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Membrane structure and interactions of human
catestatin by multidimensional solution and
solid-state NMR spectroscopy
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Arnaud Marquette,* Jean-Francois Chich,‡,§ Marie-Hélène Metz-Boutigue,‡ and
Burkhard Bechinger*,2

*Université de Strasbourg/Centre National de la Recherche Scientifique, UMR 7177, Institut de
Chimie, Strasbourg, France; †Universidade Federal de Minas Gerais, Departamento de Química, Belo
Horizonte, Brazil; ‡INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France; and
§Institut National de la Recherche Agronomique, Virologie et Immunologie Moléculaires, Domaine
de Vilvert, Jouy-en-Josas, France

ABSTRACT Catestatin is a natural peptide of higher
organisms including humans, with a wide variety of
biological functions involved in catecholamine inhibi-
tion, cardiovascular regulation, control of blood pres-
sure, inflammation, and innate immunity. It is derived
from the natural processing of chromogranin A, in-
duced in the skin after injury, and produced by chro-
maffin cells and neutrophils. With neutrophils, the
peptide enters the cell by crossing the plasma mem-
brane where it interacts with internal targets to induce
calcium influx. Therefore, we investigated the mem-
brane interactions and structure of several catestatin-
derived peptides. Whereas fluorescence dye release
experiments are indicative of membrane permeabiliza-
tion, multidimensional solution NMR and circular di-
chroism spectroscopies show that catestatin adopts
�-helical conformations between Ser-6 and Tyr-12 in
the presence of dodecylphosphocholine micelles. Fur-
thermore, proton-decoupled 15N solid-state NMR spec-
troscopy of sequences labeled with 15N and reconsti-
tuted into oriented lipid bilayers indicates that this
domain is aligned in a strongly tilted to inplanar align-
ment. Proton-decoupled 31P NMR spectra of the same
samples are indicative of conformational and/or orien-
tational heterogeneity at the level of the lipid bilayer
head groups due to the presence of catestatin. The
sequence and 3-dimensional structure of catestatin
exhibit homologies with Penetratin, which is suggestive
that they both enter the cells by related mechanisms to
target internal structures.—Sugawara, M., Resende,
J. M., Moraes, C. M., Marquette, A., Chich, J.-F.,
Metz-Boutigue, M.-H., Bechinger, B. Membrane struc-
ture and interactions of human catestatin by multidi-
mensional solution and solid-state NMR spectroscopy.
FASEB J. 24, 000–000 (2010). www.fasebj.org

Key Words: catestatin-derived peptides � cationic peptides � an-
timicrobial peptide � structure of membrane-associated peptide
� oriented lipid bilayer � topology � angular restraints � mem-

brane topology � cell-penetrating peptide

Chromogranin a (CGA), the first member of the

chromogranin/secretogranin family (1) is predomi-
nantly released with catecholamines by stimulated chro-
maffin cells from the adrenal medulla (2). CGA, a 48-kDa
protein with several post-translational modifications
(phosphorylation, O-glycosylation; refs. 3, 4), functions as
a prohormone and generates several bioactive peptides
(5). The in vitro as well as in vivo activities of the
CGA-derived peptides (6) demonstrate their participa-
tion in homeostatic processes such as catecholamine
release inhibition, calcium and glucose metabolisms,
cardiovascular functions, inflammatory reactions (7, 8),
pain relief, tissue repair, gastrointestinal motility, mi-
croglia, and activation and in the first line of defense
against invading microorganisms by direct killing and
activation of neutrophils (PMNs; ref. 9).

During the past decade, a range of antimicrobial
peptides derived from the natural processing of chro-
mogranins has been identified (10–13). These peptides
result from the natural processing by intragranular
enzymes such as prohormone convertases (PC1 and
PC2), aminopeptidases, and carboxypeptidases; by kal-
likrein located at the outer membrane level (5); and by
circulatory proteolytic enzymes such as plasmin and
thrombin (14). Moreover, when PMNs accumulate at
sites of inflammation and are stimulated by lipopolysac-
charide or other microbial agents, these cells have
emerged as a source of intact and processed forms of
CGA (9, 10, 12).

