
HAL Id: hal-03335915
https://hal.inrae.fr/hal-03335915

Submitted on 15 Sep 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Microbial Interactions as Drivers of a Nitrification
Process in a Chemostat

Pablo Ugalde-Salas, Héctor Ramírez C., Jérôme Harmand, Elie Desmond-Le
Quéméner

To cite this version:
Pablo Ugalde-Salas, Héctor Ramírez C., Jérôme Harmand, Elie Desmond-Le Quéméner. Microbial
Interactions as Drivers of a Nitrification Process in a Chemostat. Bioengineering, 2021, 8 (3), pp.31.
�10.3390/bioengineering8030031�. �hal-03335915�

https://hal.inrae.fr/hal-03335915
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


bioengineering

Article

Microbial Interactions as Drivers of a Nitrification Process in
a Chemostat

Pablo Ugalde-Salas 1,∗, Héctor Ramírez C. 2, Jérôme Harmand 1 and Elie Desmond-Le Quéméner 1

����������
�������

Citation: Ugalde-Salas, P.;

Ramírez C., H.; Harmand, J.;

Desmond-Le Quéméner, E. Microbial

Interactions as Drivers of a

Nitrification Process in a Chemostat.

Bioengineering 2021, 8, 31.

https://doi.org/10.3390/

bioengineering8030031

Academic Editor: Dongda Zhang,

Matthew Wade and Sovanna Tik

Received: 20 November 2020

Accepted: 9 February 2021

Published: 25 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LBE, INRAE, Université de Montpellier, 11100 Narbonne, France; jerome.harmand@inrae.fr (J.H.);
elie.le-quemener@inrae.fr (E.D.-L.Q.)

2 Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático (CNRS UMI 2807),
Universidad de Chile, Santiago, Chile; hramirez@dim.uchile.cl

* Correspondence: pablo.ugalde.s@gmail.com

Abstract: This article deals with the inclusion of microbial ecology measurements such as abundances
of operational taxonomic units in bioprocess modelling. The first part presents the mathematical
analysis of a model that may be framed within the class of Lotka–Volterra models fitted to experi-
mental data in a chemostat setting where a nitrification process was operated for over 500 days. The
limitations and the insights of such an approach are discussed. In the second part, the use of an
optimal tracking technique (developed within the framework of control theory) for the integration of
data from genetic sequencing in chemostat models is presented. The optimal tracking revisits the
data used in the aforementioned chemostat setting. The resulting model is an explanatory model,
not a predictive one, it is able to reconstruct the different forms of nitrogen in the reactor by using
the abundances of the operational taxonomic units, providing some insights into the growth rate of
microbes in a complex community.

Keywords: microbal interactions; microbial growth rate; bifurcation analysis; generalized Lotka–
Volterra; chemostat theory; optimal control

1. Introduction

Microbial communities and their interactions play a central role in the understanding
of microbial ecosystems [1], and a current challenge is integrating genetic sequencing data
in a deterministic modelling framework [2,3]. Using the terminology from the thorough
review in current methodologies on the deterministic modelling approaches of microbial
community dynamics presented by Song et al. [4], this articles deals with population-based
approaches where species are taken as the interacting units.

The classical ecological concept of species and niche in the microbial world is an elusive
one: in the macro world one can clearly differentiate one species from another for reproduc-
tive reasons and their ability to give birth to offspring. In the case of bacteria and archea,
reproduction goes simply by binary fission and exchange of some functional genes (e.g.,
the ability to synthesize or metabolize substances) can be acquired in evolutionary scale
through lateral gene transfer [5]. Therefore as an ecological problem is hard to define pre-
cisely the ‘niche’ of ‘microbial species’. These obstacles can be circumvented by considering
the microbiologist concept of operational taxonomic unit (OTU) based on the clustering
of organisms sharing similar sequences of the 16S rDNA marker gene. In the past years
considerable efforts have been made to measure the bacterial community composition. Tests
such as fluorescence in situ hybridization (FISH), polymerase chain reaction (PCR) depen-
dent techniques, and PCR independent techniques for the analysis of DNA have become a
standard tool for studying microbial diversity [6]. The contribution of this article is a new
method to integrate the microbial community measurements in chemostat models, based
on any sequencing or fingerprinting technique that can quantify the species abundances
over time. In other words, while most models used in bioengineering are functional—in

Bioengineering 2021, 8, 31. https://doi.org/10.3390/bioengineering8030031 https://www.mdpi.com/journal/bioengineering

https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-8653-3582
https://orcid.org/0000-0003-1675-2744
https://doi.org/10.3390/bioengineering8030031
https://doi.org/10.3390/bioengineering8030031
https://doi.org/10.3390/bioengineering8030031
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/bioengineering8030031
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering8030031?type=check_update&version=4


Bioengineering 2021, 8, 31 2 of 32

the sense they consider only one species per biological reaction considered—this work is
an attempt to merge classical population-based models used in ecology and those used by
engineers in biotechnology.

Interactions lie at the heart of ecology. Lotka [7] and Volterra [8], independently, presented
a 2 dimensional dynamical system to model prey-predator relationships, now known as the
Lotka–Volterra (LV) equations. The model is very rich from a mathematical standpoint, and is
also a classic equation to study in Mathematical Ecology [9]. Extensions of the Lotka–Volterra
model have derived what is now known as generalized Lotka–Volterra (gLV) models [10]
shown in Equation (1):

ẋi = µi

(
1 +

n

∑
j=1

aijxj

)
xi i ∈ {1, . . . , n} (1)

where xi represents the species abundance, µi the intrinsic growth rate of the species,
and the terms aij reflect the effect of OTU j on the growth of OTU i. The equation states that
the growth rate of xi is proportional to xi, but this proportionality constant depends on its
intrinsic growth rate multiplied by the sum of all interactions affecting it. Note that if there
are no type of interactions (aij = 0), one recovers n uncoupled linear differential equations,
and thus the solution becomes xi(t) = xi(0) exp(µit), that is exponential growth on time.

The diagonal terms aii are known as intraspecies interaction, while the off diagonal
terms are known as the pairwise interspecies interactions. Noting the signs of pairs (aij, aji),
the classical ecological relationships of mutualism or cooperation (+,+), commensalism
(+, 0), predation or parasitism (+,−), competition (−,−), and ammensalism (−, 0) can
be recovered [11]. Model (1) has been thoroughly analysed, even when the coefficients µi
and aij are time dependent and exhibit periodicity (which models seasonal traits) [12,13].
The gLV model has been used in microbial ecology to some degree of success to study the
gut microbiome of mice infected with C. difficile [14]. However, the quadratically growing
number of parameters to describe interactions naturally entails problems of identifiability if
the data set is not large enough, or the system has not been sufficiently perturbed. On a more
conceptual ground, the interaction coefficients of a gLV model do not represent mechanisti-
cally anything, so even if a model correctly predicts the microbial community dynamics, it
might not add to the understanding of what could be physically or biologically taking place.
These observations led us to develop what can be considered the core contribution of this
article, which is to study the growth rate of each species in a mixed culture: we reconstruct
the shape of their growth rate, instead of trying to fit a particular function (such as the gLV
equations). As Monod himself commented when developing the growth law that bears
their name is that any function with the same shape (monotone, concave, and bounded on
the substrate) would have served [15], in this spirit we formulate the question: what is the
shape of the growth functions of multiple species developing together?

As a departing point, the work of Dumont et al. [16] is presented in Section 2. They
modelled a chemostat experiment where nitrification takes place by considering a glV
model coupled with a substrate limited growth expression (µi is no longer a constant,
but the classic Monod expression) and fitted their model using absolute abundances of the
major OTU identified by molecular fingerprints obtained by single-strand conformation
polymorphism (SSCP). Section 3 inspects the model through a mathematical analysis. Some
interesting outputs of this analysis are that the number of possible equilibrium points grows
exponentially with the number of species, coexistence can be achieved within the same
functional group, and bi-stability may arise. In Section 4, the concept of interaction function
is developed such that it generalizes the gLV model. For approximating the interaction
function a method of optimal control theory was adapted: The growth rate of each species
is modulated by a constrained regular control of the system, thus the growth rate of each
OTU is corrected in order to fit the experimental data. The regular control is composed of
a feedback part on the species state variable, and a feed forward part, or tracking, on the
measurement of abundances of each species; the method involves solving state-dependent
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Ricatti equations [17]. In Section 5, the methodology from Section 4 is applied to the data
from the experiments performed by Dumont et al. [18] and not just to the most abundant
species as it was the case of the model analysed in Section 3 [16]. This approach explicitly
assumes that dynamics of complex ecosystems are driven by interactions, that are the
results of feedback loops of each species on the growth rate of others. The method shows
that by following the community dynamics one can propose a growth rate that reconstructs
the substrates dynamics, however this cannot be considered a predictive model, but rather
a explicatory model. The article ends with a discussion on the scope of applicability and
perspectives of the method.

2. Model Definition

Notations used throughout the article:

1. n: the number of OTU considered.
2. ni, i ∈ {1, 2}: the number of OTU in functional group Gi. In the example G1 corre-

sponds to ammonia oxidizing bacteria (AOB) and G2 corresponds to nitrite oxidizing
bacteria (NOB).

