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A B S T R A C T   

Full waveform (FW) LiDAR systems have proven their effectiveness to map forest biophysical variables in the last 
two decades, owing to their ability of measuring, with high accuracy, forest vertical structures. The Global 
Ecosystem Dynamics Investigation (GEDI) system on board the International Space Station (ISS) is the latest FW 
spaceborne LiDAR instrument for the continuous observation of Earth’s forests. FW systems rely on very so
phisticated pre-processing steps to generate a priori metrics in order to leverage their capabilities for the accurate 
estimation of the aforementioned forest characteristics. The ever-expanding volume of acquired GEDI data, 
which to date comprises more than 25 billion acquired unfiltered shots, and along with the pre-processed data, 
amounting to more than 90 TB of data, raises new challenges in terms of adapted preprocessing methods for the 
suitable exploitation of such a huge and complex amount of LiDAR data. To overcome the issues related to the 
generation of relevant metrics from GEDI data, we propose a new metric-free approach to estimate canopy 
dominant heights (Hdom) and wood volume (V) of Eucalyptus plantations over five different regions in Brazil. To 
avoid metric computation, we leverage deep learning techniques and, more in detail, convolutional neural 
networks with the aim to analyze the GEDI Level 1B geolocated waveforms. Performance comparisons were 
conducted between four convolutional neural network (CNN) variants using GEDI waveform data (either un
touched, or subsetted) and a metric based Random Forest regressor (RF). Additionally, we tested if our frame
work can improve the generalization of the models to different distant regions. First, the models were trained 
using data from all the study regions. Cross validated results showed that the CNN based models compared well 
against their RF counterpart for both Hdom and V. The RMSE on the estimation of Hdom from the CNN based 
models varied between 1.54 and 1.94 m with a coefficient of determination (R2) between 0.86 and 0.91, while 
the RF model produced an accuracy on Hdom estimates of 1.45 m (R2 = 0.92). For V, CNN based estimations 
ranged from 27.76 to 33.33 m3.ha− 1 (R2 between 0.82 and 0.88), while for RF, the RMSE was 27.61 m3.ha− 1 (R2 

= 0.88). Next, model generalization was assessed by means of a spatial transfer experiment. For Hdom, both the 
CNN and RF approaches showed similar performances to a global model, however, the CNN based approach 
showed higher variability on the estimation accuracy, and the variability was related to the forest structure 
between the trained and tested data (similar tree heights yield better accuracies). For the estimation of V, 
considering both approaches, the accuracy was dependent on the allometric relationship between Hdom and V in 
the training and testing regions while lower accuracies on V were obtained when the testing and training regions 
exhibited a different allometric relationship.  
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1. Introduction 

Forest structural characteristics, as both a product and driver of 
ecosystem processes, are key factors in determining forests’ carbon 
sequestration capacity, biomass allocation, and carbon storage (Lefsky 
et al., 2002; Simard et al., 2011). Moreover, canopy heights are strongly 
correlated with above ground biomass (AGB) (Lefsky et al., 2005), and 
in the context of climate change, the accurate estimation of carbon 
components, such as AGB from forests has become an important step in 
the United Nations plan for the reduction of carbon emissions due to 
Deforestation and forest Degradation (REDD). 

In the last couple of decades, remote sensing, due to its accurate 
earth observation capabilities, has increasingly been used for the esti
mation, on local and global scales, of forest biophysical characteristics, 
namely forest heights and AGB. Of particular interest are the LiDAR 
systems. LiDAR measures the vertical structure of objects by emitting 
laser pulses and measuring the time difference between the transmitted 
emission and its echoed return. LiDAR systems can be classified into two 
broad groups as either discrete return or full waveform systems. Discrete 
LiDAR systems or multi-return LiDAR systems usually record the first 
and last returned echoes of targets within the travel path of the emitted 
light as series of x, y, and z points known as LiDAR point clouds. Some 
discrete LiDAR systems can also record intermediate points while the 
newer ones record the intensity as well (Wagner et al., 2004). The ac
curacy of discrete return LiDAR systems is dependent on their density 
within a footprint, as low-density systems can miss small targets such as 
treetops and therefore under-estimate forest heights (Anderson et al., 
2016). Moreover, discrete LiDAR systems over densely vegetated areas 
may not reach the ground, leading to errors in the estimation of forest 
characteristics (Anderson et al., 2016). Full waveform (FW) systems on 
the other hand, acquire a time-varying distribution of backscattered 
radiation from the different targets within the illuminated surface. 
Therefore, FW LiDARs provide much richer information about the 
spatial arrangement of structures within their waveforms (Alexander 
et al., 2010), which can then be used to derive forest biophysical char
acteristics such as canopy heights and AGB (Fieber et al., 2013). 

Almost two decades ago, the first spaceborne LiDAR system, the 
Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud, and 
land Elevation Satellite (ICESat) became operational. ICESat\ GLAS 
(hereafter referred to as ICESat-1) which was originally designed to 
measure ice sheets was successfully used in a large body of studies for 
the estimation of canopy heights, and AGB (Lefsky et al., 2005; Harding, 
2005; Boudreau et al., 2008; Chen, 2010; Baghdadi et al., 2014; Fayad 
et al., 2016; El Hajj et al., 2017; Rajab Pourrahmati et al., 2018). During 
its operational life from 2003 until 2009, ICESat-1 which was equipped 
with two laser systems, operating at the infrared (1064 nm) and visible 
green (532 nm) light spectrums (Schutz et al., 2005), acquired FW over 
vertical structures within ~60 m footprints at a temporal resolution of 
1 ns (15 cm) (Schutz et al., 2005). Each acquired waveform by ICESat-1, 
like all FW systems, consisted of a series of multiple connected temporal 
modes, or peaks, representing the different reflections from an object (e. 
g. top of canopy cover) or different objects close together (e.g. under
story and ground) (Sumnall et al., 2016). Despite the accuracies of FW 
LiDAR for the estimation of forest characteristics, one major challenge is 
the precise identification of the different features such as the top of the 
canopy peak, and the ground peak. Therefore, given the complexity of 
data in the waveform, a series of pre-processing steps are required in 
order to generate the variables, or metrics from the waveforms (Chauve 
et al., 2009). First, the connected echoes inside the waveform need to be 
identified and separated (e.g. to distinguish between top of canopy and 
ground returns). For ICESat-1, the echoes were identified using Gaussian 
fitting, where the waveform was decomposed into a series of Gaussian 
curves (Lefsky et al., 2005). This method is generally well suited for 
waveforms acquired over vegetation with Gaussian shaped pulses 
(Hancock et al., 2015). After the identification of the relevant peaks in 
the waveform, metrics characterizing the vegetation and terrain could 

then be generated, e.g. percentile relative heights (the height above 
ground at which the nth % of waveform energy falls below) (Næsset, 
2002), waveform extent (Lefsky et al., 2002), and leading and trailing 
edge extents (Lefsky et al., 2005; Harding, 2005). These metrics have 
proven to be reliable in regression models for the estimation of both 
canopy heights and AGB (Baghdadi et al., 2014). Nonetheless, the suc
cess of the different metric-based methodologies to derive forest char
acteristics relies on the accurate estimation of these metrics. 

The main source of uncertainty associated to metric values accuracy 
is the determination of the useful part of the waveform, usually referred 
to as signal start (top of the canopy) and signal end. The threshold 
(n ⋅ σ + μ, where μ and σ are the average and standard deviation of the 
background noise respectively) used to determine these two variables is 
not constant. Indeed, this threshold varies based on several factors, such 
as the laser transmit power and noise which affect the returned wave
form levels, the target application, site characteristics, forest types, 
acquisition time, etc. For ICESat-1, several thresholds were used, and 
ranged from 3 ⋅ σ (Sun et al., 2008) to 4.5 ⋅ σ (Lefsky et al., 2007). 

Recently, the commissioning of GEDI on board the ISS, offers a new 
frontier for the characterization of forest dynamics. The GEDI mission 
constitutes an unprecedented opportunity to generate new forest related 
products compared to the ones derived from previous remote sensors. 
GEDI has a much higher firing frequency than the previous ICESat-1, and 
therefore has a much higher sampling density (Dubayah et al., 2020). 
For reference, in its first 18 months of operation, GEDI managed to ac
quire over 25 billion unfiltered shots globally, requiring a storage space 
of more than 90 TB. Moreover, since GEDI is a FW LiDAR system, so
phisticated processing of the waveforms is still required for the gener
ation of the useful metrics. The Land Processes Distributed Active 
Archive Center (LP DAAC) offers main GEDI data as two distinct datasets 
(Dubayah and Luthcke, 2020a,b). The L1B data product contains the 
geolocated waveforms, while the L2A data product contains the 
extracted metrics. 