Among these, bovine and human catestatin [bCGA344–364
(bCAT) and hCGA352–372 (hCAT)] are highly conserved
during evolution (Table 1). Catestatins (CATs) are
cationic peptides (hCAT, charge �4; bCAT, charge
�5) initially characterized for their inhibitory effect on
catecholamine release by chromaffin cells of the adre-
nal medulla (15, 16). These peptides display a noncom-

1 These authors contributed equally to this work.
2 Correspondence: Bechinger, Faculté de chimie, Institut le

Bel, 4, rue Blaise Pascal, 67070 Strasbourg, France. E-mail:
bechinger@chimie.u-strasbg.fr
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petitive inhibition of the nicotinic acetylcholine recep-
tor (15). When long ACh stimulation periods (30 s) are
used during electrophysiological investigations, CAT
inhibits ion translocation and it was proposed that this
is due to interactions of the peptides at sites topograph-
ically distinct from ACh binding (17). Whereas a first
site is located within the ion channel pore, a second
one is located at the interface of the receptor within the
membrane lipids (18, 19). Furthermore, in addition to
the inhibition of catecholamine release, bCAT was
found to act as a potent vasodilatator in vivo by stimu-
lating the release of histamine (20). Such release of
histamine was also demonstrated in vitro from mast
cells, and the authors propose that CAT activates
histamine release from mast cells by a mechanism
analogous to the receptor-independent, peptidergic
pathway proposed for mastoparan, as well as other
cationic and amphipathic peptides (21). In addition,
CAT was characterized as an endogenous antimicrobial
peptide induced in skin after injury (22) and we have
reported that bCAT and hCAT induce calcium entry in
human neutrophils by calmodulin-regulated calcium-
independent phospholipase A2 via store-operated chan-
nels (9). Furthermore, like other neuropeptides (beta-
endorphin, met-enkephalin, substance P, somatostatin,
vasoactive intestinal peptide, and neuropeptide Y), CAT
mediates monocyte migration by a tyrosine kinase and a
G-protein coupled receptor involving sphingosine-1-phos-
phate (23). The ensemble of these observations suggests
the involvement of bCAT in innate immunity.

Genetic ablation of the CGA gene results in high
blood pressure in mice, which can be rescued by either
pretreatment with CAT or the introduction of the
human CGA gene (24). Interestingly, 3 naturally occur-
ring amino acid substitution variants within the CAT
sequence were characterized (G364S, P370L, and
R374Q) with allele frequencies of 4, 0.3, and 0.6%,
respectively, the G364S variant causing profound
changes in human autonomic activity and a possible
decrease of risk to hypertension, especially in men.
Recently, it was reported that cathepsin L, a proteolytic

enzyme, colocalizes with chromogranin A in chromaf-
fin vesicles to generate active peptides and that the
processing of the CAT region was diminished by the 2
variants P370L and G364S (25).

The molecular mechanisms of the numerous biolog-
ical activities of CAT indicate that, in addition to
receptor-dependent mechanisms, this peptide is able to
target various microorganisms such as bacteria, fungi,
and parasites in the absence of a specific receptor (12)
and also host cells such as neutrophils by a direct
interaction with the plasma membranes. A prerequisite
to understand the molecular interaction of natural
hCAT and its variants (G364S and P370L) with various
cellular membranes is the knowledge of the 3-dimen-
sional structure and their interactions with phospholip-
ids bilayers. Previous studies (26) have investigated the
CAT 3-dimensional topology by homology modeling,
suggesting that the peptide adopts a sheet-loop-sheet
structure in aqueous environments. Furthermore, the
structures in DMSO of hCAT and a cyclic engineered
bCAT (cbCGA350–362) were compared, indicating that
the linear hCATpresents a coiled loop structure (PDB
ID: 1LV4) and the cbCGA350–362 adopts a twisted loop
structure (PDB ID: 1N2Y; ref. 27).

To understand the possible molecular interactions of
CAT with biological membranes, we decided to analyze
the structure and topology of hCAT and its natural
variants (G364S and P370L) in model membranes by
circular dichroism (CD), as well as multidimensional
solution- and solid-state NMR spectroscopies. The do-
decylphosphocholine (DPC) micelles and phospho-
lipid bilayers used in this study closely mimic the
interfacial properties of biological membranes.

MATERIALS AND METHODS

Phospholipids were purchased from Avanti Polar Lipids (Bir-
mingham, AL, USA). The CAT-derived peptides bCGA344–364
RSMRLSFRARGYGFRGPGLQL, hCGA352–372 SSMKLSFRA-
RAYGFRGPGPQL, its human variants (G364S and P370L),
and the scrambled peptide (SLPRRQLPSSAGMRGGKFAYF)
were synthesized by automated solid-phase peptide synthesis
using the Fmoc (9-fluorenylmethyloxycarbonyl) chemistry. At
position 9 (underscored), the 15N-labeled analog of alanine
was incorporated. The synthetic peptides were purified using
reversed phase high-performance liquid chromatography.
The purity of the products was confirmed by sequencing and
matrix-assisted laser desorption ionisation time of flight
(MALDI-TOF) mass spectrometry.