3. Let m be an interger then [m] := {1, . . . , n}.
4. xi: is the concentration of OTU i measured in [g/l]. i ∈ [n].
5. x: vector (x1, . . . , xn)>.
6. s1: concentration of substrate 1 in [g/l]. In the example s1 represents ammonium.
7. s2: concentration of substrate 2 in [g/l]. In the example s2 represents nitrite.
8. s3: concentration of substrate 3 in [g/l]. In the example s3 represents nitrate.
9. sin: entry concentration of substrate 1 in [g/l]. May depend on time sin = sin(t).
10. s: vector (s1, s2, s3)

>. Referred to as metabolites.
11. Ii(t, x): Interaction function of OTU i ∈ {1, . . . , n}.
12. µi(s, x): growth function of OTU i ∈ {1, . . . , n}.
13. µ = (µ1(s, x), . . . , µn(s, x)) vector containing the growth function of every OTU.
14. D: dilution rate of the continuous reactor in [1/day]. May depend on time D = D(t).
15. yi: yield of grams of OTU i formed per gram of substrate consumed.
16. ysi/xj

: yield of grams of substrate si consumed/produced per gram of OTU j formed.
If negative it represents consumption, if positive it represents production.

17. Y: matrix containing all yields such that Yij = ysi/xj
.

18. For integers m1 and m2 and a ∈ R, am1×m2 represents a matrix of m1 rows and m2
columns with a in every entry.

19. Let m be an integer then Im is the identity matrix of size m.
20. Let M be a matrix, then Mi• represents the i-th row of matrix M.
21. Let S be a finite set with m ∈ N elements. Then |S| := m.
22. Given a vector v = (v1, . . . , vn) ∈ Rn, the function diag(v) stands for:

diag : Rn → Mn×n(R)

v→


v1 0 . . . 0

0 v2
. . .

...
...

. . . . . . 0
0 . . . 0 vn


(2)

2.1. Stoichiometric Equations

A cascade (bio)reaction process is considered. Suppose n different OTU are present
in the chemostat. A two step cascade reaction refers to the situation where a group of
microorganisms (G1 ⊂ [n]) consumes a substrate s1 and produces s2 and biomass, while
another group of microorganisms (G2 ⊂ [n]) consumes s2 and produces s3 and biomass.
G1 and G2 are called functional groups. The number of organisms in each functional will
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be denoted n1 and n2, respectively, that is |G1| = n1 and |G2| = n2. This work treats the
case when G1 and G2 are disjoint sets:

Hypothesis 1 (H1). Sets G1 and G2 satisfy: G1 ∩ G2 = ∅ and G1 ∪ G2 = [n].

The situation is described as simplified Reactions (R1) and (R2). The reactions are
simplified in the sense that they do not attempt to represent a balanced chemical reaction,
rather they represent the direction of the bioprocess and the proportions of different
consumed and formed compounds of interest. The terms yi are known as yields, they
represent the quantity of g of biomass produced per g of substrate consumed by OTU i.
For example, in the case of reaction (R1), one gram of s1 is consumed, one gram of s2 and
yxi/s1 grams of dry biomass of OTU i are produced.

s1
µi(s,x)−→ s2 + yixi ∀i ∈ G1 (R1)

s2
µi(s,x)−→ s3 + yixi ∀i ∈ G2 (R2)

However for expressing the system of differential equations further below, the terms
ysi/xj

are used. They express the grams of substrate si consumed (negative sign) or pro-
duced (positive sign) per gram of OTU j formed. They are related to yi as seen in Table 1.
This defines the stoichiometry matrix Y ∈ R3×n, such that Yij = ysi/xj

.

Table 1. Relationship of ysi/xj
with yj.

Yields per Biomass Formed j ∈ G1 j ∈ G2

ys1/xj − 1
yj

0

ys2/xj
1
yj

− 1
yj

ys3/xj 0
1
yj

Furthermore, for each i ∈ [n], OTU i is characterized by its process rate (also known as
growth function) µi(s, x). Notice that for being as generic as possible, the growth rate may
be a function of the whole state in order to model the influence of all OTU on the growth
rates of others.

An example of this process is the nitrification process where group G1 is known as
Ammonia oxidizing Bacteria (AOB), and group G2 is known as Nitrite oxidizing Bacteria
(NOB) [19].

2.2. Mass Balance Equations

Consider the scenario of a continuous and homogeneous reactor: the input flow is the
same as the output flow, with a dilution rate D. The input flow contains a concentration
sin of substrate s1. Each OTU grows at a rate µi(s, x). System (3) represents this situation.
A specific case of µi(s, x) is given in the next subsection.

ẋi = (µi(s, x)− D)xi ∀i ∈ [n]

ṡ1 = (sin − s1)D− ∑
i∈G1

1
yi

µi(s, x)xi

ṡ2 = −s2D + ∑
i∈G1

1
yi

µi(s, x)xi − ∑
i∈G2

1
yi

µi(s, x)xi

ṡ3 = −s3D + ∑
i∈G2

1
yi

µi(s, x)xi

(3)
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System (3) can also be written in a more compact form using the stoichiometric matrix
Y and the diag operator.

ẋ =diag(µ(x, s)− Dn×1)x (4)

ṡ =
([

sin 0 0
]> − s

)
D + Y diag(µ(x, s))x (5)

2.3. Kinetic Equations

In the work of Dumont et al. [16], the growth rates seen in Equation (6) were calibrated
against experimental data for the two most abundant OTU of each functional group.

µi(s, x) = µ̄i
s1

Ki + s1

(
1 + ∑

j∈[n]
aijxj

)
∀i ∈ G1

µi(s, x) = µ̄i
s2

Ki + s2

(
1 + ∑

j∈[n]
aijxj

)
∀i ∈ G2

(6)

The term

(
1 + ∑

j∈[n]
aijxj

)
accounts for pairwise interactions affecting the growth rate

of each OTU, while the term µ̄i
sj

Ki + sj
is a Monod growth expression, where µ̄i represents

the maximum growth rate, and Ki the half saturation constant [15]. Note that if every
aij = 0, then one recovers a classic substrate limited growth. Let A denote the matrix with
entries aij hereafter referred to as the interaction matrix. Dumont et al. did not analyse
their model but simply provided several simulations using parameter values identified
from experimental data. The following section of this article deals with the mathematical
analysis of model (3) with growth rates given by (6).

3. Mathematical Analysis

The system of Equation (3) is defined in the region

Ω := {(x1, . . . , xn, s1, s2, s3) ∈ Rn+3|x1, . . . , xn, s1, s2, s3 ≥ 0}

First, sufficient conditions on the interaction matrix for the system to be well posed
are established: meaning that solutions remain bounded and non-negative in time, this
ultimately implies that the solution exists for every t ≥ 0 [20].

Second, the equilibria of the system are derived. Possible equilibrium points for
this system grow exponentially with the number of OTU considered (n). Stability is not
analytically addressed, a numerical scheme calculating every equilibrium point and the
system’s Jacobian eigenvalues at the equilibrium point was implemented for studying
the system.

3.1. Properties of the System

A bound on the norm of the interaction matrix that depends on the initial conditions
and parameters one establishes that solutions will remain positive and bounded.

Lemma 1. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists posi-
tive scalars M1, M2, and M3 such that solutions to (3) satisfy the following inequalities:

∑
i∈G1

1
yi

xi + s1 ≤ M1 (7)

∑
i∈G2

1
yi

xi + s1 + s2 ≤ M2 (8)

s1 + s2 + s2 ≤ M3 (9)
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The proof can be seen in Appendix A. A bound on the norm of A is found such that
every matrix A respecting the bound, guaranties that Ω is a positively invariant set.

Lemma 2. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists a
constant M > 0 such that for every matrix A satisfying ‖A‖∞ ≤ M, the solutions of system (3)
with growth rates given by (6), remain in Ω and are bounded.

The proof can be seen in Appendix A.
The importance of Lemma 2 is that by restricting the norm of matrix A the system is well-

posed, meaning that the solutions can have biological and physical sense (there is no such
thing as negative concentrations). Particularly, one has that ‖A‖∞ = max1≤i≤m ∑n

j=1 |aij|,
which in this context implies that a bound on the sum of the absolute value of the interaction
terms that affects each species allows the system to be well-posed. Note, however, this is a
sufficient condition, thus the range of values matrix A can sustain for the system to remain
well-posed may be considerably larger.

3.2. Equilibrium Points

In this section, analytical expressions for equilibrium points are shown. However, no
analytic expression concerning the stability of such points is presented. In the following
pages the reader will appreciate that the expressions of the equilibrium points are not
simple, consequently replacing them in a 5× 5 block matrix and calculating eigenvalues
resisted an algebraic treatment. To answer the question of stability a numeric scheme is
used by evaluating the Jacobian at the equilibrium point. At the end of the section an
algorithm is provided for exploring all the possible equilibria. All the computations for
deriving the equations of this section can be found in Appendix B.

Let f (s) be such that,

fi(s) =


µ̄i

s1

Ki + s1
∀i ∈ G1

µ̄i
s2

Ki + s2
∀i ∈ G2

(10)

Then µ(x, s) = diag( f (s))(1n×1 + Ax)
Thus, system (3) is rewritten as follows.

ẋ =diag(µ(x, s)− Dn×1)x (11)

ṡ1 =(sin − s1)D + Y1• diag(µ(x, s))x (12)

ṡ2 =− s2D + Y2• diag(µ(x, s))x (13)

ṡ3 =− s3D + Y3• diag(µ(x, s))x (14)

Definition 1. An equilibrium point (or steady state) is a point (xeq, seq) ∈ Ω so that the right
hand side of Equations (11)–(14) equals zero.