Moreover, given the aforementioned challenges regarding waveform 
metrics extraction, GEDI waveform metric values are currently proposed 
using six different configurations for signal smoothing widths and 
thresholds on noise to suit a wide variety of applications (Dubayah et al., 
2020). Nonetheless, given the unprecedented high density of data, the 
iterative, time-consuming, and error prone approach used to determine 
the best metrics for a particular waveform acquired over a given study 
site could prove to be a major setback. Therefore, an approach that can 
automatically extract, with high precision, feature rich information from 
the waveforms could be of great interest. 

With the advancement of modern computational capabilities, ma
chine learning based methodologies such as neural networks or, more 
broadly, deep learning (DL) approaches are becoming an important tool 
in the geoscience field (Reichstein et al., 2019). Beyond the consolidated 
success of deep learning in the general field of computer vision (LeCun 
et al., 2015) such approaches are showing high performances in 
different applications related to the analysis of remote sensing data 
(Yuan et al., 2020) in the fields of land cover classification (Ienco et al., 
2019), agricultural yield prediction (Kim et al., 2019) and estimation of 
vegetation parameters (Hosseini et al., 2019). 

The deep learning methods can be clustered into two main families: 
the first one involves methods especially tailored for spatial learning 
while the second family proposes solutions for sequential learning 
(LeCun et al., 2015). However, there is a recent growing interest in 
blending these two perspectives. This is particularly suitable for geo
science applications where the phenomenon to characterize is featured 
by both spatial and temporal correlations (Reichstein et al., 2019). 
Furthermore, an important and worthy of interest point related to deep 
learning methods is their ability to work directly with the original signal 
information without requiring computational-demanding pre-process
ing stages (Zhu et al., 2017). In contrast to standard machine learning 
methods that exploit handcrafted features (e.g. metrics extracted from 
LiDAR waveforms such as canopy and ground positions, canopy height 
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profiles, etc.), DL approaches are especially suitable to directly manage 
the original signal (e.g. unprocessed LiDAR waveforms) avoiding most 
of the complex pre-processing stages. 

The aim of this paper is to provide a metric-free approach to deal 
with biophysical variable estimation from GEDI LiDAR data. Here, we 
propose two Convolutional Neural Networks (CNN) based approaches to 
leverage deep learning tools to cope directly with GEDI waveforms while 
avoiding time-consuming and task-unrelated metric generation. More in 
detail, we propose two Convolutional Neural Network (CNN) based 
approaches. The first CNN treats the waveform signal as a sequential 
data information and it analyzes the signal by means of one dimensional 
convolutions on the spectral dimension; the second CNN-based method 
tackles the waveform by reshaping it in a two dimensional format with 
the aim to increase the internal signal contrast. While the former strat
egy has been widely adopted in the remote sensing community to deal 
with 1D signal processing like satellite image time series (Ienco et al., 
2020) and hyperspectral data (Audebert et al., 2019), the latter 
approach (reshaping a 1D signal to a 2D representation and, subse
quently employ a two dimensional convolutional neural network) is a 
less explored and novel research contribution. 

The two CNN-based solutions for the GEDI waveforms analysis are 
deployed to estimate the height and the wood volume of fast-growing 
Eucalyptus plantations in Brazil. These plantations provide a valuable 
case study due to the homogeneous canopy cover and the availability of 
high quality field measurements in comparison to natural forests where 
in situ data are scarce. CNN based approaches are compared against a 
traditional metric based approach using a random forest regressor and 
performances are evaluated by means of traditional summary statistics 
(e.g. coefficient of determination, root mean square error, etc.). 

The paper is organized as follows. The data and the study area are 
introduced in Section 2. The convolutional neural network based 
methodologies are presented in section 3. Section 4 describes the 
experimental settings, model parameters, and the results. Finally the 
discussion and conclusions are presented in Sections 5 and 6, 
respectively. 

2. Study regions and datasets 

2.1. Study area 

The study area is located in Brazil covering five regions, across a 
latitudinal gradient (From 2∘15′S to 24∘43′S, Fig. 1), and covering 
different climate and soil types. Maranhão (MA) is located in a typical 
equatorial region with dominant monsoon rainfall (1200 to 2500 mm/ 
year). MA’s intricate relief and complex spatial distribution of almost all 
tropical soil classes, results in a truly “genotype × environment ×
management” puzzle that foresters must solve for guaranteed wood 
production in a sustainable way. Bahia (BA) and Espírito Santos (ES) are 
located in a tropical coastal region with strong rainfall anisotropy (800 
to 1500 mm/year), that directly affects wood productivity from near
shore towards hinterland. Mato Grosso do Sul (MS) is located in a 
tropical region (1200 to 1500 mm/year), with some subtropical vari
ability (rare frost), it is the most environmentally homogeneous among 
the five study regions, resulting in less variation in wood productivity 
within region. São Paulo (SP) climate is mainly subtropical with 
orographic effects (1100 to 2000 mm/year). Heavy frost-days are 
frequent in the southern part of SP. The complex relief and a wide range 
of deep and shallow tropical soils results in a large variability of wood 
productivity across the region. 

Across the five regions, clonal seedlings of mainly E. grandis (W. Hill) 
and E. urophylla (S.T. Blake) as well as different types of hybrids are 
planted in rows at a density of 1000–1667 trees/ha. The wood pro
ductivity of the plantations has an average of 40 m3 ⋅ ha− 1 ⋅ year− 1, with 
80% of the stands being between 30-50 m3 ⋅ ha− 1 ⋅ year− 1 and some 
stands could reach values as high as 60 m3 ⋅ ha− 1 ⋅ year− 1. At harvest 
time, stand dominant height is between 20 and 35 m (for 80% of stands) 
with a stand volume between 180 and 300 m3.ha− 1. The plantations are 
managed locally by stand units (~50 ha), where the same management 
is applied for each stand: planting, harvesting and weed control, genetic 
material, soil preparation and fertilization. The plantations are generally 
characterized by sparse understory and herbaceous strata, due to 
chemical weeding during the first year, the high competitive strength of 
Eucalyptus, and the closing of the canopy. Tree height is homogeneous 
within a stand, with 95% of the trees having heights at ±10.5% around 
the average tree height in plot inventories. Eucalyptus plantations 

Fig. 1. (a) Location of the five study regions; (b) an example of GEDI tracks (white circles) over some stands (red polygons); (c) Eucalyptus stands during harvest 
illustrating the clearly separated crown and trunk strata. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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exhibit a simple structure, with a tree crown strata of 3 to 10 m in width 
above a “trunk strata” with few Eucalyptus leaves and few understories 
(Fig. 1c). The relative crown depth is age dependent and varies from 
~95% (1 year old trees) to ~25% (7 year old trees) (Binkley et al., 
2020). Finally, the “soil strata” is mainly constituted of litter accumu
lation of branches and leaves, with some patches of herbaceous species. 

2.2. Inventory measurements 

For this study, 566 Eucalyptus stands were selected which corre
spond to stands where GEDI footprints were acquired between April 20, 
2019 and September 4, 2019. An additional 50 m internal buffer strip 
from the stand borders was used to account for any footprint geolocation 
errors and to avoid footprints that match the boundary between the 
stand of interest and the surrounding medium. These 566 Eucalyptus 
stands were also selected because they had field inventories performed 
by the Suzano company close to GEDI’s acquisition dates (i.e. time dif
ference lower than 2 months) on their 2 to 8 permanent inventory plots. 
Permanent inventory plots had an area of approximately 400 m2 and 
were systematically distributed throughout the stand with a density of 
one plot per 10 ha. They included 30 to 100 trees with an average of 58 
trees. During a field inventory, the diameter at breast height (DBH, 
1.3 m above the ground) of each tree in the inventory plot, the height of 
a central subsample of 10 trees and the height of the largest 10% of trees 
in terms of DBH (dominant trees) were measured. The mean height of 
the 10% of the largest trees defined the dominant height of the plot 
(henceforth referred to as Hdom). Hdom, basal area and age on the in
ventory date were then used in local volume equations to estimate the 
plot’s total and merchantable volume (merchantable volume is a tree’s 
volume up to 6 cm stem diameter with bark). The allometric equation 
used to estimate wood volume is very precise with an accuracy (RMSE) 
of 0.5 m3.ha− 1 assuming 1180 trees on average per hectare (R2 close to 
0.99) (Scolforo et al., 2019). 

