable (nominal or ordinal). The aggregating tables
(KM-4) represent the hierarchical multi-criteria decision
structure. Each table represents a mapping of all combina-
tions of attribute categories based on ‘‘if-then’’ rules. The
rules are defined according to the effects and importance of an
attribute over another (variable weight). Both scales and rules
can be defined from the knowledge obtained in the state of
science or expert knowledge. The main output is the response
of the model. This corresponds to the successive aggregation
of tables in a hierarchical order.

The last step was the validation of the model, in which
the model performance was estimated from simulated events
or historical data. This process was added to the end of the
macroprocess (KM-5). The validation comprises the follow-
ing activities:
• Define validation criteria: the standard performance
metrics for classification suggested are accuracy, pre-
cision, recall, F1-score [13], and Cohen’s weighted
kappa [14].

• Prepare simulation cases from information: This can be
done from historical data or hypothetical cases defined
by an expert.

• Apply the model to the simulation cases and compare
the output of the model with the actual expected output.

• Collect validation results according the validation
criteria.

After carrying out the model validation, if the results are
not acceptable, an iteration to the IPSIM-4 process is required
to calibrate the category thresholds of the variables and the
combinations of the attributes in the aggregation tables.

2) DATA-BASED MODELING (DM) THROUGH CRISP-DM
This sub-process is a process of induction of machine learn-
ing models from a dataset that represents the conditions
(agronomic practices and environmental) of the crops, based
on CRISP-DM [11] (Figure 6).

FIGURE 6. Data-based modeling (DM) through CRISP-DM.

Business understanding (DM-1) takes the produced state
of science. The business corresponds to the problem to be
solved, in this case, pest modeling. Pest knowledge corre-
sponds to the main concepts and categories in the classifi-
cation schema identified in SM-4 and SR-4. Knowledge is
expressed in technical terms as a data mining objective.

The data understanding (DM-2) process begins collect-
ing all available data sources for the pest, relevant for the
business, first the variable to explain (target), and second,
the explanatory variables (predictors). This process can have
iterations with data preparation (DM-3) for eachmodification
of the dataset or generation of a new dataset from the original
datasets. One of the most common ways of describing vari-
ables is based on descriptive statistics according to the type
of variable (quantitative or qualitative).

Data preparation (DM-3) addresses the transformation of
the original datasets, and it begins with manual feature inclu-
sion or exclusion. The criteria must correspond to variables
that affect the pest and its development from SM-4 and
SR-5 from the state of science. The success of the following
processes depends mainly on the quality of the data used,
anomalies in the dataset must be detected and resolved, either
by discarding faulty instances or processing them to correct
their value. A framework for the data cleaning process can
be consulted for regression [15] and classification [16] tasks.
Finally, if there ismore than one dataset, theymust bemerged,
taking care of the dimensions that each represents and its
temporality.

With a clean and structured dataset, the modeling
(DM-4) process can be executed. The final dataset was used
to train the machine learning model. Different algorithms
can be used depending on the learning task. Unsupervised
learning algorithms train amodel with no target variable spec-
ifications and are focused on recognizing patterns. Super-
vised learning algorithms train a model according to labeled
examples (data with meaningful and informative labels from
which a model can learn). Semi-supervised learning is a tech-
nique that uses labeled unlabeled data to train a model [17].
The recommended procedure is to apply several of these
algorithms to the final dataset, calibrating its parameters to
obtain optimal results. Cross-validation [12] is needed to
determine each algorithm’s performance metrics, which also
depends on the modeling task. The typical performance met-
rics used were accuracy, precision, recall, F1-score, receiver
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operating characteristic curve (ROC) for classification, mean
absolute error, mean squared error for regression, and cor-
relation for statistical methods. A guide for choosing the
algorithms (phase 4 in [11]) to be tested for pest modeling is
presented in [19].

The evaluation (DM-5) process compares the performance
metrics of the applied algorithms to identify the best result
and determines whether the business and modeling objectives
are achieved. If the results are not acceptable, a new iteration
from the DM-2 process is suggested.

The deployment (DM-6) plan must be structured following
the modeling objectives and must respond to the case study
and the end-user who will benefit. Whether the result is a
prediction model or knowledge induced from the data, it must
be organized and presented so that a user can use it.

3) COMPLEMENTARITY OF MODELS (CM)
This sub-process aims to analyze and extract the benefits
and challenges of the two modeling approaches (knowledge-
based and data-based modeling) and how they can comple-
ment each other.