Observe that equilibrium points are by definition non-negative so the state variables
can have physical meaning. For studying the cases where xeq contains zero valued entries,
the set of non-active coordinates is defined as follows:

Definition 2. Given an equilibrium point (xeq, seq) of system (3), then the set of non-active coordi-
nates J ⊂ {1, . . . , n} is defined as: J = {j1, . . . , jm : xeq

ji
= 0, i ∈ [m]}. nact

1 and nact
2 denote

the number of positive entries of xeq of functional groups G1 and G2, respectively. nact = n−m
denotes the total number of positive entries of xeq. The active point xact ∈ Rnact

is defined by the
positive entries of xeq. Analogously, the functions f act(s) and µact(x, s) are defined by the positive
entries of xeq. The active interactions Aact is defined as the matrix A without the J rows and
columns. The active stoichiometry matrix Yact is the matrix Y without the J columns.
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In order to derive the equilibrium points, it is desirable an invertible Aact matrix.
Therefore in what follows of the work it is assumed that matrix A and some of its subma-
trices have an inverse, this is stated properly in Hypothesis 2.

Hypothesis 2 (H2). Let A be the interaction matrix of size n ∈ N and S be a proper subset of [n]
with |S| = m. Then the matrix B ∈ R(n−m)×(n−m) defined by taking out the S rows and columns
of matrix A is invertible.

Assuming Hypothesis 2 a formula for the active points is derived from Equation (11):

xact = (Aact)−1(diag( f act(s))−1Dnact×1 − 1nact×1) (15)

Note as well that at the equilibrium, s3 can be defined in terms of s1, s2 and sin. This is
done by adding Equations (12)–(14) which gives:

sin = s1 + s2 + s3 (16)

3.2.1. Both Functional Groups Are Present

The case where in each functional group remains at least one OTU is represented by
Hypothesis 3.

Hypothesis 3 (H3). The set J satisfies G1 6⊂ J , G2 6⊂ J .

By replacing Equation (15) in Equation (12) s2 can be written as a function of s1:

s2 =
s1

b1s2
1 + b2s1 + b3

(17)

Then by replacing (17) in Equation (13), one gets a fourth degree polynomial for s1.

a4s4
1 + a3s3

1 + a2s2
1 + a1s1 + a0 = 0 (18)

Formulae for coefficients b1, b2, b3, a0, a1, a2, a3, a4 can be found in Appendix B.
The equilibrium point can be calculated from the solutions of the system of Equations (15)–(18)

with non negative coordinates. If the system only provides solutions with at least one
negative entry then the set J cannot define an equilibrium point.

3.2.2. Washout of G2

The washout of G2 is equivalent to Hypothesis 4.

Hypothesis 4 (H4). G2 ⊂ J and G1 6⊂ J .

Under this case note that f act(s) depends only on s1. Therefore when Equation (15) is
replaced in (12), one obtains a quadratic equation for s1:

a′2s2
1 + a′1s1 + a′0 = 0 (19)

where a′i can be found in Appendix B.
Since xi = 0 ∀i ∈ G2 then from Equation (14).

ṡ3 = 0 = −s3D (20)

⇒ s3 = 0 (21)

In this case the equilibrium point can be calculated from the solutions of the system of
Equations (15), (16), (A44) and (21) with non-negative coordinates. If the system only provides
solutions with at least one negative entry then the set J cannot define an equilibrium point.
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3.2.3. Washout

The washout equilibria means xi = 0 for every i ∈ {1, . . . , n1}. This is equivalent to
Hypothesis 5. Note that the structure of a cascade reaction implies that if G1 gets washed
out, then so is G2.

Hypothesis 5 (H5). J = G1 ∪ G2.

From Equation (12), one gets
sin = s1

then (16) implies
s2 = s3 = 0

The equilibrium is then given by
(
01×n sin 0 0

)>.
All the former discussion leads to a potential number of (2n1 − 1) · (4 · (2n2 − 1)+ 2)+ 1

different equilibria. Indeed:

nonempty subsets
of G1︷ ︸︸ ︷

(2n1 − 1) ( 4︸︷︷︸
possible

solutions of
Equation (18)

·

nonempty subsets
of G2︷ ︸︸ ︷

(2n2 − 1) + 2︸︷︷︸
G2

Washout

) +

Washout︷︸︸︷
1 (22)

3.3. Stability: Operating and Ecological Diagrams

In this subsection the stability of the equilibrium points is addressed. Operating and
ecological diagrams are created from this stability analysis. Both are an illustrative way
of representing the long term behaviour of a reactor depending on operating parameters,
namely D and sin: In a D− sin plane different zones representing the stability properties of
system (3) are identified [21].

For checking local asymptotic stability of the equilibrium points, the Jacobian of
the system is provided and evaluated at each of these points. The resulting matrix’s
eigenvalues must have negative real part. A general formula for this Jacobian is presented
in Appendix B (see (A70)).

Algorithm 1 summarizes this procedure.

Algorithm 1: Algorithm for Evaluating the Possible Equilibrium Points of
System (3).

Data: A ∈ Mn×n(R), D, sin, µ̄i, Ki, ki,∈ R i ∈ [n],, n1, n2 ∈ N
Result: Set P containing all Positive Stable Equilibrium Points
P = ∅
for S ⊂ [n] do

Calculate equilibrium (x, s1, s2, s3) when J := S according to Hypotheses 3–5.
if (x, s1, s2, s3) ≥ 0 then

eig = Eigenvalues of J(x, s1, s2, s3)
if Real(eig) < 0 then
P = P ∪ (x, s1, s2, s3)

end
end

end

Operating and ecological diagrams are created by running Algorithm 1 for different
pairs (sin, D). In the case of operating diagrams [22] (OD) all the pairs (sin, D) are regrouped
such that the points of the set P represent when partial nitrification (PN), complete nitri-
fication (CN), washout (WO), or a combination of them may arise [23]. PN refers to the
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state when nitrite (s2) accumulates because the OTU of G2 are washed out and thus no
conversion from s2 to s3 takes place. On the contrary CN is when nitrate (s3) accumulates
because of the presence of OTU of G2.

In the case of ecological diagrams (ED) the pairs are regrouped such that the points in
the set P have the same non-active coordinates. In other words, instead of representing
areas where either CN, PN or WO take place, ranges of pairs (sin, D) where species coexist
are represented. ED provide more information than OD, in the sense that one can deduce
the latter from the former.

A first example using operating diagrams is presented to illustrate how adding interactions
in a model consisting of 1 OTU in G1 and 1 OTU in G2 may lead to very different outcomes.

The important question of the existence of limit cycles was not resolved in this work.
In the numerical analysis of this model at least one stable equilibrium was found for
any choice of parameters. This obviously does not exclude the existence of limit cycles,
but to what concerns the authors’ intuitions there always seems to be at least one stable
equilibrium point.

3.3.1. Case Study 1: 1 AOB and 1 NOB

Consider the case where n1 = 1 and n2 = 1. The operating diagrams when no inter-
actions take place (A = 0) and a non-zero interaction matrix are presented. When A = 0
Algorithm 1 is no longer valid (A is not invertible), nevertheless the stability analysis is much
simpler and is given in the Appendix B section. The interaction matrices are shown in
Figure 1a,b, the rational behind the second choice was to force a very strong interaction of x1
on x2 and observe its effects. The biological reason behind a negative microbial interaction
might be the release of a toxin by x1 that affects x2 [1], or in this case it might represent
competition for oxygen; we stress the fact that gLV interactions do not explicitly account for
mechanistically anything they just try to represent an ecological relationship taking place.
The rest of parameters can be seen in Table 2.

The operating diagrams can be seen in Figure 2, note how partial nitrification (washout
of G2) of Figure 2b is much bigger when compared to Figure 2a. The shape of the PN region
in Figure 2b is somewhat unintuitive, because at a constant dilution rate (0.24 day−1 for
example) and an increasing sin, one passes from a PN zone, to a CN zone, and then back
again to a PN zone. The mathematical explanation lies in the fact that x1 also increases
with sin, and the affine part (1 + a21x1 + a22x2) of the growth function of x2 plays a bigger
role than substrate limitation ( s2

s2+K2
).

(a) (b)

Figure 1. Interaction matrices. Note how the presence of x1 affects very negatively x2 in (b), with respect to other interactions.
The terms in the diagonal entries of the matrix represent intraspecies interactions, while the terms off the diagonal represent
the interspecies interactions. (a) Interaction matrix of model (3) with no interactions. (b) A non-zero interaction matrix of
model (3).
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(a) (b)

Figure 2. (a) Operating diagram of model (3) with no interactions (interaction matrix represented by Figure 1a).
(b) Operating diagram of model (3) with interactions represented by Figure 1b. Note how (b) has a much larger zone where
partial nitrification takes place. This is due to the negative interaction of x1 on x2.

Table 2. A set of kinetic parameters of model (3).

Kinetic Parameters µ̄i [1/day] Ki [g/L] 1
yi

[gr/gr]

x1 ∈ G1 0.77 0.7 3.98

x2 ∈ G2 1.07 0.3 16.12

3.3.2. Case Study 2: 2 AOB and 2 NOB

Case study 2 is based on Dumont et al. [16] model parameters. They proposed a
distribution of parameters obtained from a Bayesian estimation method. Their fit describes
well the dynamics of the two most abundant OTU in each functional group, but it still fails
to capture the measured substrates dynamics. Kinetic parameters of case study 2 can be
seen in Table 3. The estimated interaction matrix is shown in Figure 3a. A second matrix is
presented, which is obtained by the sign change of coefficient a11 (Figure 3b), and finally a
third one is obtained by using a positive value for a12 (Figure 3c). The idea is to show that
qualitatively different outcomes can be obtained by changing one interaction at a time.

(a) Originally calibrated interaction
matrix.