Finally, as the dates of the inventory measurements were different 
from GEDI acquisition dates, only data with a date difference between 
GEDI acquisitions and inventory fewer than 2 months were used. In fact, 
on these fast growing plantations, a 2-month difference results in an up 
to 50 cm growth in Hdom and 10 m3.ha− 1 in V (depending on genetic 
material, pedoclimatic conditions, season, and age). However, this 
reasonable compromise allows keeping a large number of stands 
including a large variability of age and growing conditions. Fig. 2 shows 
the distribution of field measurements of Hdom and wood volume (V). 

2.3. GEDI data 

2.3.1. Processing of GEDI waveforms 
GEDI is equipped with three lasers emitting 1064 nm light pulses, 

with one of the lasers split into two beams, and therefore GEDI acquires 
waveforms over eight tracks of data (through dithering of the laser 
beams) (Dubayah et al., 2020). GEDI beams illuminate a surface on the 
ground, the so-called footprint, with a 25 m diameter, at a frequency of 
242 Hz, over which 3D structures are measured. The footprints are 
separated by ~60 m (center to center) along the track, and the tracks are 
separated by ~600 m. GEDI measures vertical structures using a 
1064 nm laser pulse, and the echoed waveforms are digitized to a 
maximum of 1246 bins with a vertical resolution of 1 ns (15 cm), cor
responding to a maximum of 186.9 m of height ranges, with a vertical 
accuracy over relatively flat, non-vegetated surfaces of ~3 cm (Dubayah 
et al., 2020). 

As described in the GEDI Algorithm Theoretical Basis Document 
(ATBD) (Dubayah and Luthcke, 2020a,b), the received waveforms are 
first smoothed to reduce the noise in the signal, and thus permitting the 
determination of the useful part of the waveform within the corre
sponding footprint. Waveform smoothing is performed by means of a 
Gaussian filter (Smooth Width) with a width of 6.5 ns. After smoothing, 
two locations in the waveform denoted as searchstart and searchend are 
determined. searchstart and searchend are respectively the first and last 
positions in the signal where the signal intensity is above the following 
threshold: 

threshold = mean + σ⋅v (1)  

where ‘mean’ is the mean noise level, ‘σ’ is the standard deviation of 
noise of the smoothed waveform, and ‘v’ is a constant currently set at 4 
(Dubayah et al., 2020). 

After determining the locations of searchstart and searchend, the re
gion between them, denoted as the waveform extent, is extended by a 
predetermined number of sample bins, currently set to 100 bins at both 
sides. Inside the waveform extent, the highest (toploc) and lowest (bot
loc) detectable returns are determined (Fig. 3). toploc and botloc 
respectively represent the highest and lowest locations inside the 
waveform extent were two adjacent intensities are above a threshold. 
The threshold equation used to determine toploc and botloc is the same as 
Eq. (1). In the ATBD, the value of ‘v’ used to determine toploc is named 
Front_threshold and Back_threshold for botloc. 

Finally, the locations of the distinctive peaks or modes in the 
waveform, such as the ground peak, or top of canopy peaks are deter
mined using a second Gaussian filtering of the waveform section be
tween toploc and botloc, and then finding all the zero crossings of the first 

Fig. 2. Distribution of dominant canopy heights (Hdom, a) and wood volume (V, b) densities from field inventories of the 566 Eucalyptus stands.  
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derivative of the filtered waveform (Fig. 3). The width of the second 
Gaussian filter is denoted Smoothwidth_zcross. Finally, the position of the 
ground return within the waveform is determined using the position of 
the last detected mode. 

Waveform metric values are extracted using thresholds on Smooth
width_zcross, Front_threshold, and Back_threshold. Currently there are 
six configurations (henceforth referred to as algorithms) with different 
thresholds on these variables, which are used to extract waveform 
metrics for a variety of acquisition scenarios. The thresholds for each of 
the six algorithms (denoted a1 to a6) are presented in Appendix A. The 
use of each of the six different algorithms could lead to different esti
mates of the waveform metrics, and could in turn lead to six different 
canopy height estimates. 

Over forest stands, the recorded waveforms are multi-modal in 
shape, with each mode representing a reflection from a distinct surface 
height. Fig. 3 shows a typical waveform over an Eucalyptus forest stand 
on relatively flat terrain. Over flat terrain, the first Gaussian corresponds 
to a reflection from the top of the canopy while the last Gaussian mostly 
refers to the lowest point in the footprint, i.e. the ground surface. 

In this study, several machine learning regression models were tested 
in order to estimate the stand dominant height Hdom (m) and stand 
merchantable wood volume V (m3.ha− 1) from GEDI data. These Models 
could be classified into two categories. (1) Models that rely solely on the 
waveform signals, and (2) models that rely on metrics extracted from the 
waveforms. The GEDI metrics used in this study are published by the 
Land Processes Distributed Active Archive Center (LP DAAC). For each 
acquisition, the received waveforms, their geolocation (longitude, and 
latitude), as well as their acquisition times were extracted from the L1B 
product. Next, we extracted from L2A for each beam the following 
metrics pre-processed with algorithms a1 through a6: (1) the position 
within the waveform of toploc and botloc, and (2) The Relative height 
metrics at 10% intervals from the determined ground position (0%) to 
toploc (100%) (RHn, 10% ≤ n ≤ 100%, step10%). RHn represents the 
height between the ground position and the location at n% of cumula
tive energy (Fig. 3). In theory RH100 should correspond to the real 
dominant canopy height (Hdom). Nonetheless, noise, uncertainties on the 
position of the detected ground return, and vegetation and ground 
variability, affect the accuracy of this metric (Comparison between field- 

measured Hdom and different RHn values extracted using algorithm a1 
(RH90 to RH100) can be found in Appendix B). Variables used for the 
estimation of the stand dominant height Hdom (m) and stand 
merchantable wood volume V (m3.ha− 1) are summarized in Table 1. 

2.3.2. Filtering of GEDI waveforms 
GEDI acquisitions are sensitive to atmospheric conditions (e.g. 

clouds) which render their usability (Fayad et al., 2021). Therefore, 
waveforms that meet any of the following criteria were removed:  

• waveforms with reported elevations that are significantly higher 
than the corresponding elevations in the SRTM DEM (Baghdadi et al., 
2014). In essence, we removed all waveforms where the absolute 
difference is higher than 100 m. 

• waveforms with a difference between waveform extent (height dif
ference between botloc and toploc,Wext) and (Gloc-Vloc) is higher than 
400 bins (60 m) 

In total, 6166 footprints were acquired over the 566 reference stands 
between April 2019 and September 2019 with the majority of these 
footprints (5682) providing exploitable waveforms. 

3. Methodology 

3.1. Convolutional neural network based methodology 

In this section we introduce the two different approaches that we 
have designed in order to cope with the estimation of tree heights and 

Fig. 3. Example of an acquired GEDI waveform (Rw) over an 
Eucalyptus stand (Hdom = 25.9m; V= 230.7 m3.ha− 1), its 
smoothing (Sw) and corresponding waveform metrics. (red 
curve) The cumulative energy of the waveform (CE) between 
botloc and toploc and the corresponding relative heights (RHn) 
at different percentages ‘n’ for the same waveform. 1 bin =
1 ns and corresponds to 15 cm sampling distance in the 
waveform. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this 
article.)   

Table 1 
List of all variables to be used for the canopy height and wood volume estimation 
models.  

Variable Gedi Dataset 

Footprint geolocation L1B 
Waveform samples L1B 
Search start L2A 
Search end L2A 
Relative canopy height (botloc (0%) to toploc (100%)) L2A  
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wood volumes from the GEDI data. Both approaches are based on 
Convolutional Neural Networks (CNN) (LeCun et al., 2015). CNN stra
tegies have largely demonstrated their value and effectiveness in the 
general signal processing domain (LeCun et al., 2015) dealing with both 
one dimensional (e.g. time series) as well as two dimensional (image) 
signals (Huang et al., 2017). The basic block of such neural network 
architectures is implemented by the convolutional operation (Zhu et al., 
2017) that allows to deal with the underlying (spatial or temporal) 
auto-correlation that intrinsically characterizes many types of signal 
data. Due to the fact that GEDI information consists of a univariate 
waveform signal, traveling from the atmosphere to the surface, we can 
naturally deploy one dimensional (1D) CNN with the aim to exploit the 
autocorrelation existing on the wave dimension. Such approach is pre
sented in Section 3.1.1. Another, less common way, to manage the GEDI 
signal is to reorganize the waveform into the shape of a two dimensional 
structure. Once the signal is reorganized in such way, a (2D) CNN 
method is used to estimate the biophysical parameters. Despite the fact 
that reorganizing a waveform signal as a 2D information seems inap
propriate, in the case of GEDI information, due to the high sparsity that 
such signals exhibit, this encoding strategy retains the structural infor
mation carried out by the signal and it highlights internal signal 
contrast. Such approach is described in Section 3.1.2. Regarding both 
strategies, we get inspiration by previous works in convolutional neural 
network devoted to design simple but effective architectures for both 1D 
(Ienco et al., 2020) and 2D (Springenberg et al., 2015) signals. For 
instance, we adopt small kernel (size equal to 3) to: i) capture more 
localised complex features in the input signal; ii) extract a vast amount 
of features which can be useful in later layers; and iii) permit to go 
further in the depth of the neural network architecture allowing to learn 
more complex and non-linear relationships. 

