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Combining laboratory measurements and proximal soil sensing data in Digital 22 

Soil mapping approaches 23 

Abstract 24 

Digital soil mapping (DSM) products are limited in accuracy because of the lack of soil inputs. 25 

Soil sensing is a promising alternative to direct soil measurements that could provide much denser 26 

spatial samplings. Although using relevant and detailed soil sensing input in DSM is considered 27 

as vital to increase the prediction performances, there has been no studies in the literature that 28 

compare and develop the methods for integrating new sources of soil data that can be applied as 29 

inputs of DSM. This paper fills this gap on the example of mapping electrical conductivities from 30 

sites with laboratory measurements, in-field EM38MK2 measurements and spatially exhaustive 31 

covariates. Three different approaches are tested for putting in synergy real measurements and 32 

EM38MK2 measurements: i) EM38MK2 measurement considered as measured points, ii) 33 

EM38MK2 measurement used for building a new soil covariate and iii) EM38MK2 measurement 34 

considered as a soft data in a regression co-kriging approach. According to soil analysis's financial 35 

expenditure, choosing an optimal sample size to merge laboratory analysis and in-field EM38MK2 36 

measurements as surrogate data was done on the best method. The results showed i) the utility of 37 

EM38MK2 data in DSM as a surrogate input data for mapping soil salinity ii) Regression co-38 

kriging was the best method for integration and iii) The impact of EM38MK2 data on the gains of 39 

performance becomes greater and greater as the sizes of real measurements of soil salinity 40 

decrease. Hence, in other areas worldwide that soil sensing as alternative data is accessible, this 41 

research's future utilization could be possible as a promising way to tackle one of the essential 42 

constraints of DSM. 43 
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 46 

1. Introduction 47 

Digital soil mapping (DSM) products are limited in accuracy because of the lack of soil inputs. 48 

Some recent trials showed that increasing the density of spatial soil sampling substantially 49 

increased the prediction performances of DSM models (Lagacherie et al., 2020; Somarathna et al., 50 

2017; Wadoux et al., 2019a). However, direct observation of soil is costly which explains why 51 

most of the DSM activity is made from legacy data. Soil sensing is a promising alternative to direct 52 

soil measurements that, under some measurement conditions, could provide much denser spatial 53 

samplings. One can distinguish remote sensing (Mulder et al., 2011) and proximal soil sensing 54 

(Viscarra-Rossel et al., 2011).  55 

      The literature includes a lot of successful estimations of soil properties by various soil sensing 56 

technologies, such as VIS-NIR-SWIR spectroscopy (Ben-Dor et al., 2008; Gomez et al., 2008; 57 

Gomez and Coulouma, 2018; Lagacherie et al., 2008; Minasny et al., 2009; Viscarra Rossel et al., 58 

2009); Gamma-ray spectroscopy (Buchanan et al., 2012; Spadoni and Voltaggio, 2013; Triantafilis 59 

et al., 2013; Zare et al., 2018); Ground penetrating radar (Abbaszadeh Afshar et al., 2016; Koyama 60 

et al., 2017; Lu et al., 2017; Tosti et al., 2013; Weihermuller et al., 2007); airborne hyperspectral 61 

imagery (Gholizadeh et al., 2018; Gomez et al., 2015; Hong et al., 2020; Nouri et al., 2017), and 62 

time-domain reflectometer (Arsoy et al., 2013; Bittelli et al., 2008). 63 

      EMI has become very popular among the available soil sensors for mapping the soil properties 64 

that affect ECa (Corwin and Scudiero., 2016), such as clay content, cation exchange capacity, 65 

water content, and pH (Corwin et al., 2003; Triantafilis and Lesch, 2005; Zare et al., 2015; Zhao 66 
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et al., 2020). It is a valuable asset for mapping soil salinity, as an essential element of 67 

environmental surveillance and monitoring, using reliable approaches such as linear regression 68 

equation between ECa and ECe (Herrero and Hudnall., 2014; Amezketa and de Lersundi, 2008) 69 

and linear regression between ECe and calculated true electrical conductivity by inversion 70 

algorithm (Zare et al., 2015). Numerous literature that presented the high correlation between ECa 71 

and soil salinity (Corwin et al., 2003; Ding and Yu, 2014; Huang et al., 2014; Taghizadeh-72 

Mehrjardi et al. 2016; Yao et al., 2012); inspired us that DSM can integrate EM38 prediction 73 

results of soil salinity to provide a more precise map. 74 

       It should be noted that most of these works intend to use soil sensing as a unique source of 75 

data, without considering any prior knowledge on soil distribution. Alternatively, soil sensing can 76 

also be considered as surrogate data for improving a soil mapping that is made from soil 77 

observations. Different methods could be used. The first one considers soil sensing as a covariate 78 

(Lagacherie and Gomez., 2018; Li et al., 2018; Taghizadeh-Mehrjardi et al., 2014; Zhang et al., 79 

2020). As soil sensing measurements are usually not possible everywhere, soil sensing data should 80 

be pre-processed for getting a spatially exhaustive soil sensing covariate as required by the DSM 81 

approach. In this case, the empirical best linear unbiased prediction method (Zhang et al., 2020), 82 

kriging method (Taghizadeh-Mehrjardi et al., 2016), and regression kriging approach 83 

(Taghizadeh-Mehrjardi et al., 2014) performed to provide proximal soil sensing maps. 84 