(b) Modified interaction matrix with
positive intraspecies interaction a11 > 0.

(c) Modified interaction matrix with
positive interspecies interaction a12 > 0.

Figure 3. Interaction matrices for each case for a consortia of 4 bacterial species where x1 and x2 are AOB and x3 and x4 are
NOB. Parameters a11 and a12 were modified in (b,c), respectively.
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Table 3. Kinetic parameters of model (3) from Dumont et al. [16].

Case Study 2 Kinetic Parameters µi [1/day] Ki [mg/L] 1
yi

[gr/gr]

x1 ∈ G1 0.828 0.147 3.85

x2 ∈ G1 0.828 0.147 3.85

x3 ∈ G2 0.18 0.026 100

x4 ∈ G2 0.18 0.026 100

The ecological diagrams are presented in Figure 4, where the legend indicates the
species surviving in the zone of the respective colour. In Figure 4b, the system exhibits bi-
stability (it is represented in numbering as (1) and (2) of the different possible equilibriums).
Note how every zone in Figure 4b has two stable equilibria, meaning that the outcome of
the system is determined by its initial conditions, particularly interesting is the green zone
where either x1, x3 coexist or only x2 remains, because in operational terms this means that
either PN or CN may take place. When compared to Figure 4a, one can see that this change
in the interactions of the microbial community can dramatically change the outcome of the
reactor in a large operating zone.

(a) (b) (c)

Figure 4. Ecological diagrams (ED). The different zones represent the combination of surviving species in the steady state.
PN takes place when neither x3 nor x4 are present. CN takes place if x3 or x4 are present. (a) ED from interaction matrix on
Figure 3a. (b) ED from interaction matrix on Figure 3b. In the legend (1) and (2) represent the two different stable equilibria
in each zone. (c) ED from interaction matrix on Figure 3c. Note that in (b) two stable equilibria exist for each zone.

One can see that coexistence in the same functional group is never attained in Figure 4a,b,
whereas in Figure 4c x1 and x2, both AOB, coexist in either partial or complete nitrification.
That means that the competitive exclusion principle [22] (CEP) does not hold. The CEP
roughly states that if two species are growing on the same limiting resource, and their
growth laws only depend non decreasingly on the resource, then only one of them will
survive in the long run. This is interesting in light of reports on wastewater treatment
plants where coexistence between species in nitrifying reactors has been shown [24], thus
implying that a more complex growth law (as shown in here) or model structure involving
other biological processes is required to include microbial diversity in mathematical models.

Remarks

Model (3) serves to illustrate that by considering a more complex growth rate that tries
to model ecological interactions one might explain differences in reactors operating under
similar conditions. It also shows a new mechanism by which the CEP no longer holds and
which explains how multiple stable equilibria may appear. Since the gLV model discussed
fails to completely capture the dynamics observed in the chemostat experiments [16],
the next section proposes a new approach to study interactions.
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4. Generalized Approach for Modelling Interactions

In the following an explanatory model (as opposed to a predictive model) is developed
based on the hypothesis that interactions might be driving the nitrification process. In the
previous sections interactions were modelled as an affine function of the OTU concentration
that multiplies a substrate dependent growth equation. More generally the interaction
function represents how the growth rate of species i is affected by the concentration of
other species, x:

Given a vector (v1, . . . , vn)> the interaction function I is denoted as:

I : Rn
+ → Rn

+

v→


I1(v)
I2(v)

...
In(v)


(23)

Let fi(s) be a bounded, positive, and continuous function of s (e.g., Monod, Haldane).
The growth equation of OTU i becomes:

µi(s, x) = fi(s)Ii(x) (24)

Note f (s) := ( f1(s), . . . , fn(s))>.
Since the growth of a single strain in batch experiments is driven by the substrate con-

centration, when no interactions are present one should recover expression fi(s). Therefore
if there are no interactions then Ii(x) = 1. From this hypothesis, note that lim

x→0
Ii(x) = 1

since if there is minimal presence of OTU, interactions cannot exist. Furthermore for this
study it is assumed that Ii(·) is a continuously differentiable function on x. For making
explicit all of the former:

Hypothesis 6 (H6). The interaction function I previously defined satisfies:

1. I
(
(0, . . . , 0)>

)
= (1, . . . , 1)>

2. There is an open set Ω ⊂ Rn such that I ∈ C1(Ω).

Note JI(x) the Jacobian matrix of function I , then a first order approximation of I(·)
centred at x̄ gives: I(x) = I(x̄) + JI(x̄)(x− x̄) + o(‖x− x̄‖). When x̄ = 0 one recovers the
growth expression from the previous section (Equation (6)) implying that JI(0̄) can be seen
as the interaction matrix from model (3).

4.1. Unravelling the Interaction Function

Suppose that the functions fi(s), and the yields yi are well-known. By using experi-
mental measurements of x, represented by z(t), the objective is to reconstruct function I(x).
For doing so, the terms Ii(x) are replaced by controls ui(t), thus Ii(x(t)) = ui(t). A control
law is obtained by solving a nonlinear optimal tracking problem.

Consider the observable system (25), with y(t) = x(t) being the output, because we
are observing measurements coming from genetic sequencing.



Bioengineering 2021, 8, 31 13 of 32

ẋi = ( fi(s)ui(t)− D)xi ∀i ∈ G1
ẋi = ( fi(s)ui(t)− D)xi ∀i ∈ G2
ṡ1 = (sin − s1)D + ∑

i∈G1

ys1/xi
fi(s)ui(t)xi

ṡ2 = −s2D + ∑
i∈G1∪G2

ys2/xi
fi(s)ui(t)xi

ṡ3 = −s3D + ∑
i∈G2

ys3/xi
fi(s)ui(t)xi

y = x

(25)

Consider the weighted norms defined by positive definite matrices Q and R, represented
by ‖ · ‖Q and ‖ · ‖R, respectively, and ū > 0. The optimal tracking problem is defined as:

min
T∫
0
‖y− z‖Q + ‖(u−~1)‖Rdt

s.t. (x, s1, s2, s3) solution of (25)
ui(t) ∈ [0, ū]

(26)

The control u(t) is intended to drive the system to be near a desired output z(t), which
in this context are the measurements of the concentrations of OTU. The term ‖(u−~1)‖R,
was added for two reasons:

• First, because the interest is testing the idea that interactions could be driving the
system. Therefore adding a penalization in the objective function for each control
to remain near 1 can be seen as an attempt to explain data without any interaction.
In other words, if the control terms are found to drift from 1, it means that interactions
are necessary to explain the system dynamics.

• Second, to force a regularized control. Otherwise note that u is linear in (25), therefore if
the integral cost does not have a non-linear expression of u the optimal control will be of
a bang-bang type with possibly singular arcs [25]. Since the objective is to find a differen-
tiable expression of I(x) the addition of the regularization term is deemed necessary.

The problem of approximating the solution of the system to a desired reference (z in
this case) is called the optimal tracking problem. For solving such a problem the approach
developed by Cimen et al. [17,26] was adapted to our problem. The method proposed
involves the resolution of Approximating Sequences of Ricatti Equations (ASRE). It consists
of iteratively calculating trajectories of System (25) with a certain control law to later feed a
non-autonomous Ricatti differential equation with the resulting trajectory. Then, a new
control law that uses the solution of the Ricatti equation is proposed and a new trajectory
is calculated. The iteration is stopped when a convergence in the output or the control
is observed.

The control term should remain positive for the system to be well posed (no negative
states), and an upper bound was added to represent the fact that life cannot grow infinitely
fast. The tracking problem does not consider a constrained control. Nevertheless, the meth-
ods of Cimen et al. [26] were directly used with an explicit constraint in the synthesis of
the control. Even though this is probably suboptimal when the control reaches its bounds,
one at least is certain about its optimality when the control never reaches its constraints.

Another departure from their method is that in their formulation an approximation of
the dynamics for calculating the trajectories is used. They proved that such a linearisation
converges to the original dynamics. In the case here presented the linearisation of the
dynamics was not necessary.

The change of variable ui(t) = vi(t) + 1 is used for technical reasons explained in
Appendix C.

This in turn implies vi(t) ∈ [−1, ū − 1]. The feedback control v(t), will be of the
form v(t) = −R−1B̃>(t)

(
P̃(t)x(t)− s f (t)

)
. Where matrix P(t) and vector s f (t) solve

differential equations. In Appendix C it is proved that, thanks to the structure of the system,
one only needs to calculate 2n differential equations for the synthesis of the control, instead
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of (n + 3)2 + (n + 3) that would imply the direct application of the method, which renders
the method—at least theoretically—scalable for a growing number of OTU.

4.2. Proof of Concept

The approach was tested with data generated by simulating model (3) using the
parameters of the case study 1 (Table 2) with interaction matrix given by (Figure 1b). In the
operating diagram of the same case (Figure 2b) the red zone implies complete nitrification,
while the green zone means partial nitrification. For integrating the former phenomena
in the simulation, the system was simulated for 300 days, and perturbed at day 150 from
the CN zone ((sin, D) = (1.25, 0.24)) to a PN zone ((sin, D) = (1.95, 0.24)). Simulations can
be seen in Figure 5. Note how from day 150 the NOB population (OTU 2) represented in
Figure 5b decreases, which in turn implies a decrease in s3, as seen in Figure 5c. In the
case where no interactions take place, the OD seen in Figure 2a implies that s3 would have
accumulated all along the trajectory, since the perturbation still remains in the CN zone.

(a) AOB. (b) NOB. (c) Metabolites.

Figure 5. Synthetic data generated by model (3), with parameters from case study 1. Note the effects of the increased input
sin generated in day 150.