Complementarity can be approached in two ways. The
first is training a data-based model (when the data are avail-
able) with variables similar to those of the knowledge-based
model. The data-based modeling process can provide ele-
ments to improve the knowledge-based model through the
definition of scales (KM-3) and the relationship structure
of the variables (KM-4). These elements can be association
rules, the importance of variables, and the impact of the range
of variables on predictions, among others. The other way is
integrating knowledge obtained in the state of science within
the data-based modeling in the data preparation (DM-3) and
modeling (DM-4) phases.

The comparison of prediction models is generally in terms
of their performance metrics when they are applied to a
test dataset or simulation cases. For quantitative models,
the desired performance is a low bias and low prediction
error. In the case of qualitative models, the desired perfor-
mance is high accuracy, recall, sensitivity, specificity [13],
and Cohen’s weighted kappa [14].

The performance of data-driven models is limited by the
quantity and quality of the data. The first comparative aspect
is knowing whether the performance of the DM model
exceeds that of the KM model, and if this is true, knowing
the minimum amount of training data necessary for the DM
model to be as good as the KM model. We propose a pro-
cess to obtain an approximation to the minimum size that a
dataset must have so that a DM model induced from it has
a performance as good as that of the KM model, as shown
in Figure 7. From a training dataset, subsets of different sizes
were randomly generated incrementally. In each iteration of
the cycle shown in Figure 7, the size of the subset increases
from 1 until it reaches the size of the training dataset. Next,
the DM model was trained with the subset, and its perfor-
mance metrics were calculated using a test dataset. In this
case, if the output of the DM model is different from that

of the KM model (for example, qualitative and quantitative),
this output must be transformed to match. If the performance
of the DM model is less than that of the KM model, then
a file with the information of the experiment (size of the
subset and performance metrics) is updated; if the subset has
the maximum size (equal to the training dataset), the process
ends; otherwise, it increases by 1 the size of the subset to be
generated for the next cycle. If the performance of the DM
model reaches or exceeds that of the KM model, the size of
the subset for which this happens is stored together with the
performance of the DM model and the process continues.

FIGURE 7. Train dataset minimum size estimation process.

Another comparison resource is to determine whether
the difference between the outputs of the models is statis-
tically significant [20]. To compare these models directly,
the response of each can be transformed in terms of the
other [21], [22], and test them using ANOVA andMcNemar’s
metrics.

Assuming that the models are validated with the same
dataset:
• For quantitative models, the variance (ANOVA) analysis
was used to determine if there was a significant statisti-
cal difference between the means of two or more sets.

• For qualitative models, McNemar’s test [23] can be used
to determine whether the two methods (models) have
the same accuracy. The test is based on the number of
instances misclassified only by the first algorithm and
the number of instances misclassified by the second
algorithm.

However, if only one model is built, it can be compared
with similar models identified in the relevant concepts related
to the Pest through a systematic review (SR) macroprocess,
from the application of models on the same validation dataset
or the comparison of performance metrics.
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FIGURE 8. Execution flow of FramePests framework. after the Study of Pre-feasibility, the execution flow of activities in the framework instantiates
each phase of the Jabareen’s methodology for conceptual framework building [6].

The overall framework is shown in Fig. 8. After the Study
of Pre-feasibility, the execution flow of activities in the
framework instantiates each phase of Jabareen’s methodol-
ogy for conceptual framework building. The off-page con-
nector ‘‘Start State of Science’’ corresponds to the execution
of the evolution of pest modeling macroprocess through SM,
followed by relevant concepts related to the Pest through
SR. The on-page connector ‘‘Start Modeling’’ begins with
knowledge-based and/or data-based modeling, depending on
the modeling approach parameter. Finally, the CM mod-
ule was used to compare the results of the two modeling
approaches.

III. APPLICATION OF FRAMEPEST: THE CASE STUDY OF
COFFEE LEAF RUST
We illustrate the FramePests framework and its execu-
tion flow with the coffee leaf rust (CLR), caused by the
fungal pathogen Hemileia vastatrix Berk. & Broome (1869).

In 2008-2011 Colombia suffered one of its most serious
crises due to this pathogen, with a 30% decrease in produc-
tion and income losses, notably for smallholder producers.
In 2012-2013, a similar crisis occurred in Central America.
The weather factors and production conditions conditioned
their intensity [33]. The defoliation of the coffee tree and the
death of branches in the worst cases are the main factors that
cause production losses.