Calcein release experiments

Large unilamellar vesicles (LUVs) loaded with calcein were
prepared in the following manner: a lipid mixture of 1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphoserine (POPC/POPS; 3:1) was dissolved in
chloroform/methanol 1:1. The solution was dried and then
hydrated in a 10 mM phosphate buffer (pH 5.5) comple-
mented with 50 mM of calcein disodium salt (Fluka, Buchs,
Switzerland) before undergoing several freeze-thaw cycles
and then extrusion (21 times) through membranes with
pores of 100 nm diameter (Avestin, Ottawa, ON, Canada).
The dye outside the calcein-loaded vesicles was removed by
gel filtration through a Sephadex G-50 column (2.5�3.5 cm;

TABLE 1. Sequence alignment of CAT-derived peptides and
Penetratin by using ClustalW

Peptide Sequence

Human (P10645) 352 SSMKLSFRARAYGFRGPGPQL 372
G364S SSMKLSFRARAYSFRGPGPQL
P370L SSMKLSFRARAYGFRGPGLQL
Macaque

(Q4R4V1)
353 RSMKLSFRARAYGFRGPGPQL 373

Bovine (P05059) 344 RSMRLSFRARGYGFRGPGLQL 364
Bovine cateslytin 344 RSMRLSFRARGYGFR 358
Horse (Q9XS63) 343 RSMKLSFRARAYGFRGPGLQL 363
Pig (P04404) 343 RSMKLSFRAPAYGFRGPGLQL 363
Rat (P10354) 367 RSMKLSFRARAYGFRDPGPQL 387
Mouse (P26339) 364 RSMKLSFRTRAYGFRDPGPQL 384
ANTP (P02833) 339 RQIKIWFQNRRMKWKKENKTK 359
Drosophila .::: �: � : :: .

Changes in human variants are underscored. Residue not in-
cluded in the alignment is double underscored. Asterisk (�) indicates
identical residues; period (.) and colon (:) indicate conservative
changes.
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Sigma, St. Louis, MO, USA) equilibrated with a 10 mM
phosphate buffer (pH 5.5) and supplemented with 100 mM
NaCl to compensate for the change in osmolarity induced by
the presence of calcein and its sodium counter-ions. During
gel filtration, the membranes were diluted by �7-fold to a
final lipid concentration of 3.5 mg/ml.

Calcein efflux measurements induced by peptides were
performed on a Fluorolog 3–22 spectrometer (Horiba Jobin-
Yvon, Longjumeau, France). In a typical experiment, LUV
solution (6 �l) was added to 1.5 ml of 100 mM NaCl and 10
mM phosphate (pH 5.5) in a quartz cuvette and equilibrated
for some minutes at room temperature inside the spectrom-
eter. To start calcein release, an aliquot of peptide solution
was added to the cuvette while the sample was excited at �ex �
480 nm, and the intensity of fluorescence (I) was recorded at
�em� 515 nm for 10 min. A limited bandwidth (��1.2 nm)
was used for both excitation and emission. The percentage of
calcein released from the vesicles (I%) was calculated accord-
ing to the formula I% � 100 � (I � I0)/(Imax � I0), where I0
represents the intensity of fluorescence before adding the
peptide to the solution and Imax is the maximum intensity
observed after fully disrupting the vesicles with 10 �l of 10%
Triton X-100.

CD spectroscopy

To record CD spectra, the peptides were dissolved at 0.25
mg/ml in 10 mM phosphate buffer (pH 5.5). For detergent-
containing samples, the appropriate volume of an 800 mM
DPC stock solution was added to obtain the final DPC
concentration of 10, 100, 200, or 400 mM, respectively. The
CD spectra were recorded on a Jasco J 810 spectrometer
(Jasco, Inc., Easton, MD, USA) at 298 K. The path length of
the sample cell quartz cuvette was 1 mm (Hellma, Müllheim,
Germany), and 8 acquisitions were accumulated for each
spectrum. The step resolution was 1 nm at a scanning speed
of 200 nm/s with 1 s response time.

After subtraction of the buffer/detergent control, the CD
spectral intensities in the range 190–250 nm were converted
to mean residue ellipticity. The secondary structure elements
were estimated using the DICHROPROT software package
(28) implemented on a personal computer.