For the tracking procedure the functions fi(s) and the yields yi were the same as those
used for simulating the synthetic data (parameters in Table 2) and the control is meant

to account for the interaction term. The Q and R matrices were
[

λ1 In1 0
0 λ2 In2

]
and In,

respectively, with λ1 = 10−4 and λ2 = 10−5 in order to better track the NOB trajectories,
since they are less abundant. The values were obtained by trial and error, by using a single
λ for both functional groups, beginning with λ = 1, in which case one can see how the
optimal control becomes u = 1, thus no tracking is performed. Further diminishing the
value from 10−5 adds too much noise to the control, without significant gains on the quality
of the tracking.

The results of the procedure to identify interactions can be seen in Figures 6 and 7.
Figures 6a and 7a,b show the total biomass concentration, and the trajectories for the OTU
belonging to G1 and G2, respectively. It can be seen that the method approaches well
the trajectories of the OTU, with a better result for the AOB community, which can be
explained by the one order of magnitude difference in their concentrations (which in turn
is a consequence of the one order of magnitude difference in their yields). The metabolites
concentration represented in Figure 6b are in accordance with the simulated: The method
is able to reconstruct the metabolites trajectories from the community measurements.

Figures 8 and 9 show the controls and the corrected growth rate for each functional
group. The control for each functional group can be seen in Figures 8a and 9a. Note that
from the structure of a quadratic regulator, since there is no cost in the final state, the end
value is always 1. Figures 8b and 9b show the resulting growth rates for AOB and NOB,
respectively, without the control ui(t). Figures 8c and 9c are the complete expression that
determines growth rate, that is fi(s(t))ui(t)xi(t). Note how little the shape changes with
respect to Figures 8b and 9b, which might mislead the reader to conclude that the control
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had reduced effects in the dynamics. The way out of this conundrum is to remember
that the control’s effects are already included in xi(t) and si(t), and thus in expression
fi(s(t))xi(t).

(a) Total biomass. (b) Metabolites.

Figure 6. Asterisks represent the synthetic data, while the continuous lines represent the method’s output. The method is
able to reconstruct the metabolites pattern, from the biomasses concentrations.

(a) AOB biomass. (b) NOB biomass.

Figure 7. Asterisks represent the synthetic data, while the continuous lines represent the method’s output. The method
reconstructs a continuous trajectory from the synthetic data.

(a) Control for the AOB community. (b) Growth rate “without” the control.
(c) Complete reconstructed growth rate for
the AOB community.

Figure 8. Obtained control and reconstructed growth rate for OTU 1 (AOB).
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(a) Control for the NOB community. (b) Growth rate “without” the control.
(c) Complete reconstructed growth rate for
the NOB community.

Figure 9. Control and reconstructed growth rate for OTU 2 (NOB).

A final comment on the identifiability of the interaction terms. Even though one
might propose a growth rate with the tracking control u(t) that accurately replicates
the OTU trajectory x(t), retrieving the original interaction coefficients from the obtained
control for this example was not possible. The former was tried by minimizing function

f (A) =

∥∥∥∥∥∥
T∫

0

u(t)− (1 + Ax(t))dt

∥∥∥∥∥∥ with a non linear optimization solver for a 1000 initial

random guesses for matrix A. If one also takes into account µ̄i and Ki as parameters to fit
this adds even more degrees of freedom, thus suggesting that the identifiability of growth
functions (6) in model (3) might be very low.

5. Application

The tracking problem was applied to data coming from a nitrification process with
experimental conditions described in [27]. For exploring the hypothesis of interactions as
drivers of bioreactors performance environmental conditions should be kept as constant
as possible. Therefore only data from day 183 onwards was used because a change in the
operating temperature happened at that point, which is known to have an effect on kinetics.
For choosing which species belong in which functional group, the procedure described of
Ugalde-Salas et al. [28] was used. From day 183 to day 315, 31 OTU were identified in the
G1 group (AOB) and 5 in the G2 functional group (NOB).

A first example of the procedure is performed when the classified OTU are regrouped in
their assigned functional groups by adding their concentrations. A 5 dimensional dynamical
system is obtained, thus there are only two interacting functional biomasses: this case is
structurally the same as in the proof of concept, but here a real dataset is used. The same
procedure is applied where no regrouping occurs and the system state grows to 39.

The knowledge of functions fi(s) was based on a study of nitrification’s kinetic param-
eters [29]. Particularly given the system’s ammonium and nitrite concentration a Monod
function (Equation (27)) was used for G1 and G2 with parameters given in Table 4 calculated
from the equation of Table 2 of the same article. The yields were fitted to match the nitrogen
mass balances. The Q and R matrices were the same as in the proof of concept section, that

is
[

λ1 In1 0
0 λ2 In2

]
and In, respectively, with λ1 = 10−4 and λ2 = 10−5, because data lie in

the same order of magnitude than synthetic data.

fi(s) = µ̄2
s1

K1 + s1
∀i ∈ G1 (27)

fi(s) = µ̄2
s2

K2 + s2
∀i ∈ G2
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Table 4. A set of kinetic parameters of model (25).

Kinetic Parameters µi [1/day] Ki [g/L] 1
yi

[gr/gr]

x1 ∈ G1 1.97 7× 10−1 4.49

x2 ∈ G2 1.87 5.4× 10−1 45.51

For the reader to gain understanding of the situation, a simulation of the system
using the experiments operating parameters (D and sin) is presented without control (i.e.,
u(t) = 1) in Figure 10 nitrate (s3) accumulates all along the trajectory, but when compared
to data it is clear that s3 stops accumulating after a while.

When applying the tracking method one obtains the simulation that can be seen in
Figures 11 and 12. The method captures the tendencies of the measured substrates as seen
in Figure 11b. The tracking of each functional group G1 (AOB), and G2 (NOB) can be seen
in Figure 12a,b, respectively.

The growth rates of each functional group are shown in Figure 13. Note in the case
of AOB (Figure 13a) the resulting growth rate shows a noisy curve formed by pulses.
The behaviour of the NOB community (Figure 13b) is qualitatively very similar with
somewhat stronger pulses and less noise. The former is to be expected since more OTU
were regrouped to compose the AOB biomass, therefore more noise sources were added.

(a) Total Biomass. (b) Metabolites.

Figure 10. Simulation of system (25) when u = 1, with functions as in (27). Data points are represented by a star. The
continuous line represents the simulation.

(a) Total Biomass. (b) Metabolites.

Figure 11. Results on applying the tracking method to a nitrification experiment when regrouping OTU in their functional
groups. Data points are represented by asterisks. The continuous line represents the tracking procedure results.
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(a) AOB biomass. (b) NOB biomass.

Figure 12. The tracking procedure applied to the observed biomass (asterisks) regrouped in two functional groups.

(a) Growth rate of the model for AOB community. (b) Growth rate of the model for the NOB community.

Figure 13. Obtained growth rates when regrouping OTU in their functional groups.

The same procedure is applied without regrouping. The results on total biomass and
metabolites are shown in Figure 14a,b, respectively. Both patterns still fit the data, but to a
lesser degree of precision when compared to Figure 11. This can be explained by inspecting
Figures 15–20. First note the absolute error of the tracking for each of the OTU in the AOB
community (Figures 15b–19b), almost every point lies below 0.015 [g/L], implying that
the method might not be able to track below that threshold for the members of the AOB
community. The former ultimately implies that the most abundant OTU are better tracked,
thus the information contained in the least abundant species is not integrated in the model.
Notice that the error for the NOB community is lower (Figure 20b), almost every point lies
below 0.005 [g/L], this can be explained in the one order of difference in the entry of matrix
Q for the AOB and the NOB community. It may be the case that using appropriate weight
matrices that account for the difference between OTU abundances could help in this aspect;
in that sense only one rational was tested (inverse of the mean abundance of each OTU
in the diagonal entries of matrix Q) and did not improve the results. When looking at the
growth rates (Figures 15c–20c) one again observes pulses for each OTU. Finally, note that
most OTU were present only for a fraction of the experiment’s duration.

In both cases, the regrouped and individual tracking, the growth rate varies strongly,
raising the question whether the observed pulses are emerging from interactions within
the microbial community. When growth rates are compared to the proof of concept section
it seems doubtful that a linear pairwise interaction model such as the gLV model could
capture the complexity of the particular chemostat analysed. Perhaps these interactions
are not constant through time (as opposed to the gLV model) or a different interaction
function should be thought of. However the former questions cannot be fully clarified here,
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because the quality of the genetic sequencing from molecular fingerprints might not be the
best when compared to more recent techniques, thus it is unclear if the pulses are due to
noise of the measurements.

The interpretation of the correction term as interactions is not the only possible
reading. In other contexts the correction term might also be interpreted as a non accounted
phenomena ranging from environmental factors (e.g., temperature, pH) to other biological
factors (viruses, flock formation, pathogens). Alternative hypotheses for explaining the
observed patterns in the microbial community should be considered as well.

(a) Total Biomass. (b) Metabolites.

Figure 14. Results on applying the tracking method to a nitrification experiment when all OTU are tracked independently.
Data points are represented by a star. The continuous line represents the tracking procedure results.

(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 15. Results for OTU 1-7 (AOB).

(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 16. Results for OTU 8-14 (AOB).
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(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 17. Results for OTU 15-22 (AOB).

(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 18. Results for OTU 23-28 (AOB).

(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 19. Results for OTU 29-31 (AOB).
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(a) Tracking results and data. (b) Absolute difference between tracking
and data.

(c) Reconstructed growth rate.