A. STUDY OF PRE-FEASIBILITY
Our modeling objective was to forecast CLR disease dynam-
ics at the field scale. The human competences available
for this study were a data scientist with experience in
predictive modeling processes and two plant pathologists,
experts in coffee Arabica-CLR pathosystem, all co-authors
of this article. The study area corresponds to an experiment
with several coffee-based agroforestry systems. These dif-
fer according to the tree species intercropped with coffee,
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their number, and coffee management. The experiment was
conducted at the Tropical Agricultural Research and Higher
Education Center (CATIE) [24], [25], in the canton of Turri-
alba, province of Cartago, Costa Rica. The variety of coffee
planted is Caturra of the species Coffea arabica. A CATIE
weather station was located near the experiment and the data
contained the following variables: maximum (tMax) andmin-
imum (tMin) air temperature, average (tAvg) air temperature
calculated over the day, average (hAvg) and minimum (hMin)
relative humidity, and daily precipitation (pre). Additionally,
the monitoring of pests in each plot was performed monthly.
The available data sources are: monitoring of CLR incidence
(CLRI), that is, the proportion of leaves that present the
disease’s symptoms or not [26]; vegetative growth of cof-
fee trees; the properties of the plot (management and shade
cover); and measurement date and weather data from the
on-site station from 2002 to 2012. The number of instances
in the dataset is 439.

We took the CLRI of the next month for each data sample
as the future incidence to be predicted. The date of prediction
(DP) corresponding to the day the previous incidence was
measured, and the date of predicted incidence (DPI) corre-
sponded to the day DP+ 28 days later the predicted incidence
was measured. The current incidence (cCLRI) corresponding
to the CLRI measured each DP, and the predicted incidence
(pCLRI) corresponded to the CLRI measured for each DPI.
Meteorological attributes and host growth were calculated
over 14 days preceding the date of incidence monitoring. This
period was used to exclude part of the weather conditions
that were already included in the monitored incidence, as this
is the result of the weather conditions that occurred before.
The period of 14 days is half of the time between the two
monitoring periods. In addition, the monitored incidence pro-
vides a measurement of the inoculum stock available for new
infections [27]. The host growth attribute was characterized
by the difference between the number of leaves in coffee
trees over a period of 14 days, as a proxy for characteriz-
ing growth dynamics in the following month. The attributes
related to chemical control and nutrition refer to the two levels
of conventional management in the CATIE experiment, as
explained in [24].

The modeling objective was defined as the model of CLRI
development at the field scale. The availability of experts
enables the construction of KM, and the availability of an
important dataset (number of data samples in the dataset)
enables the building of DM. Thus, it was possible to carry
out the modeling approach completely until the study of
the complementarity of the models. After the Study of Pre-
feasibility, the flow of activities in the framework starts the
sub-process evolution of pest modeling.

B. THE STATE OF SCIENCE
1) EVOLUTION OF CLR MODELING (SUB-PROCESS SM)
The research questions (SM-1) that establish the research
scope were:

• What has been the evolution of coffee leaf rust
modeling?

• Which modeling techniques have been used for coffee
leaf rust forecasting?

We performed a search for primary studies (SM-2) in Web
of Science to find studies published in scientific journals with
impact factors and Google Scholar to find studies published
in the gray literature. We created search strings according to
the CLR name in different languages: English coffee rust,
Spanish roya del café, and Portuguese Ferrugem do cafeeiro.
Additionally, we use the following related modeling words:
prediction, model, dynamics, and forecast. Table 1 lists the
search strings for bibliographic source systems and the num-
ber of studies found. Owing to the large number of studies
obtained in Google Scholar, these were ordered by relevance
according to the tool that this search engine offers.

TABLE 1. Search strings and number of studies founded in bibliographic
sources systems.

We considered the top of the most relevant documents,
according to where they were published, who wrote them,
as well as how often and how recently they were cited in other
scholarly literature.1 We selected 29 academic papers from
the two bibliographic sources. The criteria for the screening
of papers for the inclusion and exclusion process (SM-3)
were: (i) studies directly related to the CLR modeling, not its
detection on coffee leaves or studies of its impact on coffee
production; (ii) studies corresponding to gray literature, such
as technical manuals and bulletins of coffee institutions, pro-
viding a basis for knowledge of the principal drivers of CLR.
We used bibliometrix, an R library for the science mapping
analysis of the selected papers [28]. This library allowed us to
perform an automatic analysis of academic papers about their
references, authors, citations, affiliations, and keywords.

The keywording of the abstracts (SM-4) allowed us to
find the following concepts: Hemileia vastatrix, machine
learning, decision trees, rust resistance, incidence, severity,
climate change, temperature, humidity, precipitation, shade,
and data mining. The main categories found were weather,
agricultural activities, crop properties, and diseases.

The incidence has been the most studied response variable
in the most recent studies, while from the year 2000, the

1https://scholar.google.com/intl/en/scholar/about.html
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emergence of works based on machine learning (ML) tech-
niques is visible in the mapping results (SM5) (Figure 9).

FIGURE 9. Mapping of studies in CLR modeling techniques used and
elements around the CLR like its characteristics (genetics, resistance),
development (Dynamics of CLR, spread of disease, etc.) and incidence
studies.