Mutidimensional solution NMR spectroscopy

For solution NMR spectroscopy, 2.9 mg of the lyophilized
powder of G364S was dissolved in MilliQ water at a final
concentration of 2 mM in 400 mM DPC-d38 (Cambridge
Isotope Laboratory, Andover, MA, USA), 0.01% NaN3 (w/v),
5% D2O (v/v), and 10 mM phosphate buffer (pH 5.5). One-
and 2-dimensional NMR experiments were performed at 298
K on a DRX500 spectrometer (Bruker Biospin; Bruker,
Karlsruhe, Germany) equipped for pulsed field gradient
spectroscopy. For 1H assignments, 2-dimensional homo-
nuclear total correlation spectroscopy (TOCSY), nuclear
Overhauser enhancement spectroscopy (NOESY), and dou-
ble-quantum filtered correlation spectroscopy (DQF-COSY)
spectra were recorded (see ref. 29 for references). The
TOCSY experiments were performed with a mixing time of 60
ms using the decoupling in the presence of scalar interactions
(DIPSI)-2 sequence and phase sensitive echo-antiecho gradi-
ent selection. The mixing times of the NOESY experiments
were 100 and 200 ms. NOESY and DQF-COSY spectra were
recorded by using the States-time-proportional phase incre-
mentation (TPPI) phase-sensitive method. The water signal
was suppressed by using the WATERGATE sequence in
combination with presaturation during the relaxation delay
for all recorded spectra. For these experiments, 8–24 tran-

sients for 512 t1 increments with 2048 (TOCSY and NOESY)
or 4096 (DQF-COSY) complex data points were collected.
The spectral width was set to 4310 Hz for DQF-COSY and
DIPSI and 5000 Hz for NOESY spectra in both dimensions,
and the relaxation delay between successive transients was 2 s.
All solution NMR spectra were processed with NMRPIPE
(30). Since the peptide G364S was selectively labeled with
15N, each NMR spectrum was recorded twice, once with and
once without 15N decoupling during acquisition.

NOE data analysis and structure calculations

The NMR spectra were analyzed using NMRVIEW 5.0.3 (31).
NOE intensities obtained at 200 ms mixing time were con-
verted into semiquantitative distance restrains using the cali-
bration previously reported by Hyberts et al. (32). The upper
limits of the distances restrains thus obtained were 2.8, 3.4,
and 5.0 Å (strong, medium, and weak NOE, respectively).
Structure calculations were performed using the Xplor-NIH
2.14.0 software (33). Starting with an extended conformation,
100 structures were generated using a simulated annealing
protocol. This was followed by 15000 steps of simulated
annealing at 1000 K and a subsequent decrease in tempera-
ture in 14000 steps in the first slow-cool annealing stage. The
display, analysis, and manipulation of the 3-dimensional
structures were performed with the program MOLMOL (34).
The atomic coordinates of the most stable structures have
been deposited in the Biological Magnetic Resonance Data
Bank (BMRB; accession no. 20080; http://www.bmrb.wisc.
edu).

Solid-state NMR measurements

Oriented membrane samples were prepared as described
previously (29). In short, the peptide and the lipids were
codissolved, and the mixtures were applied onto 30 ultrathin
coverglasses (9�22 mm; Paul Marienfeld GmbH & Co., KG,
Lauda-Königshofen, Germany) that were first dried in air and
thereafter in high vacuum overnight. After the samples had
been equilibrated at 93% relative humidity, the glass plates
were stacked on top of each other. The stacks were stabilized
and sealed with Teflon tape and plastic wrappings.

Proton-decoupled 15N solid-state NMR spectra were ac-
quired on a Bruker AMX400 wide-bore NMR spectrometer
using a commercial double-resonance solid-state NMR probe
modified with flattened coils (35) of inner dimensions 15 �
9 � 4 mm3. Measurements were carried out at sample
orientations with the glass plate normal parallel or to the
magnetic field direction. A cross-polarization sequence with
an adiabatic shape for the 15N irradiation was applied with the
following typical acquisition parameters: 90° pulse width of 8
�s, spin lock time of 700 �s, recycle delay of 3 s, 512 data
points, 33,000 acquisitions, and spectral width of 33 kHz (36).
NH4Cl was used as an external reference (41.5 ppm). Before
Fourier transformation, an exponential apodization function
corresponding to a line broadening of 300 Hz was applied.