Another interesting point related to the use of neural network based 
solutions, in the context of regression tasks, is their ability to deal 
simultaneously with multiple output variables to regress starting from 
the same input data, thus, working in a multi-output regression setting. 
This means that, in our analysis, both approaches (1D-CNN and 2D- 
CNN) are able to estimate both height and wood volume biophysical 
parameters with only one model, avoiding the need to use specific 
models for each estimated variable. Finally, in Section 3.1.3 we detail 
the way in which the neural networks are learnt. We adopt the same 
training procedure for both models. 

3.1.1. One dimensional CNN 
When the GEDI signal is considered as a wave signal, one dimen

sional convolution (1D-CNN) can be directly applied on the raw data 

with the goal to leverage the information similarly to what is done for 
time series analysis (Fawaz et al., 2019). Table 2 and Fig. 4 report the 
architecture of the 1D-CNN we have conceived to deal with the bio
physical parameters estimation from the GEDI waveform. We follow 
general principles applied in the design of Convolutional Neural Net
works (Radosavovic et al., 2020), where the number of filters along the 
network structure grows and the convolutional operations are followed 
by a non linear activation function (Rectifier Linear Unit in our case, 
ReLU) and Dropout. Our 1D-CNN has ten blocks where the first eight 
involve parameters associated to convolution operations. We adopt fil
ters with a kernel size of 3. The seventh block only flattens the features 
extracted by the convolutional kernels while blocks 8 and 9 combine all 
the features together by means of fully connected (dense) layers. Finally, 
block 10 performs multi-output regression with two output neurons, one 
for each biophysical variable. We underline that, following common 
practices for neural network based regression, no activation function is 
associated to the output layer of the network (Lathuilière et al., 2020). 

3.1.2. Two dimensional CNN 
In order to analyze the GEDI waveforms by means of a two dimen

sional CNN (2D-CNN), as a first step each waveform was first encoded in 
a two dimensional (2D) format, which is then fed as input for the 2D- 
CNN. 

In literature, there are several research studies that address the 
transformation of one dimensional (1D) signal to 2D representations (Xu 
et al., 2020; Zhang et al., 2019; Dias et al., 2020). The majority of these 
studies leverage point-wise distance matrices in order to model in
teractions between subsequent portions of the 1D signal (short in
teractions) as well as interactions between portions of the 1D signal that 
are far away from each other (longer interactions). Unfortunately, the 
results of such methods is a new representation with a size that is, at 
least, quadratic w.r.t. the size of the original signal. These trans
formations not only increase the data size, but also make the use of 
convolutional neural networks challenging due to the fact that the input 
data will be represented by an image with millions of pixels (for 
instance, in the case of GEDI signal, they will provide 2D representations 
with approximately 1 200 × 1 200 pixels). With the objective to provide 
a 2D representation with a reasonable size that can also be suitable as 
input for standard (two dimensional) convolutional neural networks, we 
propose a simple, yet effective, 2D transformation for GEDI data. The 
preprocessing procedure is illustrated in Fig. 5. 

Given the GEDI signal (in Fig. 5 the signal has a length of 1 225 bins), 
we compute the square root of the waveform length (in this case 35) and 
then, rearrange the elements of the 1D signal in a two dimensional 
matrix (in the example, the two dimensional matrix has a size of 35 ×
35). The rearrangement process is performed by splitting the GEDI 
signal in vectors having the same size (35 bins) and then, vertically 
stacking together such information. We can observe in Fig. 5 the result of 
the transformation (2D representation block). If the squared root of the 
wave length is not a whole number, a zero padding (red colored values) 
is performed on the original data to achieve a signal length that provides 
an integer value when square rooted. This 2D representation leverages 
the fact that GEDI waveforms are characterized by a high degree of 
sparsity resulting in a stable signal with a limited number of peaks. 
When the waveform is arranged as a 2D representation (as opposed to 
the one dimensional one), the contrast between an information peak (e. 
g. vegetation or ground peaks) and its surrounding (e.g. tree trunks that 
don’t reflect much light due to their relatively smaller surface area 
compared to canopy cover or the ground) is exacerbated due to the 
signal stationarity. Thus, the gradient around that specific information 
peak (considering the 2D representation) is generally higher than the 
gradient around the same information peak when the original one 
dimensional representation is considered. 

At this point, similarly to what we have done for the 1D-CNN, we 
conceive and design a 2D-CNN model according to the general principles 
proposed by Radosavovic et al. (2020). Table 3 and Fig. 5 summarize the 

Table 2 
Architectures of the one dimensional Convolutional Neural 
Network (1D-CNN) where nf are the number of filters, k is the one 
dimensional kernel size, s is the value of the stride while act is the 
activation function.  

CNN1D 

Block 1 Conv(nf=96, k=3, s=1, act=ReLU) 
DropOut() 

Block 2 
Conv(nf=96, k=3, s=1, act=ReLU) 
DropOut() 

Block 3 
Conv(nf=96, k=3, s=2, act=ReLU) 
DropOut() 

Block 4 Conv(nf=192, k=3, s=1, act=ReLU) 
DropOut() 

Block 5 Conv(nf=192, k=3, act=ReLU) 
DropOut() 

Block 6 
Conv(nf=192, k=3, s=2, act=ReLU) 
DropOut() 

Block 7 Flatten() 
Block 8 Dense(n=128, act=ReLU) 
Block 9 Dense(n=128, act=ReLU) 
Block 10 Dense(n=2, act=None)  
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2D-CNN architecture. 
Our 2D-CNN has ten blocks where the first six involve parameters 

associated to convolution operations as well as batch normalization 
(Ioffe and Szegedy, 2015). We adopt filters with a kernel size equal to 3. 
The seventh block performs a global average pooling (GAP) over the 
feature map dimension while block 8 and block 9 combine all the fea
tures together by means of fully connected (dense) layers. Finally, 
similarly to the case of 1D-CNN, block 10 performs multi-output re
gressions with two output neurons, one for each biophysical variable. 
We adopt batch normalization and global average pooling layers since, 
for the 2D-CNN architecture, they empirically ameliorate the estimation 
performances regarding the corresponding architectural choices we 
have made for the 1D-CNN model. 

3.1.3. Training procedure for multi-output regression 
The training stage for both CNN-based models is the same. Since we 

are dealing with a regression task, to compute the cost function associ
ated to the optimization of the neural network parameters, we adopt the 
Mean Absolute Error (MAE) (Lathuilière et al., 2020) metric defined as 
follows: 

MAE(Y, Y ′) =
1
|Y|

∑|Y|

i=1
||Yi − Y ′

i||1 (2)  

where Y is the vector of the original values to estimate and Y′ is the 
values estimated by a particular method. || ⋅ ||1 is the L1-norm (equiv
alent to the MAE) that considers the absolute value of the difference 
between the two terms Yi and Y′

i. Since we are coping with multi-output 
regression, we define the loss function for our CNN-based models as 
follows: 

Loss(H,V,H′,V ′) = MAE(H,H′) + MAE(V,V ′) (3)  

where H (resp. V) is the original value for the biophysical variable 
Height (resp. Volume) while H′ (resp. V′) are the values estimated by any 
of our CNN-based models (1D-CNN or 2D-CNN). The multiple output 
tasks are simply managed by summing the individual errors on each of 
the biophysical estimated variables. We remind that the network pa
rameters are learnt end-to-end via common gradient descend strategy. 

Fig. 4. Graphical illustration of the 1D-CNN architecture.  