2) RELEVANT CONCEPTS RELATED TO THE CLR
(SUB-PROCESS SR)
We used the primary studies obtained in the evolution of
CLR modeling as a basis for research identification (SR-1).
Additionally, the research questions are updated as follows:
• What are the variables most related to rust incidence
(CLRI)?

• How were the techniques used for CLRI modeling
implemented?

The selection of primary studies (SR-2) took into account
the same criteria as in the screening of papers for inclusion
and exclusion process (SM-3) and the selection of those
studies that were directly related to disease development
and modeling. Thus, studies on modeling of disease resis-
tance from its genetics, identification of severity in leaves
from computer vision, socio-economic studies, and descrip-
tive analyses were ruled out. From the density of studies
shown in SM-5, we considered those published since 2000,
as they represent the trends in CLR modeling. The results
of the quality assessment (SR-3) and data extraction (SR-4)
are synthesized (SR-5) in Table 2. This table presents the
final relevant studies. The columns show the publication
year, times cited (TC), target variable addressed, predictors
of the target variable, modeling technique (MT), metric of
the modeling validation, best metric value, and highlights of
each study (main contributions, findings, approaches, and/or
future works). Among the predictors considered, weather was

themost used category, and its analysis can be improved using
various time periods of different sizes (time windows) [29].
The other most used predictors were shade as a quantitative
or qualitative variable, previous inoculum, use of fungicide,
and fruit load. Regression-based models showed significant
results, and the use of machine learning algorithms improved
the modeling processes, providing feature selection methods,
optimization of learning functions, and use of ensembles such
as boosting. From the analysis of the most cited references in
the articles, the following studies were identified on a theoret-
ical basis: [27], [30]–[47]. These documents are cited in most
primary studies and provide important insights for modeling
CLRI and discussing the results. Lastly, the findings found in
SM and SR, theoretical basis, concepts, categories, and syn-
thesis tables constituted the state of science of the framework.

C. MODELING
1) KNOWLEDGE-BASED MODELING (KM) OF CLR
We built a model based on knowledge acquired in the state
of science to predict a CLRI in the next month. The basic
and aggregated attributes and their relationships (KM-1 and
KM-2 phases) were defined based on, but not necessar-
ily equal to, the categories found in the keywords of the
abstracts (SM-4), and elements of the synthesis of systematic
review (SR-5). The tree structure of the model is shown
in Fig. 10. The basic attributes, that is, the model input, are
shown in green, and aggregated in gray. The output variable
(incidence category) is indicated in red.We considered aggre-
gate attributes as processes in pathogen–host–environment
interactions. The processes can represent the relationship
between two or more basic attributes, as well as two or more
aggregated attributes or a combination of them.Ordinal scales
were used for all attributes (KM-3).

FIGURE 10. Tree-based representation of knowledge-based model for
coffee leaf rust incidence.

The scales of the basic and aggregated attributes (KM-3)
were favorable to the disease and unfavorable for the disease.
The fruit load attribute has three ordered categories. Both
the previous incidence basic attributes and the final output
incidence category have a different scale (Table 3). The colors
in scales represent whether the value of the scale is favorable
to the disease (red), unfavorable to the disease (green), or a
medium effect (black).

The disease incidence, a continuous variable ranging from
0 to 100%, was discretized into four categories according to
the literature and expert knowledge:
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TABLE 2. Synthesis of systematic review for incidence of coffee leaf rust forecasting.

TABLE 3. Basic attributes scale (KM-3) for coffee leaf rust incidence.

• According to the recommendations for preventive appli-
cation of fungicides from 5% incidence [42], we used
this value to define the two lowest categories of
incidence:

• According to expert knowledge, a peak of 50% of inci-
dence is a value that already represents great negative
impacts on crops (next year’s maximum production
around 14% due to branch death); therefore, we used this
value to define the two highest categories [55].

As a result, previous incidence and the final output inci-
dence category were classified into four categories: 0-5
(0%–5% of CLRI), 5-25 (5%–25% of CLRI), 25-50
(25%–50% of CLRI), and >50 (CLRI greater than 50%).

We applied expert knowledge to compile the heteroge-
neous information found in the literature to determine the
ranges used in the model. Although the presented KM model
considers the fruit load, this attribute is not available in the
dataset used. For illustration purposes of the application of
all the FramePest phases, the KM model did not include
the fruit load attribute. The rules represented in aggregation
tables (KM-4) were built considering an equal weight for all
basic attributes. All aggregation tables derived from KM-4
are presented in Appendix A.

We validated the model (KM-5) to obtain an accuracy
of 56.03% and a Cohen’s weighted kappa of 0.31, which
can be interpreted as a fair strength of agreement [56]
between the model predictions and the observed data. The
data from the CATIE experiment and the meteorological
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station located next to it were used to validate the model.
We sought to improve accuracy from the complementarity of
the model (CM) process.