Proton-decoupled 31P solid-state NMR spectra of the ori-
ented phospholipid samples were recorded at 162.0 MHz on
a Bruker AMX400 wide-bore NMR spectrometer using a
commercial double-resonance solid-state NMR static probe. A
Hahn echo pulse sequence was used for spectral acquisitions
(37). The following spectral parameters were used: spectral
width of 75 kHz, acquisition time of 13.6 ms, 2048 time
domain data points, 90° pulse width of 2.5 �s, echo delay of
40 �s, recycle delay of 5 s, and 128 scans. H3PO4 at 85% was
used as external reference (0.0 ppm). Before Fourier trans-
formation, an exponential apodization function correspond-
ing to a line broadening of 100 Hz was applied.
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RESULTS

In a first step, the membrane interactions and perme-
abilizing activities of bCAT (18 �M) and hCAT (20
�M), including the wild-type peptide and the 2 mutants
(18 �M G364S and 16 �M P370L), were tested (Fig. 1).
When these peptides were added to calcein-loaded
POPC/POPS 3:1 vesicles, the dye was released within
minutes and diluted in the environment concomitant
with an increase in fluorescence intensity. In contrast,
the fluorescence signal remained constant when the
scrambled peptide sequence was added to lipid mem-
branes (data not shown). It is also apparent that the
effect is more pronounced for the 2 mutants of hCAT
when compared with the wild-type peptide, suggesting
a crucial role of S364 and L370, as well as for bCAT
which is different at position R344 (Table 1).

In a next step, CD measurements of hCAT and its
derived peptides were performed in the presence of
detergents. CD spectroscopy provides global informa-
tion on the content of 	-helical, 
-sheet, and random
coil structures and is therefore well suited to screen the
chemical environments that promote the formation of
secondary structures and that are best suited for an
NMR spectroscopic analysis. Whereas in the absence of
membranes the 4 peptides show only weak dichroic
signals in the range 190–250 nm (Fig. 2), negative
intensities at 209 and 222 nm indicate the formation of
some helical structure in the presence of detergent
micelles (Fig. 2). The 	-helix content increases when
�50 mM of the zwitterionic detergent DPC is added. At
this detergent concentration, the maximum helix con-
tent of hCAT, bCAT, and G364S is �20 � 5%, whereas
the P370L mutant seems to attain somewhat larger
values.

The structural transition between the random coil
conformation of the peptide free in solution and the
	-helical structure when associated with membranes
allows one to estimate the membrane partitioning

constant Kp according to Kp � Pb/Pf � L, where Pf, Pb,
and L are the concentrations of free peptide, bound
peptide, and lipid (or detergent), respectively. With a
transition midpoint (Pb�Pf) �50 mM DPC, Kp is �20
M�1. Furthermore, when peptides were added to vesi-
cles containing PG and/or sterols and the resulting
complexes were precipitated by centrifugation, the
partitioning of peptide between the pellet and the
supernatant was indicative of Kp � 3500 M�1 (data not
shown). These values suggest that only a small fraction
of peptides associates with zwitterionic lipid bilayers,
which is in agreement with channel measurements, but
that the Pb/Pf ratio is increased when high lipid/
detergent concentrations, such as in the NMR struc-
tural studies (see below), or negatively charged mem-
branes are used (Fig. 1). In the latter case, the
concentration of cationic peptides close to the mem-
brane is increased due to electrostatic attraction and
increases of the apparent partitioning constant of up to
2–3 orders of magnitude have been observed for cat-
ionic sequences (38). By taking such effects into ac-
count the ratio of membrane peptide-to-lipid ratio was
estimated to be �1:100 in case of POPC/POPS mem-
branes used in the calcein release experiments (Fig. 1).

The CD spectroscopic investigations of the peptides
indicate that relatively high concentrations of deter-
gent are needed for the full association of the peptide
with zwitterionic membranes. Because the G364S vari-
ant causes profound changes in human autonomic
activity, reduces the risk of developing hypertension,
represents the major variant with a frequency of 3–4%,
and occurs at a highly conserved site among mamma-
lian CAT sequences (Table 1) and has the highest
propensity to adopt secondary structures (Fig. 2), we
decided to analyze in detail the membrane-associated
conformation and topology of this variant.

As a consequence, the peptide G364S was further
investigated by multidimensional 1H solution NMR
spectroscopy at a peptide/detergent ratio of 1:200 in
the presence of 400 mM DPC, i.e., a detergent concen-
tration where all 4 peptides exhibit stable secondary
structures (Fig. 2). This technique allows for the de-
tailed structural investigation of peptides and proteins

Figure 1. Calcein release from anionic vesicles (POPC/
POPS�3/1) induced by human CAT, by its 2 variants P370L
and G364S, and by bCAT. Measurements were made in a 100
mM NaCl, 10 mM phosphate buffer (pH 5.5), and lipid
concentration corresponds to 25 �M.