Fig. 5. Graphical illustration of the 2D-CNN architecture.  
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4. Experimental evaluation 

In this section we evaluate the two convolutional neural networks 
(CNN) based methods we have previously introduced for the estimation 
of Hdom and V through GEDI waveforms data. For comparison purposes, 
a random forest (RF) model is also considered as standard competitor 
according to the recent work proposed in Fayad et al. (2021). With the 
aim to assess the behavior of the proposed CNN based methods, we 
perform different tests. First, we evaluate the single-output regression 
version of the competing approaches in which a model for each esti
mated variable is considered. Second, we evaluate the behavior of the 
multiple-output approaches as introduced in Section 3.1.3 compared 
with the multiple-output random forest regressor model. Third, we 
inspect the estimation results obtained by our proposals as well as the RF 
method at regional level to understand how a global model (learnt from 
samples coming from different regions) behaves locally. Finally, we 
design a spatial transfer experiment in which we calibrate the consid
ered models on a particular study region and we deploy them consid
ering (spatially) different ones (Fig. 1a). In addition, regarding the first 
three experiments, we also differentiate the analysis between CNN based 
approaches that take as input the full GEDI waveforms or the subset 
GEDI waveforms data. 

4.1. Model performance evaluation 

To assess how the different models perform, a 5-fold cross validation 
was used. Moreover, we imposed that footprints belonging to the same 
stand were assigned exclusively to one of the data partitions (training or 
test) with the aim to avoid possible spatial bias in the evaluation pro
cedure. On average, we employ a training (resp. test) set with a number 
of footprints equal to 4 452 (resp. 1 065) GEDI waveforms. Finally, 
model performances were assessed using the coefficient of determina
tion (R2), the root mean square error (RMSE), and the root mean squared 
percentage error (RMSPE). R2, RMSE, and RMSPE are defined as follows: 

R2 = 1 −

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (4)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

⋅
∑n

i=1
(yi − ŷi)

2

√

(5)  

RMSPE = 100⋅

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
⋅
∑n

i=1

(
yi − ŷi

yi

)2
√

(6)  

where yi is the observed value, ŷi the estimated value, yi is the mean of 
all the observed values, and n is the sample size. 

The RF based competitor was built using a set of 500 trees (higher 
tree count slightly increased model accuracy), with a tree depth equal to 
the square root of the number of available factors. The RF model esti
mates Hdom and V using the relative height metrics (RHn, 10% ≤

n ≤ 100%, step 10%) as presented in section 2.3.1. In addition, we will 
use the RHn metric values that were extracted using algorithm a1 
(Smooth Wdith: 6.5 ns, Smoothwidth_zcross: 6.5 ns, Front_threshold: 
3 ns, Back_threshold: 6 ns) since it produced the metrics with the highest 
accuracy to in situ Hdom (Fayad et al., 2021). The comparison of the 
relative height values to in situ Hdom was made using the RH100 metric 
values extracted from the six processing algorithms (a1 to a6, Appendix 
C). 

Finally, both CNN-based models were optimized via a standard 
gradient descent procedure through the Adam optimizer (Kingma and 
Ba, 2015) with a learning rate of 1 × 10− 4, a batch size of 64 and a 
dropout rate of 0.2. 

4.2. Experimental settings 

In sections 3.1.1 and 3.1.2, two CNN based approaches are pre
sented. For both approaches, the full and subset waveforms were inde
pendently tested. The full waveform represents the returned energy for 
each time bin as recorded by GEDI. In essence, the full waveform con
tains the interaction of LiDAR and the surface within the footprint as 
well as noise. The subset waveform represents a section of the full 
waveform between searchstart and searchend (Fig. 3), where most of the 
noise has been cropped. Due to the fact that GEDI waveforms can have 
different lengths, we perform zero padding to uniform all the waveforms 
resulting in a signal with a length of 1 444 and 1 225 samples for the full 
and subset GEDI waveforms, respectively. A list of the CNN models as 
well as their input data are summarized in Table 4. 

To evaluate if the CNN based approach can be (spatially) transferred 
from a study region to another one, we propose two scenarios on which 
Hdom and V are estimated. In the first scenario, the best CNN based 
model, and the best RF model are trained with GEDI waveforms data and 
field measurements coming from the MS region (region with the highest 
GEDI footprint count) and deployed on the other study regions (Fig. 1a). 
In the second scenario, the two best models (best CNN and best RF) are 
trained with GEDI data from both MS and SP regions (Fig. 1a). The 
choice of adding SP and not any other region was motivated by the fact 
that SP has the second largest count of GEDI footprints after MS. 

The trained model performance was assessed using RMSE, RMSPE, 
and R2. A randomized t.test was also used to compare the estimation of 
the full model (calibrated on all regions), and the models calibrated on 

Table 3 
Architectures of the two dimensional Convolutional Neural Network (2D-CNN) 
where nf are the number of filters, k is the two dimensional kernel size while s is 
the value of the stride.  

CNN2D 

Block 1 

Conv(nf=96, k=3, s=1) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 2 

Conv(nf=96, k=3, s=1) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 3 

Conv(nf=96, k=3, s=2) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 4 

Conv(nf=192, k=3, s=1) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 5 

Conv(nf=192, k=3) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 6 

Conv(nf=192, k=3, s=2) 
BatchNormalization() 
ReLU() 
DropOut() 

Block 7 GlobalAveragePooling() 
Block 8 Dense(n=128, act=ReLU) 
Block 9 Dense(n=128, act=ReLU) 
Block 10 Dense(n=2, act=None)  

Table 4 
List of the tested CNN models.  

Model designation Data used 

CNN1Ds subset waveforms in original 1D representation 
CNN1Df full wavefroms in original 1D representation 
CNN2Ds subset wavefroms in 2D representation 
CNN2Df full waveforms in 2D reprentation  
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datasets from one or two regions (van der Voet, 1994). The rand.t test is 
a permutation test that tests the equal distribution of errors based on the 
mean difference between two competing model’s mean squared errors. 
This test will allow to evaluate if the behavior of the model changes with 
respect to the calibration region. In this paper, we used 199 permuta
tions with α = 0.05. 

4.3. Results 

4.3.1. Single-output based estimation 
The results presented in Fig. 6a show that the estimation of Hdom 

using the single-output RF model produces estimates with an accuracy 
(RMSE) on Hdom of 1.45 m and a coefficient of determination (R2) of 
0.92. In contrast, the 1D-CNN (Fig. 6b and c) are less accurate with an 
RMSE of 1.73 m (R2 of 0.89) when using the subset waveforms 
(CNN1Ds), and the accuracy decreased to an RMSE of 1.94 m (R2 of 0.86) 
when using the full waveforms (CNN1Df). Nonetheless, the encoding of 
GEDI waveforms as 2D matrices (Fig. 6d and e) allows to reach perfor
mances comparable to the RF approach. Indeed, for the 2D-CNN model 
the estimation of Hdom is 1.54 m (R2 of 0.90) for the subset waveforms 
(CNN2Ds) and 1.61 m (R2 of 0.90) when using the full GEDI waveforms 
CNN2Df. 

The accuracy of the RF approach in estimating the wood volume (V) 
(Fig. 7a) is 27.61 m3.ha− 1 with an R2 of 0.88. Moreover, the performance 
of the convolutional neural networks approach are in-line with the re
sults obtained for the estimation of Hdom. In essence, the 1D-CNN 
methods (Fig. 7b and c) produce the least accurate results with an 
RMSE of 30.08 m3.ha− 1 (R2 = 0.85) when the subset GEDI waveforms is 
considered (CNN1Ds) and an RMSE of 33.33 m3.ha− 1 (R2 = 0.82) for the 
full waveforms (CNN1Df). The 2D-CNN models showed behaviours 
similar to the RF based approach with an RMSE of 28.42 m3.ha− 1 (R2 =

0.87) (Fig. 7d, CNN2Ds) when using the subset GEDI waveforms, and a 
slightly better RMSE (27.76 m3.ha− 1, R2 = 0.88) for the full GEDI 
waveforms (Fig. 7e, CNN2Df). 