2) DATA-BASED MODELING (DM) OF CLR
The detailed process of this modeling, as well as the analysis
of the results, was published in [57]. Next, we present a
summary of the results, framing them in the DM phases of
FramePests.

We took the state of science obtained in the SM and SR
macroprocesses to carry out business understanding (DM-1).
The business objective was to generate a CLRI prediction
model on amonthly scale from data on crop properties (shade,
management, vegetative growth) and climatic variables avail-
able in the dataset characterized in time windows. The data
mining objective was to process a dataset, select the features
with the most significant impact on a target variable, generate
a regression model, and analyze each feature’s impact on
model predictions.

Data understanding (DM-2) and preparation (DM-3) start
by collecting the datasets of the experiment of coffee-based
agroforestry and meteorological stations reported in the
CATIE experiment. We used the same data as in the KM
validation. The data in the files did not contain null data. The
thermal amplitude (tAmp), which represents the difference
between the maximum and minimum temperatures, and the
characterization of each day as a rainy day (precipitation
greater or equal to 1 mm) (rDay), were calculated and added
to the dataset. We relied on weather 14 days before DP, sim-
ilar to KM. We used the concept of time windows [29], [57]
to generate consecutive subperiods of each climatic variable
within the main period of 14 days before DP.
The target variable was pCLRI, and the predictors were

the rest of the experimental variables (cCLRI, shade, host
growth (hGrowth), and management (mgmt), as well as cli-
matic variables characterized in time windows of various
lengths of consecutive days: 3D, 4D, 7D, and 14D. Each
subset had 439 instances, and the dimension depended on
window size: 14D had 13 variables (8 related to climate),
7D had 69 features (64 related to climate), 4D had 93 features
(88 related to climate), and 3D had 101 features (96 related
to climate). The datasets were downloaded from [58].

Because a high-dimensionality dataset can generate multi-
collinearity problems, and a large number of variables may
be irrelevant or generate noise in the modeling process,
we applied feature selection methods [59] to obtain new
reduced subsets. Five algorithms were used for the modeling
(DM-4) applied to the reduced subsets: XGBoost, random
forest regressor, support vector regression, sequential (neural
network), and decision tree regressor, using Scikit-learn for
Python. Each algorithm was configured multiple times from
a pipeline with a randomized search to obtain the best hyper-
parameter configuration.

In the evaluation process (DM-5), we obtained the mean
absolute error (MAE) for the model training process using
cross-validation. The best result was obtained (MAE 7.19%

and Bias 0.025%) in the model built with the subset of four
consecutive days window reduced by the embedded method,
which uses the feature selection as part of the training pro-
cess of the learning algorithm, and XGBoost as the learning
algorithm. As some windows for a climatic variable can have
days in common, we filtered the highly correlated variables
in the reduced subset. The final variables were rDay14-11,
pre11-8, tMax9-6, pre6-3, tMin4-1, hGrowth, cCLRI, shade,
and mgmt. Appendix B relates the variables of the KM and
DM models.

The deployment (DM-6) was addressed as a functional
prototype for the Central American Program for the Compre-
hensive Management of Coffee Rust (PROCAGICA), which
is available as a web application.2 The description of the
prototype can be found in Appendix B. Additionally, the
deployment was also addressed as an analysis of the impact
of each feature on the model output (predicted incidence),
through SHAP (SHapley Additive exPlanations) values [60].
The SHAP values allowed the expert in plant health to inter-
pret the values of each feature that had the greatest impact on
the predicted incidence according to a base value (average
value of the model’s predictions in its training). Figure 12
shows some examples of SHAP values representing the con-
ditions in the features so that the predicted value differs from
the base value (increases or decreases).

FIGURE 11. Examples of SHAP values for some predictions made by the
model.

The features that cause an increase in the value of the
predicted CLRI (pCLRI) are shown in red, and those that
cause a decrease in pCLRI are shown in blue. The size of
the segments of each feature represents the magnitude of
its effect over the prediction, and the value of features with
low importance for each specific prediction is not shown.
The variables are maximum (tMax) and minimum (tMin) air
temperature, daily precipitation (pre), rainy day (precipitation
greater or equal to 1 mm) (rDay), and host growth (hGrowth).
The index of the variables indicates the days covered by the
window.

The DMmodel was derived from variables available in the
experimental dataset. For this reason, this model is flexible
due to the lack of information on fruit load, as the model
seeks its best fit from the available data. The results of

2https://www.redpergamino.net/app-stadinc
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DM allowed us to validate and compare findings from other
studies, such as the importance of previous inoculum for
future incidence [27], [49], the effect of wash-off given high
rainfall [45], [48], favorable temperature for germination and
penetration [43], and the effect of host growth [32], [39], [45].