Figure 20. Results for OTU 32-36 (NOB).

6. Conclusions and Perspectives

Over the last decades, advances in genetic sequencing and microbial ecology have
opened a gap for modellers in biochemical processes to integrate this valuable information.
Considering the success of mass balance models to predict and pilot bioreactors, new
models should be built upon them, or at least be compared against them. This article
exposed what can be gained from combining population-based models as used in ecology
with functional group based approaches as used in bioengineering. The analysis of the gLV
model proposed by Dumont et al. [16] already shows that such a combination can give way
to models that include bi-stability, coexistence within a functional group, and unintuitive
operational insights such as raising the input ammonium sin to achieve partial nitrification.
The increased number of parameters of this particular model obviously hinders its potential
application, but it surely helps to illustrate what can be gained by joining both types of
models. The mathematical analysis focused on the particular case of pairwise interactions,
which can be seen as a first order approximation of the introduced concept of interaction
function. This opens the question for a broader class of interaction functions that could
well represent complex microbial ecosystems, particularly bioreactors.

With that line of reasoning, in order to understand what this interaction function
should look like, a data-driven approach was presented. It can be simply described as
correcting the growth rate expression of each individual species in a mass balance model
by explicitly assuming a control loop on the growth rate depending on the species state
variables and the measured abundances. The reconstructed growth rates seem to consist
of pulses, suggesting that a form of a possible interaction function should reproduce this
behaviour. However, the former questions cannot be fully clarified here, because the
identification and quantification of OTU from single-strand conformation polymorphism
(SSCP) as performed by Dumont et al. [18] might not be optimal. Indeed, the determination
of OTU from SSCP profiles rely on the identification and quantification of peaks and miss
many OTU that appear only as background noise [30]. This type of fingerprinting is thus
less accurate than more recent methods such as the sequencing of the 16S ribosomal RNA.
In spite of this, one is able to recover the substrates dynamics, implying that the hypothesis
of microbial interactions as drivers of a bioprocess, in the form of feedback loops affecting
each others growth rates, is not far-fetched.

The use of the tracking technique can be applied in a straightforward manner to
already existing models in mixed homogeneous bioreactors, under the condition that the
microbial species have already been identified with a particular functionality of the system.
Even though the tracking model was proposed for a chemostat setting as a way to correct a
substrate limited expression, the method could be used in contexts where less information
on the growth function of microbes is known. If one supposes nothing on the growth
expression but the fact that is bounded (life cannot grow infinitely fast) the model becomes
a linear model and one recovers a classic quadratic regulator for linear systems. This was
tested for the data presented in this article and, unfortunately, negative substrate appeared
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as an output, suggesting that the substrate limitation term is crucial for the model to be well-
posed. Nevertheless, even in the former case, the synthesis of the optimal bounded control
remains an open theoretical challenge. One might bypass this issue of the current control
scheme by, for example, a very thorough use of the Pontryagin maximum principle for the
synthesis of the control. In a more general view the reconstruction of the growth function in
chemostat systems is already subject to problems of identifiability [31], integrating genetic
sequencing could provide a path for more certainty in model calibration.
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Appendix A. Proofs of Properties of the System

Lemma A1. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists
positive scalars M1, M2, and M3 such that solutions to (3) satisfy the following inequalities:

∑
i∈G1

1
yi

xi + s1 ≤ M1 (A1)

∑
i∈G2

1
yi

xi + s1 + s2 ≤ M2 (A2)

s1 + s2 + s2 ≤ M3 (A3)

Proof. Define z1 := ∑
i∈G1

1
yi

xi + s1; z2 := ∑
i∈G2

1
yi

xi + s1 + s2; z3 := s1 + s2 + s3. Computing

ż1 one gets:

ż1 = ∑
i∈G1

1
yi

ẋi + ṡ1 = D

(
− ∑

i∈G1

1
yi

xi − s1 + sin

)
= D(sin − z1)

Define s̄ = max{sin(t)|t ≥ 0} and consider the differential equation:

ẇ = D(s̄− w); w(0) = ∑
i∈G1

1
yi

xi(0) + s1(0) (A4)

If there is a time interval H such that t∗ ∈ H ⇒ D(t∗) = 0, then z1 is constant
and therefore bounded by the value of the solution in z(t∗). If D(t) > 0, then w = s̄ is

https://github.com/paus-5/Class-and-Track
https://github.com/paus-5/Class-and-Track
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a stable asymptotic equilibrium. Define M1 := max{w(0), s̄}. If w(0) > s̄ then by the
Picard-Lindeloff theorem ∀t ẇ(t) < 0, otherwise it would cross the solution of the initial
value problem (A4) with starting point s̄, therefore w(t) ≥ s̄. The same reasoning may be
applied if w(0) < s̄. One concludes that w(t) ≤ M1.

Now consider

ż1 = D(sin − z1); z1(0) = ∑
i∈G1

1
yi

xi(0) + s1(0) (A5)

From a comparison lemma (see chapter 3 [20]), the solution of (A5) is bounded by w and
therefore z1(t) ≤ M1.

Define M2 = max

{
n

∑
i=n1+1

1
yi

xi(0) + s1(0) + s2(0), s̄

}
, and M3 = max{s1(0) + s2(0) +

s3(0), s̄} and noting that z2(t) and z3(t) satisfies the same differential equations as z1 the
above reasoning may be applied and one has the desired bounds.

Lemma A2. For initial conditions (x1(0), . . . , xn(0), s1(0), s2(0), s3(0))) ∈ Ω, there exists a
constant M > 0 such that for every matrix A satisfying ‖A‖∞ ≤ M, the solutions of system (3)
with growth rates given by (6), remain in Ω and are bounded.

Proof. If any coordinate of the solution becomes zero, then it’s derivative is either zero,
or positive. The bound will follow from Lemma 1.

Note that for any i ∈ [n], if xi = 0 then ẋi = 0, therefore all solutions of system (3)
with initial condition xi(t0) = 0 remain in these planes. By the Picard Lindeloff theorem a
solution starting in int(Ω) cannot cross these planes, therefore xi(t) ≥ 0 for t ≥ 0. If s1 = 0,
then ṡ1 = Dsin > 0. Therefore s1(t) ≥ 0. If s2 = 0, let k̄ = min

{
1
yi

: i ∈ [n]
}

, by adding

both inequalities from Lemma (1) and since s1 ≥ 0 one has k̄
n
∑

i=1
xi ≤ M1 + M2, which in

turn implies: k̄‖x‖∞ ≤ M1 + M2. Define M :=
k̄

M1 + M2
, and let A be a matrix such that

‖A‖∞ ≤ M. It follows that ‖Ax‖∞ ≤ ‖A‖∞‖x‖∞ ≤ M 1
M = 1, and therefore:

(1 + Ai•x) ≥ 0 ∀i ∈ [n] (A6)

Computing ṡ2 = ∑
i∈G1

1
yi

µ̄i fi(s)(1 + Ai•x)xi ≥ 0, and thus s2(t) ≥ 0. Note that since

s2 ≥ 0, bound (A6) is valid for any time, and not only when s2 = 0. If s3 = 0 then

ṡ3 =
n
∑

i∈G2

1
yi

µi(s2, x) ≥ 0. Therefore s3 ≥ 0. For the boundedness it suffices to notice

from Lemma 1 that the sum of positive elements is bounded, therefore each element is
bounded.

Appendix B. Deduction of Equilibrium Points

Recall that fi(s) =


µ̄i

s1

Ki + s1
∀i ∈ G1

µ̄i
s2

Ki + s2
∀i ∈ G2

, then µ(x, s) = diag( f (s))(1n×1 + Ax)

thus, system (3) is rewritten as follows.

ẋ =diag(µ(x, s)− Dn×1)x (A7)

ṡ1 =(sin − s1)D + Y1• diag(µ(x, s))x (A8)

ṡ2 =− s2D + Y2• diag(µ(x, s))x (A9)

ṡ3 =− s3D + Y3• diag(µ(x, s))x (A10)



Bioengineering 2021, 8, 31 24 of 32

Recall J the set of non-active coordinates. Let M be the matrix defined by taking out the
J columns of the identity matrix of size n. When M multiplies from the left it adds rows
of zeros to the multiplied matrix in the J coordinates. When matrix M multiplies from
the right it takes out the J columns of the multiplied matrix. When M> multiplies from
the left it takes out the J rows of the multiplied matrix. When M> multiplies from the
right it adds columns of zeros to the multiplied matrix in the J coordinates. This gives the
following relationships:

xeq = Mxact; f act(s) = M> f (s); µact(x, s) = M>µ(x, s); Yact = YM; M>M = Inact (A11)

From Equation (A7) equilibrium points satisfy:

xi = 0∨ (diag( f (s))(1n×1 + Ax)− Dn×1)i = 0 ∀i ∈ [n] (A12)

⇒ fi(s)(1 + Ai•x)− D = 0 ∀i ∈ [n] \ J (A13)

note that ∀j ∈ J , xeq
j = 0 therefore the coefficients aij play no role in Equation (A13) and

one can rewrite Equation (A13) as

µact(x, s) = diag( f act(s))(1nact×1 + Aactxact) = Dnact×1 (A14)

From Hypothesis 2 matrix Aact has an inverse. This gives the following formula

xact = (Aact)−1(diag( f act(s))−1Dnact×1 − 1nact×1) (A15)

Note as well that at the equilibrium, s3 can be defined in terms of s1, s2 and sin. This is
done by adding Equations (A8)–(A10) which gives:

sin = s1 + s2 + s3 (A16)