4.3.2. Multiple-output based estimation 
As described at the beginning of the experimental evaluation, we also 

estimate Hdom and V simultaneously using RF and CNN considering a 
multiple-output regression scenario. Regarding the CNN based ap
proaches, these models are as described in Sections 3.1.1 and 3.1.2. 
Figs. 8 and 9 show that the simultaneous estimation of Hdom and V using 

RF gave an RMSE of respectively 1.47 m (R2 = 0.92) and 27.60 m3.ha− 1 

(R2 = 0.88) (respectively Fig. 8a, and Fig. 9a). 
The proposed CNN based methods capacity in estimating Hdom 

ranged from 1.53 m (RMSE) (CNN2Ds, Fig. 8d) to 2.02 m (CNN1Df, 
Fig. 8c). RMSE values for wood volumes ranged from 26.83 m3.ha− 1 

(CNN2Ds, Fig. 9d) to 34.83 m3.ha− 1 (CNN1Df, Fig. 9c). These results 
underline that the multiple-output regressions strategy, using either the 
RF or the CNN-based approaches, achieves identical performances to the 
ones obtained using the single-output regression frameworks. None
theless, the multiple-out regression strategy is advantageous as it re
duces model training (only one model has to be trained instead of two). 
Such approach is also computationally less expensive, with faster 
deployment time (only one model is deployed to produce the estimation 
of both biophysical variables). 

4.3.3. Intra-region inspection with a global estimation model 
The results presented in Table 5 show that the intra-region results for 

the ES, MA, SP, and MP study regions (Fig. 1a) are very close, with a root 
mean squared percentage error (RMSPE) ranging between 6.8 to 7.9 % 
on the estimation of Hdom with the CNN based approach and from 6.8 to 
8.2 % with the RF based approach. 

Moreover, for the MA study region, the CNN model is slightly more 
accurate on the estimation of Hdom with an RMSE of 1.48 m against 
1.67 m obtained with the RF model (Table 5), while for the MS study 
region, the RF model showed 6.9% better accuracy than CNN (RMSE of 
1.35 m with RF against 1.45 m with the CNN-based approach). The 
estimation on Hdom obtained for the BA study region is the least accurate 
with either RF or CNN, and exhibiting an RMSE of 1.79 m (RMSPE=11.4 
%, R2 = 0.70) with CNN and an RMSE of 1.71 m (RMSPE=11.7 %, R2 =

0.67) with RF (Table 5). 
The intra-region behavior on the estimation of V showed more 

variability than Hdom, and was observed using both methods (CNNs and 
RF) (Table 6). The estimation of V over the ES, SP, and MS study regions 
is the highest with an RMSPE between 15.3 and 21.8 % with the CNN- 
based strategy and between 16.1 and 22.3 % with RF. Wood volume 
estimation accuracy over BA is a bit less precise compared to the ES, SP, 
and MS regions using both the CNN and RF approaches, with an RMSPE 
of 26.4 % (R2 = 0.71) and 26.0 % (R2 = 0.73), respectively (Table 6). 
Wood volume estimation performance for MA (Fig. 1a) is the lowest one 
with respect to the other regions using both methods. For MA, the CNN 
approach exhibits better wood volume estimation accuracy than RF, 

Fig. 6. Comparison of measured vs. estimated Hdom using single-output RF and CNN based models. (a) random forest. (b and c) 1D-CNN using subset and full GEDI 
waveforms respectively. (d and e) 2D-CNN using subset and full GEDI waveforms respectively. 
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with an RMSPE of 24.4 % (RMSE=30.32 m3.ha− 1, R2 = 0.65) against an 
RMSPE of 37.6 % (RMSE=35.92 m3.ha− 1, R2 = 0.50) for the RF model. 

4.4. Assessment of the spatial transfer behavior of the competing 
approaches 

Table 7 reports the results achieved by the different methods 
considering the spatial transfer experiment. We can observe that the 
accuracy on the estimation of the Hdom variable degraded considering 
both approaches when only samples from MS were considered at the 
training stage. For the CNN based model, an increase in RMSE between 5 
(ES region) and 44 cm (MA region) is observed, and between 5 (BA re
gion) and 28 cm (ES region) with the RF model. Conversely, we can 
observe that the RF model had an increase in the estimation perfor
mance of Hdom over SP when this method is trained only with the MS 
data. Indeed, for SP, we observed a decrease in RMSE from 1.71 m 

(Table 5) to 1.56 m (Table 7). Leveraging an additional region to enrich 
the training datasets (GEDI waveforms data from MS and SP) does not 
seem to increase the estimation performance of Hdom using either the 2D- 
CNN or the RF approaches. For the CNN-based approach, while the 
RMSE related to the estimation of Hdom increased by 10 and 25 cm for BA 
and MA, respectively, it decreased by 23 cm for the ES (Table 7). The RF 
behaved almost the same, considering the estimation of Hdom, when data 
from MS or MS and SP regions are considered as training sets (Table 5). 

Finally, despite the difference in performances on Hdom obtained by 
the 2D-CNN and the RF models when the training data involves wave
forms coming from all the study regions, and those obtained with the 
same models but trained over MS or MS plus SP, the estimations are only 
statistically significant for MA with the 2D-CNN approach, and ES with 
the RF approach (Table 7). For MA with the 2D-CNN approach, the re
sults of the rand.t test for the two scenarios (MS and MS+SP) showed a p- 
value ≤ 0.05, meaning that the null hypothesis of equal distribution of 

Fig. 7. Comparison of measured vs. estimated wood volume (V) using single-output RF and CNN based models. (a) random forest. (b and c) 1D-CNN using subset and 
full GEDI waveforms respectively. (d and e) 2D-CNN using subset and full GEDI waveforms respectively. 

Fig. 8. Comparison of measured vs. estimated Hdom using multiple-output RF and CNN based models. (a) random forest. (b and c) 1D-CNN using subset and full GEDI 
waveforms respectively. (d and e) 2D-CNN using subset and full GEDI waveforms respectively. 
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errors is rejected. For the RF approach, the null hypothesis is rejected for 
ES considering both settings (MS and MS+SP as training regions) 
(Table 7). 

Table 8 summarizes the results in terms of RMSE regarding the 
estimation of V. For the 2D-CNN model trained only on MS (first sce
nario), it achieves similar performances on BA, ES and MA regions 
compared to the results achieved considering waveforms from all the 
study regions with a maximum difference of 2.66 m3.ha− 1 in terms of 
RMSE. 

Moreover, for these three regions (BA, ES, and MA) the rand.t test 
underlines that the obtained estimation of the variable V is statistically 
close to that obtained considering previous experiments in which the 

model is trained on waveforms coming from the whole set of study 
regions. 

Generally, the estimation of V with the RF model showed more 
variability in the first scenario (Table 8). Here, the RMSE on the esti
mation of V varied between 1.53 and 4.29 m3.ha− 1 (Table 8) in com
parison to the RF trained considering waveform metrics coming from 
different study regions. Moreover, the rand.t test results indicate that the 
estimation of V over the ES, MA, and SP regions with the first scenario 
are statistically significant compared to those obtained with the RF 
trained on waveforms coming from different study regions (p-values ≤
0.05, Table 8) indicating a different distribution of errors. Similarly to 
the results obtained when MS and SP are employed as training regions 
for the estimation of Hdom, the additional information carried out by a 
different study region is not guaranteed to yield better performance for 
the estimation of V. For example, the 2D-CNN model performances, over 
ES and MA, decreased by 4.70 and 8.52 m3.ha− 1, respectively, in terms 
of RMSE when MS and SP are considered as a training set against 
considering only data coming from MS (Table 8) and the estimation of V 
becomes statistically significant w.r.t. the one achieved by the 2D-CNN 
model when waveforms from all the study regions are contemplated (p- 
value ≤ 0.05, Table 8). 

5. Discussion 

The results presented in this study show that a CNN based approach 
using GEDI waveforms can be used to obtain high accuracies of canopy 
heights and wood volume estimates, with a root mean square percentage 
error (RMSPE) varying between 7.96 and 9.95 % on canopy heights and 
between 21.45 and 32.02 % on wood volume. These varying accuracies 
depend on the CNN variant (1D CNN or 2D CNN trained with full or 
subset GEDI waveforms) that was used. Nonetheless, the results ach
ieved by the CNN-based approaches with the waveforms on both the 
Hdom and V biophysical variables are comparable to those obtained using 
conventional estimation models such as random forests (RF) which uses 
a computationally intensive approach for the generation of GEDI metrics 
from the waveforms to estimate forest characteristics. Indeed, with RF, 
the RMSPE on Hdom and V is 7.45 and 22.46 % respectively. These results 
confirm that the CNN methods can automatically extract useful infor
mation from LiDAR waveforms in order to estimate Hdom and V on par 
with classical methodologies based on metrics that require expert 
knowledge to be produced and selected. 

Fig. 9. Comparison of measured vs. estimated wood volume (V) using multiple-output RF and CNN based models. (a) random forest. (b and c) 1D-CNN using subset 
and full GEDI waveforms respectively. (d and e) 2D-CNN using subset and full GEDI waveforms respectively. 