3) COMPLEMENTARITY OF MODELS
We explored the complementarity between the two model-
ing approaches to improve the accuracy of the KM model.
Because the variables of the obtained models are not equal,
we carried out an additional DM process using a training
dataset composed of KM variables (Table 3). In this case,
the learning task was classified because the variable output
used in the KM was categorical. We tested the following
algorithms for classification: XGBoost, decision tree, random
forest, AdaBoost, and support vector classifiers. The best
accuracy and Cohen’s weighted kappa values were obtained
using XGBoost. Themodel allowed us to rank the importance
of the variables, as shown in Table 4.

TABLE 4. Variable importance in a model trained with a dataset
composed of the same variables of KM model.

We modified the rules of the aggregation tables (KM-4)
of the KM model to roughly represent the ranking of impor-
tance in Table 4 and carried out the validation process
(DM-5) again. The model accuracy of the updated KMmodel
was 63.1%, which is a 7.07% improvement over the first
KM model built. The Cohen’s weighted kappa obtained
was 0.41, which can be interpreted as a moderate strength
of agreement [56] between the model predictions and the
observed data. The updated aggregation tables are presented
in Appendix A.

Table 5 shows the distribution of the predicted and
observed categories of incidence (CLRI) and the confusion
matrix related to the results. The model tends to underesti-
mate the CLRI category, that is, to predict lower categories
than the original, for example, predict the 5-25 category when
the 25-50 category was actually observed in the experimental
data.

The highest precision for the 5%–25% category repre-
sents the ability to predict this category among all categories
(Table 6). The low recall value for the 0-5 category shows a
higher proportion of false negatives for this category, most

TABLE 5. Confusion matrix between predicted and observed categories
for knowledge-based CLRI model.

TABLE 6. Precision, recall and F1-score for each category of CLRI for the
knowledge-based model.

of which occur for predicting instances in the 0-5 category
when these instances corresponded to the 5-25 category. The
F1-score shows that, except for 0-5, all categories have a good
balance between precision and recall (VI).

For our case study, we estimated that the DM model
required at least 59 instances to reach the accuracy of the KM
model (Figure 12). Given that the data contained information
from four different plots (given the management and shade
combinations), this means that at least one year of monitoring
data must be obtained to achieve the same accuracy in DM
than in KM. The dataset of the CATIE experiment was used
to incrementally generate subsets until reaching the size of
the entire dataset (439 instances). Each subset was used to
train a model from XGBoost with previously found hyperpa-
rameter settings (DM-4 process). Additionally, the accuracy
was calculated using the data from Block 2 as the test dataset.

Finally, we compared the two models directly, transform-
ing the responses into terms of the other. Although both
models address the incidence, the output variables in the two
models differ from each other, being a number for one and a
range for the other. First, the KM model output, CLRI, was
transformed into a quantitative variable, taking the center of
the category value ranges, for example, for 5-25, the center
is 15. The predicted CLRI (pCLRI) was compared to the
observed incidences by calculating the MAE and bias. The
results were MAE 11.29% and Bias −2.66 %, which show
a lower performance than the DM model. Second, the DM
model output was transformed into a qualitative variable
corresponding to the categories used in KM. The accuracy
obtained was 84.93%, which corresponds to a good value for
the predictions. The precision, recall, and F1-score, as well
as the summary of metrics obtained for each model and the
associated transformation are presented inAppendix C. There
was a significant difference between the predictions of the
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two models. For qualitative models, after applying
McNemar’s test, the p-value obtained was 1.3 × 10−11.
For quantitative models, after applying the ANOVA test, the
p-value obtained was 1.3 × 10−15.

FIGURE 12. Accuracy according the training dataset size for data-based
model. The blue marker corresponds to the accuracy of the
knowledge-based model (A-KBM).

The KM model represents CLR mechanisms that occur
in a general way in coffee crops, while the data-based
model (DM) may be linked to the conditions present in
the experiment site from where these data were monitored.
We are aware that evaluations and comparative studiesmay be
biased by the data from the case study. In this sense, the KM
model could guide the process of generalization of the DM
model, such as the approach carried out by Herr et al. [61].
The improvement of the KM model in the comparative study
represents how a model that describes the general mecha-
nisms of the disease can be adjusted to the characteristics of
the study area.