Figure 2. CD spectra of CATs in the presence of 100 mM DPC
(10 mM phosphate buffer, pH 5.5).
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in aqueous and micellar environments. Selected spec-
tral regions of TOCSY and NOESY spectra are shown in
Fig. 3, and the resulting 1H-1H correlations were used
for the assignment of all signal intensities. The uniform
spectral properties and the number of spin systems
corresponding to the number of amino acid residues
indicate a homogenous structure at the NMR time scale
at the conditions used for this experiment (Fig. 3).

In the presence of DPC micelles, interresidue
HN-HN NOEs are observed throughout the sequence
(Fig. 4), indicating close distances between the amide
protons (�5 Å). Furthermore, several medium range NOEs
are indicative for an 	-helical structure encompassing resi-
dues 6 to 12 (corresponding to residues S357 to Y363 of
hCAT). When the NOE information was used in simu-
lated annealing and distance geometry calculations, a
family of structures with 	-helical conformations in the
central region of the peptide wass obtained (Fig. 5).
The root mean square deviation values calculated with
MOLMOL (34) of the helical segment are 0.28 for the
backbone atoms and 0.86 for backbone and heavy
atoms.

Whereas 2-dimensional solution NMR spectroscopy
of G364S associated with DPC micelles provides a good
indication of the conformational details of this peptide

in membrane interfaces, the interactions of CATs with
bilayers and their membrane topology were further
investigated using solid-state NMR spectroscopy. This
technique has the proven potential for the structural
analysis of polypeptides associated with phospholipid
bilayers (39–42) as well as the study of their membrane
interactions in a lipid-dependent manner (43–48).
Notably, the solid-state NMR method is unique in that
it is capable of obtaining details on the polypeptide
alignment relative to the membrane at near physiolog-
ical conditions (49, 50). This approach consists in
preparing peptides that have been labeled with 15N at
one or several amide positions and reconstituted into
oriented membranes (42). Therefore, to analyze the
membrane topology of hCAT, G364S, and P370L, the
alanine-9 positions (corresponding to A360) were la-
beled with 15N, i.e., well within the helical region when
the G364S peptide is associated with DPC micelles
(Figs. 4 and 5), and the peptides were reconstituted
into oriented phospholipids bilayers at peptide-to-lipid
ratios of 1:100. The 15N chemical shift measured from
such samples provides a direct and convenient measure
of the approximate tilt angle of the 15N-H vector and
thereby also of 	-helical domains relative to the mem-
brane normal (51). Whereas chemical shift values in

Figure 3. Fingerprint region (HN-H	 correlations) of TOCSY spectrum (A) and amide proton cross-peak region of NOESY
spectrum (B) of G364S in 400 mM DPC micelles (10 mM phosphate buffer, pH 5.5, at 298 K).

Figure 4. Graphical representation of the NOE
cross peaks of G364S in 400 mM DPC micelles
(10 mM phosphate buffer, pH 5.5, at 298 K).
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the 200-ppm range are indicative of transmembrane
topologies, resonances �100 ppm correlate with align-
ments parallel to the membrane surface (51). The 15N
solid-state NMR spectra of all 3 hCAT peptides show
15N chemical shift intensities in the 125-ppm region, a
value indicative of a strongly tilted helix relative to the
membrane normal or a site that shows high flexibility,
including conformational exchange or fast reorienta-
tion of the whole molecule (Fig. 6B, C). In addition, the
signal intensity of the G364S mutant extends well into

the region �100 ppm (maximum at 93 ppm). Such
chemical shift values are indicative of a predominant
alignment of the 15N-H vector close to parallel to the
membrane surface (Fig. 6A). Therefore, the 15N spec-
tra of the G364S peptide are indicative of topological/
conformational exchange.

The 31P solid-state NMR spectrum of the same sam-
ples shows a predominant signal at 30 ppm with con-
siderable signal intensities ranging to �15 ppm, i.e.,
within a chemical shift distribution typical for liquid
crystalline phosphatidylcholine bilayers (Fig. 7). Simi-
lar to the 15N solid-state NMR approach mentioned
above (Fig. 6), the 31P chemical shift of the phospho-
lipids depends on the alignment of the lipid molecules
relative to the magnetic field direction of the spectrom-
eter, and therefore the spectra shown in Fig. 7 allow
one to evaluate the orientational and/or conforma-
tional order at the level of the phospholipid head
groups (42). The line shape indicates that although the
fluid disordered phase lipids are predominantly ori-
ented with their long axes parallel to the magnetic field
direction/glass plate normal, the peptides cause con-
siderable structural/topological heterogeneity at the
level of the phospholipid head groups.