Appendix B.1. Both Functional Groups Are Present

The case where in each functional group remains at least one OTU is represented by
Hypothesis 3. By replacing xeq = Mxact in Equation (A8) yields

(sin − s1)D + Yact
1• diag(µact(x, s))xact = 0 (A17)

For notation and indexing purposes it is useful to define B := Yact
1• (Aact)−1M> (note

Bj = 0 ∀j ∈ J ). Replacing (A15) in Equation (A8) reads as follows:

(sin − s1) + Yact
1• (Aact)−1 M>M︸ ︷︷ ︸

Inact

(diag( f act(s))−1Dnact×1 − 1nact×1) = 0 (A18)

sin − s1 + ∑
i∈G1

Bi

(
Ki + s1

µ̄is1
D− 1

)
+ ∑

i∈G2

Bi

(
Ki + s2

µ̄is2
D− 1

)
= 0 / · s1s2 (A19)

s2

(
−s2

1 + s1

(
sin + ∑

i∈G1∪∈G2

Bi

(
D
µ̄i
− 1
))

+ ∑
i∈G1

DBiKi
µ̄i

)
= −s1 ∑

i∈G2

DBiKi
µ̄i

(A20)

and so we get to formula (17) of the main text:

s2 =
s1

b1s2
1 + b2s1 + b3

(A21)
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where

b1 =

(
∑

i∈G2

DBiKi
µ̄i

)−1

(A22)

b2 = −
(

sin + ∑
i∈G1∪∈G2

Bi

(
D
µ̄i
− 1
))(

∑
i∈G2

DBiKi
µ̄i

)−1

(A23)

b3 = − ∑
i∈G1

DBiKi
µ̄i

(
∑

i∈G2

DBiKi
µ̄i

)−1

(A24)

The same computations must be done with Equation (A9), which is structurally very similar
to (A8). By replacing xeq = Mxact in Equation (A9) yields

−s2 + Yact
2• (Aact)−1(diag( f act(s))−1Dnact×1 − 1nact×1) = 0 (A25)

It is again useful to define:

C := Yact
2• (Aact)−1M>. (A26)

−s2 + Yact
2• (Aact)−1 M>M︸ ︷︷ ︸

Inact

(diag( f act(s))−1Dnact×1 − 1nact×1) = 0 (A27)

−s2 + ∑
i∈G1

DCi
Ki + s1

µ̄is1
+ ∑

i∈G2

DCi
Ki + s2

µ̄is2
− ∑

i∈G1∪G2

Ci = 0 / · s1s2 (A28)

s1

(
−s2

2 + s2 ∑
i∈G1∪∈G2

Ci

(
D
µ̄i
− 1
)
+ ∑

i∈G2

DCiKi
µ̄i

)
= −s2 ∑

i∈G1

DCiKi
µ̄i

(A29)

and one gets to expression:

s1 =
s2

c1s2
2 + c2s2 + c3

(A30)

where

c1 =

(
∑

i∈G1

DCiKi
µ̄i

)−1

(A31)

c2 = − ∑
i∈G1∪∈G2

Ci

(
D
µ̄i
− 1
)(

∑
i∈G1

DCiKi
µ̄i

)−1

(A32)

c3 = − ∑
i∈G2

DCiKi
µ̄i

(
∑

i∈G1

DCiKi
µ̄i

)−1

(A33)

Then by replacing (A21) in Equation (A30), and after some reordering, one gets a fifth
degree polynomial for s1.

s1

c1

(
s1

b1s2
1 + b2s1 + b3

)2

+ c2

(
s1

b1s2
1 + b2s1 + b3

)
+ c3

 =
s1

b1s2
1 + b2s1 + b3

/ ·
(

b1s2
1 + b2s1 + b3

)2
(A34)

a4s4
1 + a3s3

1 + a2s2
1 + a1s1 + a0 = 0 ∨ s1 = 0 (A35)
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where

a0 = b3 + c3b2
3 (A36)

a1 = c2b3 + 2c3b3b2 − b2 (A37)

a2 = c1 + c2b2 + c3(b2
2 + 2b1b3)− b1 (A38)

a3 = c2b1 + 2c3b1b2 (A39)

a4 = c3b2
1 (A40)

Appendix B.2. Washout of G2

The washout of G2 is represented in Hypothesis 4.
Under this case note that f act(s) depends only on s1. By replacing again xeq = Mxact

in Equation (A7), one obtains the same computations as in the previous section, so retake
Equation (A41)

sin − s1 + ∑
i∈G1

Bi

(
Ki + s1

µ̄is1
D− 1

)
+ ∑

i∈G2

Bi

(
Ki + s2

µ̄is2
D− 1

)
= 0 (A41)

Since G1 ⊂ J then Bi = 0∀i ∈ G2 thus (A41) becomes:

sin − s1 + ∑
i∈G1

Bi

(
Ki + s1

µ̄is1
D− 1

)
= 0 / · s1 (A42)

s1sin − s2
1 + ∑

i∈G1

Bi
DBiKi

µ̄i
+ s1 ∑

i∈G1

Bi

(
D
µ̄i
− 1
)
= 0 (A43)

Furthermore, so a quadratic equation for s1 is obtained.

a′2s2
1 + a′1s1 + a′0 = 0 (A44)

where

a′2 = −1 (A45)

a′1 = sin + ∑
i∈G1

Bi

(
D
µ̄i
− 1
)

(A46)

a′0 = ∑
i∈G1

Bi
DBiKi

µ̄i
(A47)

Appendix B.3. Jacobian of the System

Recall that f : X → Y is a function, then its derivative is f ′ : X → L(X, Y) where
L(X, Y) denotes the set of continuous linear mappings from X to Y, such that ‖ f (x)− f (a)−
f ′(a)[x − a]‖ = o(‖x − a‖), where the linear mapping f ′(a) is evaluated at [x− a] [32].
In the case where X = Rn and Y = Rm, f ′(x) is the Jacobian matrix evaluated at point x,
furthermore f ′(x)[ej] (where ej is the canonical j-th vector) is the j-th column of the Jacobian
matrix evaluated at point x.

If f is linear then f ′(a) = f for any a ∈ X. In the case of the diag operator, we observe
it is linear, therefore diag′(a)[x] = diag(x)

In the case of bilinear mappings another formula holds, let h : X1 × X2 → Y be
bilinear. Then h′(a1, a2)[x1, x2] = h(x1, a2) + h(a1, x2). In the case of the function h1 :
Mn×n(R)×Rn 7→ Rn such that h1(M, x) = Mx, one can see that h′1(A, x)[B, y] = Bx + Ay.
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The chain rule states that f : X → Y and g : Y → Z, if h := g ◦ f then h′(a) =
g′( f (a)) ◦ f ′(a). Take the expression h : (x, y) ∈ Rn × Rn 7→ diag(x)y. It is clear that
h = h1(diag(x), y). By the chain rule:

h′(x, y)[a, b] = h′1(diag(x), y) ◦ (diag′(x), In)[a, b] (A48)

= h′1(diag(x), y)[diag(a), b] (A49)

= diag(a)y + diag(x)b (A50)

Note finally that function h is symmetric, i.e., h(x, y) = h(y, x). Then going back to our system.

ẋ =g1(x, s) = diag(µ(x, s)− Dn×1)x (A51)

ṡ =g2(x, s) =
([

sin 0 0
]> − s

)
D + Y diag(µ(x, s))x (A52)

where µ(x, s) = diag( f (s))(1n×1 + Ax) For a fixed s, let µs(x) : x 7→ diag( f (s))(1 + Ax)
then, µ′s(x) = diag( f (s))A. Let g1s(x) := h(µs(x)− Dn×1, x) = g1(x, s), then compute g′1s:

g′1s(x)[ej] = h′(µs(x)− Dn×1, x) ◦ (µ′s(x), In)[ej, ej] (A53)

= h′(µs(x)− Dn×1, x)[diag( f (s))Aej, ej] (A54)

= diag( f (s))diag(x)A•j + diag(µs(x)− Dn×1)ej (A55)

⇒ g′1s(x) = diag( f (s))diag(x)A + diag(µs(x)− Dn×1) (A56)

Again, for a fixed s, let g2s(x) :=
([

sin 0 0
]> − s

)
D + Yh(µs(x), x) = g2(x, s), then

compute g′2s:

g′2s(x)[ej] = Yh′(µs(x), x) ◦ (µ′s(x), In)[ej, ej] (A57)

= Y
(
diag( f (s))diag(x)A•j + diag(µs(x))ej

)
(A58)

⇒ g′2s(x) = Y(diag( f (s))diag(x)A + diag(µs(x))) (A59)

Let fG1(s1) the function containing the first n1 components of function f (s) and fG2(s2) the
function containing the last n2 components of function f (s) so one can write

f (s) =
(

fG1(s1)
fG2(s2)

)
(A60)

One can see then that:

f ′(s) =

[
f ′G1

(s1) 0n1×2

0n2×1 f ′G2
(s2) 0n2×1

]
(A61)

Now for a fixed x let µx(s) : s 7→ diag( f (s))(1n×1 + Ax), therefore µ′x(s) = diag(1 +
Ax) f ′(s). Let g1x(s) := h(µx(s)− Dn×1, x) = g1(x, s), then compute g′1x:

g′1x(s)[ej] = h′(µx(s)− Dn×1, x) ◦ (µ′x(s), 0)[ej, ej] (A62)

g′1x(s)[ej] = h′(µx(s)− Dn×1, x)[µ′x(s)ej, 0] (A63)

g′1x(s)[ej] = diag(x)µ′x(s)ej (A64)

⇒ g′1x = diag(x)diag(1 + Ax) f ′(s) (A65)