IV. CONCLUSION
Our approach presents a comprehensive framework that
guides a robust crop pest modeling process, from obtaining
knowledge of the crop pest to be modeled, to the modeling
alternatives according to the available resources necessary
for modeling, such as data and knowledge. For example,
a common problem is the amount of data with which the
models are trained. If the data are insufficient, a modeling
alternative that does not require data is required. Several
approaches to crop pest modeling assume knowledge of the
problem that is already present, without considering steps to
obtain and refine it, and others carry out the modeling process
empirically without following a methodology. Although this
does not mean that the results are less reliable, the use of
methodologies is recommended to achieve an orderly, reli-
able, and well-presented process.

The application of the proposed framework was demon-
strated for coffee leaf rust modeling. All FramePests pro-
cesses were applied to provide a better understanding of its
use. This allowed the modeling tasks to be done with knowl-
edge about pests and the investigations that have addressed

TABLE 7. Aggregation table for model output.

TABLE 8. Aggregation table for crop conditions.

it, which were acquired from formal processes that facilitate
its assimilation. A possible improvement would be to obtain
knowledge from experts who have studied the biological
mechanisms of crop pests from the application of forms or
interviews. For data-based modeling, the process suggested
by the framework allowed us to obtain a model with a
MAE of 7.19% for CLRI forecasting. For knowledge-based
modeling, the multi-criteria and hierarchical structuring of
the model made it possible to represent the pathogen ×
host–environment relationships that affect CLRI develop-
ment, from associations that can be easily inspected and
validated by experts. This model had an initial accuracy
of 56%. Both models were validated using data from a real
agroforestry experiment. The scientific bases of knowledge-
based modeling were the same as those used by data-based
modeling, allowing us to obtain amodel that considers similar
predictors. The study of the complementarity of the models
allowed us to explore how elements of a data-basedmodel can
improve a knowledge-based model. From an estimate of the
importance of the model variables in relation to the variable
output obtained from the data, we were able to increase the
accuracy of the KM model by 7.07%. For our case study,
the results show that knowledge-based modeling can be an
alternative to generate a prediction model when the available
dataset has approximately 59 instances.

We are aware that modeling tasks can become very com-
plex for a group of human talent without experience in it,
so the framework is structured in such a way that its steps
are easily followed. The results obtained when applying the
framework in a case study show that it can become a valuable
tool for different institutions and research groups that wish to
start a crop pest modeling process. In addition, the execution
of the proposed framework can be included in integrated pest
management plans [5].
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TABLE 9. Aggregation table for climate hazard.

TABLE 10. Aggregation table for vulnerability.

TABLE 11. Aggregation table for crop practices.

TABLE 12. Aggregation table for management.

TABLE 13. Aggregation table for model output.

APPENDIX A
KNOWLEDGE-BASED MODEL OF CLR
A. AGGREGATION TABLES FOR THE FIRST KM MODEL
IPSIM-basedmodeling is addressed through a software called
Dexi3 for multi-attribute decision making. Below are the

3https://kt.ijs.si/MarkoBohanec/dexi.html

TABLE 14. Aggregation table for crop conditions.

TABLE 15. Aggregation table for climate hazard.

TABLE 16. Aggregation table for vulnerability.

TABLE 17. Aggregation table for crop practices.

TABLE 18. Aggregation table for management.

aggregation tables (Table 7 to 12) that describe the relation-
ships between the base and aggregated attributes for CLR
model. The colors in scales represent whether the value of
the scale is favorable to the disease (red), unfavorable to the
disease (green), or a medium effect (black). The symbol ∗

indicates that the value of the attribute does not influence the
rule, and the logical operators ‘‘<’’ means less than, ‘‘>’’
means greater than, ‘‘=’’ equals to, and ‘‘:’’ indicates a range
of values.

B. AGGREGATION TABLES FOR THE UPDATED KM MODEL
The following aggreggation tables (Tables 13 to 18) corre-
spond to the updated model presented in the Complementary
of models (CM) process.
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TABLE 19. Comparison of variables between KM and DM models.

APPENDIX B
CLRI DATA-BASED MODEL
A. COMPARISON BETWEEN VARIABLES OF
KM AND DM MODELS
Table 19 shows the variables of the KM and DM models.
In this table you can see how the variables of climate, prop-
erties of crops and disease were characterized.

B. DEPLOYMENT OF CLRI DATA-BASED MODEL
The Deployment of CLRI model obtained in DM was
addressed as a functional prototype for PROCAGICA (avail-
able at https://www.redpergamino.net/app-stadinc). The
module that allows the model to be used is called STADINC
(Statistical Development of Incidence prediction), available
in the Tools section of the PERGAMINO platform.

PROCAGICA is the Central American Program for Com-
prehensive Management of Coffee Rust, whose objective is:

Increase the capacity of the region to design and imple-
ment policies, programs and measures for a better adapta-
tion, response capacity and resilience of the most vulnerable
population, living in the coffee production areas of Central
America and the Dominican Republic, and that it is exposed
to the adverse effects of climate change and variability.