DISCUSSION

The mammalian peptide CAT is of considerable inter-
est as a neuropeptide with an important role in the
control of blood pressure, direct cardiovascular actions
(52), and innate immunity (12, 22). Widespread anti-
bacterial and antifungal properties have also been
characterized for cateslytin (bCGA344–358), a shorter
homologue of human CAT (Table 1) encompassing
the active domain of bCAT (12), and recent biophysical
experiments indicate that it strongly interacts with
membranes, where it causes pore formation (48, 53).
Whereas the biological activities of the CAT peptides
have been well characterized, little is known about their

Figure 5. Top panel: backbone alignment of the global fold of the 10 lowest energy structures of G364S in the presence of 400
mM DPC (10 mM phosphate buffer, pH 5.5, at 298 K). Bottom panel: side-chain residues of the helical segment (aa 7–11) are
shown in blue. NMR structures are oriented to show the N terminus facing to the left (left panel) and to the front (right panel).

Figure 6. Proton-decoupled 15N solid-state NMR spectra of
G364S (A), P370L (B), and wild-type (C) reconstituted into
oriented POPC bilayers at ambient temperatures. A, B) Peptide-
to-lipid ratios are 1:100; �60,000 scans. C) Peptide-to-lipid ratio
is 1:68; 30,000 acquisitions were recorded.
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peptide-membrane interactions and how they enter the
cell interior.

When the amino acid composition of CAT (SSMKLS
FRARAYGFRGPGPQL) is analyzed its membrane inter-
action is not obvious, e.g., by the presence of an
extended hydrophobic region or by an amphipatic
structure. However sequence alignment of hCAT with
Penetratin, an R-rich cell-penetrating peptide (CPP),
indicates �60% homology, in particular when the
N-terminal part is considered (Table 1), suggesting that
CAT penetrates into cells by using a similar mechanism
(9). Furthermore, it has recently been pointed out that
cationic antimicrobial peptides and CPPs form a con-
tinuous spectrum of activities (54). This analysis sug-
gests that CAT is related to other antimicrobial pep-
tides that also exhibit CPP characteristics (55–58).

Additional parallels with some CPPs were revealed
when we investigated the structure of CAT-derived
peptides as well as their topology in membrane envi-
ronments by CD, multidimensional solution, and solid-
state NMR spectroscopies. The CD and NMR data
indicate that CAT is largely unstructured in aqueous
solution but forms a short helical conformation in the
presence of high concentrations of DPC. The helix
extends from residues 7 to 11, with additional medium-
range contacts involving S6 and Y12 (corresponding to
residues 357–363 of hCGA). The short helix observed
in multidimensional NMR spectroscopy thus agrees
well with the CD spectroscopy analysis, where a helix

content of �18% was measured. Although the variants
investigated here exhibit some differences in their
propensity to form helical structures, they all reach
related degrees of helicity at high detergent concentra-
tions (Fig. 2). The data thereby agree with previously
published work on bovine cateslytin (CGA344-358),
which predominantly adopts random coil conforma-
tions in aqueous solutions. However, the helix-forming
propensity of the latter is less pronounced (59). The
reasons for this are probably the differences in se-
quence (Table 1) and the cleavage of the peptide at
R15, i.e., not even a full turn away from the helical
domain (S6 to Y12). Furthermore, it is noteworthy that
the nicotinic cholinergic antagonist activity of bovine
CGA is associated with residues 344–358 (27), thereby
encompassing the region homologous to the one
found helical in this work on the human sequence
(Figs. 4 and 5 and Table 1).

Short helical structures flanked by predominantly
random coil conformations have also been observed in
the presence of SDS micelles for other R-rich se-
quences, such as penetratin (PAntp) (60), which is
oriented parallel to the micellar surface (61). In addi-
tion, this peptide exhibits 
 structures at high peptide-
to-lipid ratios or in the presence of acidic phospholip-
ids (62). In a related manner, bovine cateslytin adopts

-sheet conformations when in contact with negatively
charged interfaces (48, 53). In this context, the peptide
has been shown to cause the separation of rigid and
fluid membrane domains, and the resulting phase
boundaries have been suggested to facilitate membrane
crossing (47, 48). The CPPs dynorphin A and B have
also been shown to interact with membranes; the N
terminus of the former exhibits a tendency to adopt
helical conformations (encompassing �5 residues),
which insert into the hydrophobic part of the mem-
brane at an angle of 21° (62, 63).