Table 5 
intra-region accuracy on the estimation of Hdom using the 5-fold cross validated 
results from the 2D full waveform CNN (CNN2Df) and the random forest model 
using GEDI metrcis extracted with algorithm a1 (RF). Both models were cali
brated on data from all regions. RMSE is expressed in m, while RMSPE is the root 
mean squared percentage error. Region locations are shown in Fig. 1a  

Region Gedi footprint 
count 

CNN2Df RF 

RMSE RMSPE R2 RMSE RMSPE R2 

BA 502 1.79 9.7 0.82 1.71 9.3 0.83 
ES 727 1.43 7.9 0.80 1.48 8.1 0.79 
MA 613 1.48 6.8 0.87 1.67 8.2 0.84 
SP 1068 1.76 7.2 0.90 1.71 6.8 0.90 
MS 2586 1.45 7.5 0.92 1.35 7.2 0.93  

Table 6 
intra-region accuracy on the estimation of V using the 5-fold cross validated 
results from the 2D full waveform CNN (CNN2Df) and the random forest model 
using GEDI metrcis extracted with algorithm a1 (RF). Both models were cali
brated on data from all regions. RMSE is expressed in m3.ha− 1, while RMSPE is 
the root mean squared percentage error.  

Region 
Gedi footprint 

count 

CNN2Df RF 

RMSE RMSPE R2 RMSE RMSPE R2 

BA 502 30.61 26.4 0.71 29.47 26.0 0.73 
ES 727 18.76 15.7 0.77 17.57 16.6 0.80 
MA 613 30.32 24.4 0.65 35.92 37.6 0.50 
SP 1068 36.90 15.3 0.84 32.81 16.1 0.87 
MS 2586 22.61 21.8 0.92 25.27 22.3 0.90  
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From a user’s point of view, CNN based methods usually require a 
more sophisticated approach for the trained model procedure and sub
sequent optimization of the hyperparameters in comparison to random 
forests. CNN models’ training times can also be higher than the one 
exhibited by random forests. For example, over our study area, the full 
RF model (trained over all regions) required around three minutes to 
complete a 5-fold training validation combination while the CNN based 
model took around twelve minutes. Nonetheless, these disadvantages 
are overshadowed by other factors. First, metric based methodologies 
require that waveform metrics be as accurately estimated as possible, 
whereas, similarly to ICESat-1, the thresholds used to extract these GEDI 
waveform metrics are tightly related to the study site and the typology of 
the studied forests (Fayad et al., 2014) and often these metrics are ob
tained via multiple trial and error tests. Currently, the LP DAAC provides 
six different values of each GEDI waveform metric which are issued from 
six different processing algorithms. Secondly, GEDI data are provided 
via two main different products (c.f. Section 2.3.1), the process to 
explore which particular information related to GEDI waveform metrics 
is necessary to support the study of forest characteristics means the 
access to additional data, and requires more computational resources in 
terms of both storage and\ or pre-processing. For instance, for the period 
between April 18, 2019 and September 02, 2020, the GEDI sensor pro
duced more than 90 TB of L1B and L2A data, with L1B, the data product 
containing the waveforms, representing more than 54 TB. Therefore, 
while CNN required more time for model training (12 minutes vs 3 
minutes), metric based methodologies require additional storage ca
pacity as well as additional time to perform the data pre-processing stage 
to extract the required metrics, which becomes a hindrance especially 
when large study areas are considered (Computational performance for 
both approaches can be found in D). For these reasons, metric-free 
models such as CNN-based solutions are worthy of interest. 

Four variants of CNNs for the estimation of Hdom and V were tested in 
this work. These models differed in their representation of GEDI wave
forms. Two models used the 1D representation of the waveform, while 
the remaining two used the waveform as 2D encoded matrices. The re
sults showed that the 1D representation produced less accurate results 
than its 2D counterpart did, especially when the full waveforms were 

used, and this for both Hdom and V estimates. 
The better performance of the 2D-CNN models is tightly related to 

the representation we adopted for the waveform signal. As shown in 
Fig. 5, typically, the GEDI waveform is featured by a stationary signal 
with a limited number of peaks. This signal characteristic influences the 
design of the neural network architecture where max pooling operations 
are preferred w.r.t. average pooling ones. When the signal is arranged in 
a 2D shape, the contrast between an information peak (e.g. vegetation or 
ground peaks) and its surroundings (e.g. tree trunks that don’t reflect 
much light due to their relatively smaller surface area compared to 
canopy cover our the ground) is exacerbated in the 2D matrix due to 
signal stationarity. Conversely, in the case when the original (sequen
tial) waveform is considered, the contrast between a peak and its spatial 
context (surroundings) is smoothed and this fact does not allow the 
model to focus on the informative portions of the signal. Because of the 
2D waveforms representation, the filters of the 2D-CNN model are well 
adapted to recognize useful portions of the signal since they can exploit a 
more contrasted representation helpful to discard between high and low 
informative content. In addition, it is worth noting that the 2D-CNN 
involves around 1M parameters while the 1D-CNN contains around 
7M parameters. 

For multiple-output 2D CNNs, the difference in accuracy between the 
model using the full waveforms and the one using the subset waveforms 
was imperceptible. For Hdom, the multiple-output 2D-CNN model 
showed less than 3 cm difference in terms of RMSE between the model 
using the full waveforms and the one using the subset waveforms, and 
less than 1 m3.ha− 1 on the estimation of V. However, this difference in 
accuracy on the estimation of both Hdom and V is negligible considering 
that the model exploiting the full waveforms does not require the pre- 
processing step related to the determination of the useful part of the 
waveform. Thus, eliminating another degree of freedom that demands 
additional computational effort as well as a choice among possible 
methods to perform the selection of the subset waveforms. 

To study the viability of model transferability across the study re
gions, first we analyzed the accuracy on Hdom and V from the global 
models (models trained using data from all the study regions) over each 
study region. 

Table 7 
inter-region accuracy on the estimation of Hdom using two training datasets (MS, and MS+SP) from the 2D full waveform CNN (CNN) and the random forest model 
using GEDI metrcis extracted with algorithm a1 (RF). RMSE is expressed in meters (m), RMSPE is expressed in %, while rand.t p-value is the randomization t-test p- 
value.  

Scenario 
CNN rand.t RF rand.t 

RMSE RMSPE R2 p-value RMSE RMSPE R2 p-value 

MS → BA 2.02 9.59 0.76 0.0850 1.76 8.99 0.82 0.6250 
MS → ES 1.48 8.25 0.79 0.5850 1.76 10.06 0.70 0.0050 
MS → MA 1.92 8.26 0.79 0.0050 1.71 8.33 0.83 0.2050 
MS → SP 2.07 8.38 0.86 0.0650 1.56 7.55 0.92 0.0700  

MS + SP → BA 1.92 9.12 0.79 0.2800 1.79 8.92 0.81 0.3350 
MS + SP → ES 1.66 9.03 0.73 0.2150 1.77 10.09 0.70 0.0050 
MS + SP → MA 1.67 7.61 0.84 0.0050 1.64 8.28 0.84 0.9400  

Table 8 
inter-region accuracy on the estimation of V using two training datasets (MS, and MS+SP) from the 2D full waveform CNN (CNN) and the random forest model using 
GEDI metrcis extracted with algorithm a1 (RF). RMSE is expressed in m3.ha− 1, RMSPE is expressed in %, while rand.t p-value is the randomization t-test p-value.  