1) SYSTEM FUNCTIONALITIES
The objective of STADINC is to provide a tool to obtain
a CLRI prediction 28 days after the consultation date. The
system is presented in Figure 13 and is composed of the
following modules.

• Data from climate model retrieval: Reusable module
offered by the PERGAMINO platform, which allows
obtaining the maximum and minimum temperature
and precipitation data for the coffee areas covered by
PROCAGICA using a climate model.

VOLUME 9, 2021 115593



E. Lasso et al.: FramePests: Comprehensive Framework for Crop Pests Modeling and Forecasting

FIGURE 13. STADINC modules.

• CLRI prediction: Module that allows setting the pre-
dictor values associated with crop and CLR properties,
as well as loading the CSV file with the weather data to
be used.

• Weatherwindows generation: To avoid the user having
to generate the weather windows that themodel requires,
this module is in charge of calculating them from daily
values of temperature and precipitation.

• Predictors generation: Construction of the instance
required by the model composed of its predictors.

• Model loading: Deserialization of the model stored on
the server.

• SHAP values extraction: Calculation of the impact of
each predictor on the output of the model.

• Model output retrieval: Extraction of the CLRI value
predicted by the model.

2) SYSTEM FUNCTIONALITIES
The STADINC architecture represented by the logical view
shown in the Figure 14. This view organizes the software
classes into packages and three layers: Application, Media-
tion and Foundation.

a: APPLICATION LAYER
Provides the functionalities to a STADINC user. It is com-
posed by the following package:
• Graphical user interface: contains the software classes
and forms to provide a visual representation for data

TABLE 20. Precision, recall and F1-score for each class of CLRI for
transformed output of data-based model.

submission and response deployment. This allows user
interaction with STADINC, with graphic elements such
as plots, icons, text boxes, among others. The graphical
user interface was developed in the R package Shiny.4

b: MEDIATION LAYER
Contains the software classes named controllers. In our case,
its structure corresponds to the one suggested for creating
R-Shiny apps. It is composed by the following packages:

• Global: It contains the methods of loading the model
and obtaining its output, as well as the SHAP
values of the predictors for a specific prediction.
This allows the implementation of functions in Server
package.

• Server: Implements the mechanism for information,
prediction and SHAP values retrieval. This class con-
troller gets the user input and processes it to validate
the input data and generate the response elements in the
graphical interface.

c: FOUNDATION LAYER
This layer is composed by the software used in the STADINC:

• R Engine5: programming language and environment
for statistical computing. The PERGAMINO platform
is based on this language. We used R 3.6 and different
from its core functions are used for data manipulation.

• Shiny6: R package that allows the creation of interactive
web apps encoded in R.

• R Shiny Server7: Web server for Shiny applications
that provides its hosting and access through the internet.
It allows host an app in a controlled environment.

• XGBoost8: Gradient boosting library that implements
machine learning algorithms based on the gradient
boosting framework. Since the model based on CLRI
data was generated with this technique, this library
allows to load said model and make predictions.

• SHAPforxgboost9: Library that implements the calcu-
lation of SHAP values specifically for models built from
XGBoost.

4https://shiny.rstudio.com
5https://www.r-project.org
6https://shiny.rstudio.com
7https://rstudio.com/products/shiny/shiny-server/
8https://xgboost.readthedocs.io/en/latest/
9 https://cran.r-project.org/web/packages/SHAPforxgboost/index.html
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FIGURE 14. Logical view of STADINC.

FIGURE 15. STADINC data entry forms.

3) USER INTERFACES
The main interface for the use of STADINC is composed of a
form that allows to load the CSV data file for the calculation

of the predictors related to weather and another one for the
user to enter the data of the crop properties and the previous
incidence (Figure 15). After the data submission, the response
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FIGURE 16. CLRI prediction visualization and impact of model variables in STADINC.

TABLE 21. Comparison of models for CLRI.

of the model and the impacts of the variables are shown as
presented in the Figure 16.

APPENDIX C
COMPLEMENTARITY OF MODELS
Results: First, the KM model output was transformed into
a quantitative variable (numerical), taking the center of the
class value range, e.g., for 5-25, the center is 15. This
value was used together with the real incidences to cal-
culate the MAE and Bias. The results were MAE 10.93%
and Bias 2.9%. On the other hand, the DM model output
was transformed into a qualitative variable (category). The
incidence percentage predicted by the model (numerical), for
which a CLRI class was assigned following the same ranges
of values for the data-based model, e.g., a predicted 21.3% of
CLRI corresponds to the 5-25 class. The accuracy obtained
was 84.93%. The precision, recall, and F1-score are shown
in Table 20.

The summary of metrics obtained for each model and the
associated transformation is shown in Table 21.
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