Bioengineering 2021, 8, 31 28 of 32

Again, for a fixed x let g2x(s) :=
([

sin 0 0
]> − s

)
D + Yh(µs(x), x) = g2(x, s), then

compute g′1x:

g′2x(s)[ej] = −DInej + Yh′(µx(s), x) ◦ (µ′x(s), 0)[ej, ej] (A66)

g′2x(s)[ej] = −DInej + Yh′(µx(s), x)[µ′x(s)ej, 0] (A67)

g′2x(s)[ej] = −DInej + Y diag(x)µ′x(s)ej (A68)

⇒ g′2x(s) = −DIn + Y diag(x)diag(1 + Ax) f ′(s) (A69)

Finally note that:

f ′G1
:=
(

∂ f1

∂s1
, . . . ,

∂ fn1

∂s1

)>
=

(
µ̄1K1

(K1 + s1)2 , . . . ,
µ̄n1 Kn1

(Kn1 + s1)2

)>
∈ Rn1

f ′G2
:=
(

∂ fn1+1

∂s2
, . . . ,

∂ fn

∂s2

)>
=

(
µ̄n1+1Kn1+1

(Kn1+1 + s2)2 , . . . ,
µ̄nKn

(Kn + s2)2

)>
∈ Rn2

Then the Jacobian of the system may be expressed as:

J(x, s) =
[

g′1s(x) g′1x(s)
g′2s(x) g′2x(s)

]
(A70)

Appendix B.4. Stability Analysis with no interactions

In this case the growth functions are

µ1(s, x) = µ̄1
s1

K1 + s1
; µ2(s, x) = µ̄2

s2

K1 + s2

Coexistence:

seq
1 =

K1D
µ̄1 − D

; xeq
1 =

sin − seq
1

k1
; seq

2 =
K2D

µ̄2 − D
;

xeq
2 =

sin − seq
1 − seq

2
k2

; seq
3 = sin − seq

1 − seq
2

Washout of x2

seq
1 =

K1D
µ̄1 − D

; xeq
1 =

sin − K1D
µ̄1−D

k1
; seq

2 = sin − seq
1 ; xeq

2 = 0; seq
3 = 0

Washout

seq
1 = sin; xeq

1 = 0; seq
2 = 0; xeq

2 = 0; seq
3 = 0

Jacobian of the system:

µ̄1
s1

K1+s1
− D 0 µ̄1

K1
(K1+s1)2 x1 0 0

0 µ̄1
s2

K2+s2
− D 0 µ̄2

K1
(K1+s2)2 x2 0

−k1µ̄1
s1

K1+s1
0 −D− k1µ̄1

K1
(K1+s1)2 x1 0 0

k1µ̄1
s1

K1+s1
−k2µ̄2

s2
K2+s2

k1µ̄1
K1

(K1+s1)2 x1 −D− k2µ̄2
K2

(K2+s2)2 x2 0
0 0 0 0 −D
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Appendix C. Tracking Problem Reformulation and Details

For applying the methods developed in [26]. Define the system state X = (x, s).
Make the change of variables vi = ui − 1 with v = (v1, . . . , vn) are applied to system (25).
The system may be rewritten then as:

ẋi = ( fi(s)(1 + vi(t))− D)xi ∀i ∈ G1
ẋi = ( fi(s)(1 + vi(t))− D)xi ∀i ∈ G2

ṡ1 = s1

(
sin
s1
− 1
)

D + ∑
i∈G1

ys1/xi
fi(s)(1 + vi(t))xi

ṡ2 = −s2D + ∑
i∈G1∪G2

ys2/xi
fi(s)(1 + vi(t))xi

ṡ3 = −s3D +
n1+n2

∑
i∈G2

ys3/xi
fi(s)(1 + vi(t))xi

y(t) = x(t)

(A71)

Define:

A(X) =

[
A11(X) A12(X)
A21(X) A22(X)

]
; B(X) =

[
B1(X)
B2(X)

]
(A72)

with

A11(X) = diag( f (s)− Dn×1); A12(X) = 0n×3 (A73)

A21(X) = Y diag( f (s)); A22(X) =


(

sin
s1
− 1
)

D 0 0
0 −D 0
0 0 −D

 (A74)

and

B1(X) = diag( f (s))diag(x); B2(X) = Y diag( f (s))diag(x); C(X) =
[
diag(In) 0n×3

]
(A75)

Then the system (A71) can be rewritten as:

Ẋ = A(X)X + B(X)v; y = C(X)X (A76)

z(t) ∈ Rn is the measured vector containing the OTU concentrations in time. The cost
functional is given by

J(v) =
(

z(t f )− C(X)X(t f )
)>

F
(

z(t f )− C(X)X(t f )
)

(A77)

+

t f∫
t0

(z(t)− C(X)X(t))>Q(z(t)− C(X)X(t)) + v(t)>Rv(t) (A78)

where F, Q and R are positive definite matrices. Since there is no interest in the final time
F = 0. Q and R are taken as diagonal matrices, in that way the system can be reduced as
shown below. Particularly after testing the model in the proof of concept and data, the Q

and R matrices were
[

λ1 In1 0
0 λ2 In2

]
and In, respectively, with λ1 = 10−4 and λ2 = 10−5.

Define the dynamic sequences for i ∈ N, Ẋ[i] as:

Ẋ[i] = A(X[i])X[i] + B(X[i])v[i] i ∈ N (A79)

y[i] = X[i] i ∈ N (A80)

X[i](t0) = X0 i ∈ N (A81)
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and for i = 0 define X[0](t) as the solution of (A71) with v(t) ≡ 0. The control law is given by

v[i](t)j = max
{
−1, min

{
0,
(
−R−1B>

(
X[i−1](t)

)(
P[i](t)X[i](t)− s[i]f (t)

))
j

}}
∀j ∈ [n] (A82)

where P[i](t) ∈ Mn+3×n+3(R) and s[i]f (t) ∈ Rn+3 are the solution to the differential equations:

Ṗ[i] = −CT
(

X[i−1](t)
)

QC
(

X[i−1](t)
)
− P[i]A

(
X[i−1](t)

)
− A>

(
X[i−1](t)

)
P[i] (A83)

+ P[i]B
(

X[i−1](t)
)

R−1B>
(

X[i−1](t)
)

P[i] (A84)

P[i](t f ) = C>
(

X[i−1](t f )
)

FC
(

X[i−1](t f )
)

(A85)

˙
s[i]f = −C>

(
X[i−1](t)

)
Qz(t)−

[
A
(

X[i−1](t)
)
− B

(
X[i−1](t)

)
R−1B>

(
X[i−1](t)

)
P[i](t)

]>
s[i]f (A86)

s[i]f (t f ) = C>
(

X[i−1](t f )
)

Fz(t f ) (A87)

Replacing the matrices of our problem

Ṗ[i](t) = −

 Q 0n×3

03×n 03×3

− P[i]A
(

X[i−1](t)
)
− A>

(
X[i−1](t)

)
P[i] + P[i]B

(
X[i−1](t)

)
R−1B>

(
X[i−1](t)

)
P[i] (A88)

P[i](t f ) =

0n×n 0n×3

03×n 03×3

 (A89)

ṡ f
[i](t) = −

[
Qz(t)
03×1

]
−
[

A
(

X[i−1](t)
)
− B

(
X[i−1](t)

)
R−1B>

(
X[i−1](t)

)
P[i](t)

]>
s[i]f (A90)

s[i]f (t f ) =
[
0n×n 0n×3

]>
z(t f ) (A91)

For certain entries of the dynamic the constantly zero function is a solution for them,
implying by existence and uniqueness that they should be constantly zero. Then P[i] has
n× n non zero entries and s[i] has n non zero entries, explicitly:

P[i](t) =
[

P̃[i](t) 0n×3
03×n 03×3

]
; s[i]f (t) =

[
s̃[i]f (t)
01×3

]
(A92)

A
(

X[i−1](t)
)
=

[
A11 A12
A21 A22

]
; B
(

X[i−1](t)
)
=

[
B1
B2

]
(A93)

where A11 = diag
(

f
(

s[i−1]
)
− Dn×1

)
, and B1 = diag

(
f
(

s[i−1]
))

diag
(

x[i−1]
)

The equa-

tions for P̃[i](t):

˙̃P[i](t) = −Q− P̃[i]A11 − A>11P̃[i] + P̃[i]B1R−1B>1 P̃[i]; P̃[i](t f ) = 0 (A94)

Inspecting the former equation one notices that if i 6= j, Pij(t) = 0 is a solution of all
non diagonal entries when R is diagonal. Furthermore, therefore, once again, by existence
and uniqueness they should be constantly zero. Hence only the diagonal entries should
be calculated.

˙̃P[i]
jj (t) = −Qjj − 2

(
f j

(
s[i−1]

)
− D

)
P̃[i]

jj + R−1
(

P̃[i]
jj

)2
f j

(
s[i−1]

)2(
x[i−1]

j

)2
; P̃[i]

jj (t f ) = 0 (A95)

For and s̃ f
[i](t) the system reduces to:

˙̃s[i]f (t) = −z(t)−
[

A11 − R−1B1B>1 P̃[i](t)
]>

s̃[i]f ; s̃[i]f (t f ) = 0 (A96)
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Furthermore, the control law is given by

v[i](t)j = max
{
−1, min

{
0,
(
−R−1B>1

(
X[i−1](t)

)(
P̃[i](t)x[i](t)− s̃[i]f (t)

))
j

}}
∀j ∈ [n] (A97)

They were solved using standard backward numerical integration.
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