In contrast, a number of other CCPs have been
shown to form amphipathic helices, including calcito-
nin-derived peptides (63), transportan (64), or Pep-1, a
lysine-rich sequence (65), and thereby resemble the
membrane-associated structure of linear cationic anti-
microbial peptides (50, 66–68). Overall, it seems that a
particular structure or distribution of the positive
charges is not a prerequisite for cell-penetrating activi-
ties (69, 70).

The 31P and 15N solid-state NMR data shown in Figs.
6 and 7 indicate that the region encompassing the short
helix in the solution NMR structure interacts with
phospholipid membranes and causes considerable dis-
ordering at the level of the phospholipid head groups.
In the case of P370L and the wild-type sequence, the
15N chemical shift is indicative of a tilted alignment
relative to the membrane surface or close-to-isotropic
mobility of position A360, but orientational or/and
conformational heterogeneity is observed for G364S,
with added signal intensities that agree with helical
domains oriented approximately parallel to the mem-
brane surface (51). In contrast, cationic amphipathic
antimicrobial peptides have been found to be oriented
parallel to the membrane surface in a stable fashion (a
recent example is presented in ref. 29). Despite the
structural differences, both cationic antimicrobial pep-

Figure 7. Proton-decoupled 31P solid-state NMR spectra of
oriented POPC membranes encompassing G364S (A), P370L
(B), and the wild-type sequence hCAT (C) reconstituted at
peptide-to-lipid ratios of 1:100. Temperature was 298 K. For
comparison, close to perfect alignment of the phospholipid
head groups is observed in the presence of more hydrophobic
peptide sequences, as evident in the 31P NMR spectra shown
in Fig. 3 in Salnikov et al. (82).
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tides (49, 50, 71, 72) and several CPPs were found to
induce membrane curvature strain (69, 73, 74). The
topological and/or conformational heterogeneity at
the level of the phopspholipid head groups, as evi-
denced by the 31P NMR spectra shown in Fig. 6,
probably reflects a similar activity also for the CAT-
derived peptides investigated here. Simulations indi-
cate that spectral line shapes similar to those shown in
Fig. 6 arise from torroidal pore geometries (75), just to
mention one possibility. As peptides at tilted angles
intermediate to transmembrane and in plane have
been suggested to have the highest effect on bilayer
packing (76), one might speculate that the strongly
tilted arrangement compensates for the shortness of
the helical region of CAT-derived peptides.

Two of the five residues of the helical region of CAT
are arginine, an amino acid that has been proposed to
form hydrogen bonding interactions with phospholip-
ids, thereby providing a hint on how this charged
residue can pass across and help other sequences to
transfer through the hydrophobic membrane barrier.
Indeed the translocation properties of Arg containing
CPPs have been shown to be directly associated with the
presence of this amino acid (77). Furthermore, biden-
date hydrogen bonding between the guadinium groups
of protegrin, an R-rich antimicrobial peptide, and the
phosphate groups of the bilayer has been demonstrated to
be crucial for insertion and pore formation within bacterial
membranes (78). The high density of arginines has been
suggested to also form the basis for membrane interactions
of other CPPs, such as Rn and Tat (54, 70).

Notably, the increase in membrane permeability for cal-
cein is modest and occurs only at relatively high peptide
concentrations (Fig. 1). Furthermore, when the 4 peptides
of this study are compared with each other, the membrane
permeability increases (bCAT�G364S�P370L�hCAT; Fig.
1) do not directly correlate with the helix-forming
propensity in the presence of DPC (Fig. 2). Indeed,
modeling and molecular dynamics simulations indicate
that membrane permeability increases do not necessar-
ily involve a well-defined secondary structure nor the
arrangement of the molecules in defined supramolecu-
lar aggregates (53, 79). However, it should be noted
that pore formation and cell-penetrating activities
probably require different conformational features, al-
though both types of activities may very well be associated
with a given peptide sequence (54). The ensemble of data
therefore suggests that the peptides are capable of cross-
ing the membrane without killing the target cells and that
this activity requires different structural features. In this
context, the variability in the peptide structure (Fig. 2)
and topology (Fig. 6A) as well as its high degree of
flexibility (Fig. 5) may be prerequisites to develop such a
dual functionality. Once CATs reach the cell interior they
interact with calmodulin (9), and they may well target other
internal structures and molecules in order to develop anti-
microbial activities, as has been observed with other antimi-
crobial peptides (80, 81), to stimulate immune cells, and to
carry bioactive cargos inside cells.
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