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This Appendix details the methods and parameters used to search for evidence of 
divergent selection. We used two different differentiation outlier approaches, aiming at 
identifying loci with unusual allele frequency differentiation among populations; and two 
different genotype-environment associations (GEA) approaches, aiming at identifying loci 
exhibiting significant correlations with ecological variables. For all test, we applied methods 
that explicitly model the effect of population structure, to remove eventual spurious 
associations arising from shared demographic history, patterns of isolation by distance, or 
cryptic relatedness. 

1) Differentiation outlier analyses  

a) pcadapt 

The method implemented in the R package pcadapt (Luu, Bazin, & Blum, 2017) was used 
to test for association genetic loci and population structure and identify excessively associated 
loci (i.e. outliers bearing putative signatures of local adaptation). The software characterizes 
the genetic structure of populations through PCA, performs correlative models between 
individual allele counts and the most representative PCA dimension(s), estimates the strength 
of such an association through the robust Mahalanobis distance, and finally identifies outliers 
based on a chi-square distribution with degrees of freedom equal to the number of 
components retained.  

The Cattell’s rule was applied to identify a proper number of principal components to 
represent population structure.  

The analysis was performed on the LD-pruned dataset in order to avoid the possible bias 
induced by linked loci during estimation of population structure. 

b) lea 

The second method we used takes advantage of the new FST statistics developed by 
Martins et al. (2016) to identify outlier loci in admixed and in continuous populations, based 
on the computation of ancestry estimates obtained by the sparse non-negative matrix 
factorization (sNMF) algorithms implemented in the R package LEA v.2.0.0 (Frichot & François, 
2015). Estimates of ancestry obtained by the sNMF algorithm can replace those obtained by 
the program structure advantageously for large SNP data sets. 

The first step consists in selecting the most likely number of ancestral populations based 
on cross-entropy values for each K estimated by the snmf() function; here, we investigated K-
values ranging from 1 to 8, with each K repeated 10 times.  

The second step consists in computing the new FST statistics using ancestry coefficients 
and ancestral allele frequencies as estimated by the snmf() function for the selected K value, 
and in converting them into absolute values of z-scores. The estimated z-scores require 



recalibration, based on the computation of the genomic inflation factor (λ) before applying a 
test for neutrality at each locus.  

 

2) Genotype-Environment Associations (GEA) analyses 

a) lfmm 

The latent factor mixed model (LFMM) approach was used to test for associations 
between allele frequencies and environmental variables specified as fixed effects (Frichot, 
Schoville, Bouchard, & François, 2013). LFMM accounts for background population structure 
by incorporating relatedness as a random factor using unobserved variables (i.e., latent 
factors), which are equivalent to principal components of a PCA on allelic frequencies. LFMM 
has been shown to be an efficient and powerful method for different demographic scenarios, 
sampling designs, and in the case when loci are under weak selection (de Villemereuil, Frichot, 
Bazin, François, & Gaggiotti, 2014).  

We used the most recent implementation of LFMM based on least squares estimates 
that was available in the R package lfmm (Caye & François, 2017). We estimated the LFMM 
parameters with the lfmm_ridge() function. The number of latent factors (Klfmm) was obtained 
using the snmf() function of the LEA package as described above.  

b) Samβada 

The approach implemented by the software Samβada (v.0.8.0) was applied to scan the 
whole SNP dataset in search for significant genotype-environment associations (Stucki et al., 
2017). Samβada relies on linear logistic regression to model the way genotypes are spread in 
the landscape as a function of habitat characteristics, and assumes loci displaying statistically 
significant association to underlie local adaptation. To identify such loci, log-likelihood ratio 
tests were devised where the performance of a null model including population structure only 
was compared with an alternative model including population structure plus one 
environmental variable at a time. P-values were then computed for each test from a chi-
square distribution with one degree of freedom. Here, population structure was represented 
by the linear discriminant functions as estimated by DAPC. 

3) Control of the false discovery rate  
We followed the unified testing framework proposed by François, Martins, Caye, & 

Schoville (2016), which consists in recalibrating the test statistics by evaluating their expected 
value at selectively neutral loci; here, we used the local False Discovery Rate (FDR) method 
and determined, for each test, the q-value cutoff corresponding to zero expected false 
positives.  

The FDR was controlled by translating p-values resulting from pcadapt, LEA, LFMM and 
Samβada analyses into q-values through the R package qvalue (Storey, Bass, Dabney, & 
Robinson, 2014/2020; Storey & Tibshirani, 2003). Q-value cut-offs were chosen so that no 
false positives were expected. In GEA, cut-offs were independently adapted for each 
environmental variable. The expected number of false positives associated with the i-th q-
value (FPDi) was calculated as FPDi=qi×n, n being the number of tests with q≤qi. Only 
associations with q-value equal or lower than the zero expected false positives cut-off were 
deemed significant. 

 



4) Assembly of outliers identified by different methods 
We followed the strategy of Rellstab et al. (2015) to independently run the four methods 

and next to discuss the results by comparing lists of loci putatively under selection. Venn 
diagrams were produced with the Web‐based tool InteractiVenn to visualize the consensus 
among the methods (Heberle, Meirelles, da Silva, Telles, & Minghim, 2015). 
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