Scenario 
CNN rand.t RF rand.t 

RMSE RMSPE R2 p-value RMSE RMSPE R2 p-value 

MS → BA 33.27 20.96 0.65 0.2800 27.94 19.39 0.75 0.5300 
MS → ES 19.38 17.18 0.76 0.9300 21.86 20.73 0.69 0.0050 
MS → MA 31.07 26.02 0.63 0.2400 38.07 34.31 0.44 0.0050 
MS → SP 44.31 17.52 0.77 0.0050 36.33 17.88 0.84 0.0050  

MS + SP → BA 31.10 20.24 0.69 0.8800 27.79 19.82 0.76 0.5500 
MS + SP → ES 24.08 20.54 0.63 0.1125 25.15 24.85 0.59 0.0162 
MS + SP → MA 39.59 30.51 0.40 0.0015 42.18 39.03 0.31 0.0756  
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Regarding Hdom, both the multiple-output 2D-CNN and RF were able 
to estimate canopy heights with good precision, with more or less the 
same accuracies for each region. However, for V, the accuracies showed 
more variability across the regions, with V estimates for MA showing the 
worse accuracies with an RMSE of 30.32 m3.ha− 1 (R2 = 0.65) with the 
2D-CNN model, and 35.92 m3.ha− 1 (R2 = 0.50) with the RF model. This 
was not unexpected given that GEDI, as all waveform based LiDAR 
sensors, measures only the vertical structure of objects within the foot
print, and thus the echoed waveforms do not contain enough informa
tion about the trunk volume of the measured canopies. The direct link 
between GEDI FW information and Hdom leads to high R2 even for a 
general equation across regions. The wood volume estimation from 
GEDI is therefore due to the existing relationship between Hdom and V, as 
observed in Fig. 10. However, such allometric relationship changes from 
one region to another as can be seen in Fig. 10, where MA had the lowest 
V/Hdom ratio, and therefore, this explains why a globally trained model 
did not produce high accuracies in this study region. Nonetheless, the 
2D-CNN approach was able to generalize better on the wood volume 
variable than the competing random forest model (Table 6). Indeed, the 
RF model could not estimate accurately the wood volume over MA, 
while the CNN based model can improve significantly the RMSE, RMSPE 
and R2 on that region. These results suggest that deep learning algo
rithms extract and exploit more information from the LiDAR waveform 
linked to local/regional stand characteristics than the information 
included in the GEDI metrics, which have improved the use of a general 
common model across regions for V. 

Regarding the transferability of our proposed approach, both the 2D- 
CNN, and the RF models were able to successfully estimate Hdom using a 
model trained on a different study region. However, the RF model 
seemed to perform slightly better (similar accuracies across the four 
regions). For the 2D-CNN approach, training a model using data from 
MS, produced the highest accuracies over ES, and lower accuracies for 
BA, MA, and SP (Table 7). This is due to the fact that ES, as MS, had on 
average lower tree heights (Hdom = 19.5m) compared to BA, MA, and SP 
(Hdom = 22.3m), indicating that the neural network when trained over 
MS, was not trained with enough waveforms acquired over higher trees. 
This also explains the higher accuracies obtained over BA, and MA, 
when data from SP (Hdom = 23.1m) were added to the training model. In 
contrast, the RF was able to better generalize Hdom even when trained 

over lower trees. Indeed, the RF model trained with data from either MS, 
or MS+SP, produced the same accuracies on Hdom. For the estimation of 
V, both the 2D-CNN and the RF approaches behaved similarly. For both 
approaches, the successful transfer of the model, as stated previously, 
relies on the constancy of the allometric relationship of Hdom and V 
between GEDI data from the training and the testing sites. Moreover, the 
use of data from an additional study region to the training model does 
not guarantee the increase of accuracy on the estimation of V, as 
underlined by the (MS+SP) scenario. Indeed, the RMSE on the estima
tion of V for MA (lowest V to Hdom ratio) increased from 31.07 m3.ha− 1 

with scenario (MS) to 39.59 m3.ha− 1 when adding GEDI data from SP 
(highest V to Hdom ratio). Additional experiments regarding the trans
ferability can be found in Appendix E 

6. Conclusions 

The results presented in this study have proven that a CNN based on 
waveforms could be the next step in the estimation of forest biophysical 
parameters such as canopy heights and above ground biomass with ac
curacies similar to traditional approaches. 

Traditional approaches rely on an extracted set of metrics from the 
waveforms for the intended application. While these metrics could be 
accurate in representing different canopy features (e.g. location of 
canopy and ground modes), they can be affected by possible effects on 
the acquired waveforms related to instrumental biases and atmospheric 
or environmental factors. Thus, the extraction of these metrics relies on 
several trial and error iterations as well as a priori knowledge related to 
a particular study site. Conversely, our proposed CNN based framework 
has shown the ability to directly process the full LiDAR waveforms 
avoiding the storage and computation of ad-hoc metrics that may, or 
may not, be suitable for a specific case study. 

Finally, the spatial transfer assessments have also highlighted the 
ability of our framework to cope with inter-region variability. These 
results confirm that the CNN methods can automatically extract useful 
information from the LiDAR waveform analysis to predict Hdom and V on 
par with classical GEDI metrics that require expert knowledge to be 
produced and selected. 

Nonetheless, while the CNN approach has the ability to better 
spatially generalize both Hdom and V, the generalization of V was more 
challenging, as V can only be accurately estimated in regions having 
similar allometric relationships between Hdom and V. This finding is not a 
limitation of our approach, but rather an inherit limitation of the full 
waveform LiDAR sensors and their inadequacy to directly measure the 
volume of the target entities. Therefore, future works can be devoted to 
data fusion approaches with the aim to overcome such limitations. For 
instance, jointly exploit both LiDAR based data and data from other 
sensors such as the one from the upcoming P-band BIOMASS mission. 
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Appendix A. Threshold and smoothing parameters  

Table A.9 
The different parameters used in each of the six algorithms for the anaylsis of the received waveforms.  

Algorithm Smooth width Smoothwidth_zcross Front_threshold Back_threshold 

a1 6.5 6.5 3 6 
a2 6.5 3.5 3 3 
a3 6.5 3.5 3 6 
a4 6.5 6.5 6 6 
a5 6.5 3.5 3 2 
a6 6.5 3.5 3 4  

Appendix B. Comparison between Hdom and RHn

Fig. B.11. Accuracy comparison on the estimation of Hdom using different relative height metric (RH) values.  

Appendix C. Accuracy of RH100 values extracted using a1 to a6  

Table C.10 
Accuracy of RH100 on the estimation of Hdom. a1 to a6 correspond to the configuration used to extract the RH100.   

a1 a2 a3 a4 a5 a6 

RMSE (m) 2.30 4.14 2.34 2.31 7.81 5.25 
R2 0.83 0.34 0.78 0.82 0.21 0.27  

Appendix D. Models’ computation times 

The computation times reported in Table D.11 are based on an Intel® Xeon® W-2133 CPU @ 3.60GHz and an NVIDIA® GeForce® 1080Ti GTX 
GPU. Regarding the 2D CNN model, the pre-processing stage comprises the normalization of the waveforms and the transformation into the 2D 
representation. This process is done on CPU using a single core, but it can be parallelized to decrease the pre-processing times, especially for larger 
datasets. The training of the 2D CNN model is done on the GPU, and this too can take advantage of parallel GPU computation. Regarding the 
competing RF model, training is done on 10 CPU cores. And while the training times of the competing RF model is less than the CNN based model, the 
bottleneck of metric based models is the pre-processing stage which takes several hours and requires human intervention in order to choose the best 
metric values.  

Table D.11 
Comparison of computational times for the best performing CNN based model and the competing RF model.  

Model Data used Pre-processing time Training time Inference time 

2D CNN full waveforms < 2s (~3340 waveforms/s) ~12 minutes < 1m 
RF waveform extracted metrics Several hours ~3 minutes < 1m   
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Appendix E. Additional assessment of the spatial transfer behavior  

Table E.12 
Inter-region accuracy on the estimation of Hdom using as training data the combination MS+MA via the 2D full waveform CNN (CNN) and the random forest model 
using GEDI metrics extracted with algorithm a1 (RF). RMSE is expressed in meters (m), RMSPE is expressed in %, while rand.t p-value is the randomization t-test p- 
value.  

Scenario 
CNN RF 

RMSE RMSPE R2 rand.t p-value RMSE RMSPE R2 rand.t p-value 

MS + MA → BA 1.60 8.17 0.85 0.3950 1.40 7.18 0.89 0.7850 
MS + MA → ES 1.65 9.44 0.73 0.2000 1.62 8.97 0.75 0.0050 
MS + MA → SP 2.01 8.77 0.87 0.0050 1.67 8.29 0.90 0.6000   

Table E.13 
Inter-region accuracy on the estimation of V using as training data the combination MS+MA via the 2D full waveform CNN (CNN) and the random forest model using 
GEDI metrics extracted with algorithm a1 (RF). RMSE is expressed in m3.ha− 1, RMSPE is expressed in %, while rand.t p-value is the randomization t-test p-value.  

Scenario 
CNN RF 

RMSE RMSPE R2 rand.t p-value RMSE RMSPE R2 rand.t p-value 

MS + MA → BA 27.71 18.14 0.76 0.5900 26.37 17.22 0.78 0.0350 
MS + MA → ES 18.60 17.61 0.78 0.5750 18.91 17.07 0.77 0.0100 
MS + MA → SP 37.61 17.77 0.83 0.0050 35.41 17.03 0.85 0.0050  
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