Nevertheless, in sparse spatial sampling conditions, the regression kriging performances remain 85 

severely restricted (Vaysse and Lagacherie, 2015). Recently, Wang et al., (2021) created apparent 86 

soil electrical conductivity maps (ECa) using Random forests (RF) algorithms through 87 

environmental variables and electrical magnetic induction data.  Another approach is to consider 88 

soil sensing as a soil site measurement, while considering that its uncertainty is greater than 89 
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laboratory measurements. Such an approach was experienced when merging hyperspectral data 90 

with classical soil measurements (Walker et al, 2016). Co-kriging is considered as a possible 91 

method for doing that. It shows an improvement of the results. Therefore, the selection of an 92 

appropriate method for integrating new sources of soil data that can be applied as inputs of DSM 93 

models is crucial 94 

      Although using relevant and detailed soil sensing input in DSM is considered as vital to 95 

increase the prediction performances, there has been no studies in the literature that compare and 96 

develop the above-evoked alternatives of using soil sensing data in DSM approaches. This paper 97 

fills this gap on the example of mapping electrical conductivities from sites with laboratory 98 

measurements, in-field EM38MK2 measurements and spatially exhaustive covariates. Three 99 

different approaches are tested for putting in synergy real measurements and EM38MK2 100 

measurements: i) EM38MK2 measurement considered as measured points, ii) EM38MK2 101 

measurement used for building a new soil covariate, and iii) EM38MK2 measurement considered 102 

as soft data in a regression co-kriging approach. According to soil analysis's financial expenditure, 103 

choosing an optimal sample size to merge laboratory analysis and in-field EM38MK2 104 

measurements as surrogate data was done on the best above-mentioned method. This part 105 

attempted to show the possibility of reducing ECe laboratory measurements in situations where 106 

EM38MK2 data exist. 107 
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 108 

Fig 1: Study area in Southern Iran 109 

 110 

Fig. 2: Geological map of the region 111 
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2. Materials and Methods 112 

2.1. Study Sites 113 

The present study was carried out in Sarvestan region, near to saline-alkaline Maharlu Lake, is 114 

located in the southeast of Shiraz, Fras province, Iran (Fig.1), which is dominated by farmland and 115 

rangelands land cover and the soil's parent materials are highly calcareous (Abtahi, 1980; 116 

Khormali et al., 2003). The exposed geological formations are notably composed of Razak 117 

evaporites, Pabdeh-Gurpi shales and marls, Asmari-Jahrum limestone and dolomite, Sachun 118 

gypsiferous marls, Aghajari sandstone, Sarvak limestone, and Bakhtiari conglomerates 119 

(Fig.2). Two prominent salt domes (Hormuz formation) containing halite with a small amount of 120 

gypsum and other evaporite minerals are located in the southeast and northeast of the plain (Raeisi 121 

et al., 1996). 122 

The study area's mean annual temperature and precipitation are 18 ºC, and 328.6 mm, respectively. 123 

This region contains plains with slight to severe salinity due to semi-lacustrine and lacustrine 124 

conditions and the outer margin with no salinity challenges (Abtahi, 1980). Factors such as high 125 

temperatures and salinity and alkalinity of shallow groundwater have been caused the formation 126 

of saline soils in the study region (Fallah Shamsi et al., 2013). The more intensive conditions 127 

throughout recent years include droughts, an increase in demand for water resources as well as the 128 

excessive use of chemical fertilizers (Zare et al., 2019). This region's main land uses include 129 

irrigated farming, dryland farming, rangeland, barren land, wetland, and urban. Pistachio, ficus, 130 

almond and olive trees, wheat, barley and maize are the dominant crops in the study area. The 131 

predominant plant community in the very saline and moderately salt-affected soils in this region 132 

are Salicornia Sp., Salsola Sp., Suaed Sp., Prosopis stephaniana, Alhagi camelorum,  and some 133 

Gramineae (Abtahi, 1980). To manage and remediate, the traditional cropping patterns are 134 
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changing to more adaptable ones that substitute water consuming crops and trees with salt-tolerant 135 

plant species (such as Barley and Pistachio). This recalls the necessity of monitoring ongoing 136 

salinization and developing procedures to identify and plan initial stages of soil salinity to provide 137 

information to ameliorate salt-affected soils by cost-effective and proper decisions (Metternicht 138 

and Zinck., 2008). 139 

 140 

2.2. Data 141 

2.2.1. Soil data sampling 142 

2.2.1.1. Soil sampling and laboratory measurements  143 

       Soil sampling (Fig.1) was done in March 2019, in the time window of the EM38-MK2 survey, 144 

and when in the study area, the soil profile contains near to field capacity water content. The 145 

sampling approach followed the conditioned Latin hypercube method (Minasny and McBratney, 146 

2006) employing spatial soil covariates that cover the most variation within the area for gathering 147 

372 soil samples in 124  soil pits from the three equal soil depth ranges (0–0.3 m (topsoil), 0.3–148 

0.6 m (subsurface) and 0.6–0.9 m (subsoil)) using a rotating auger. Employing a Global 149 

Positioning System (GPS) handset, the coordinates of soil samples were recorded. After delivering 150 

samples to the laboratory, the samples air-dried, sieved (2 mm) and the electrical conductivity of 151 

a saturated soil paste extract (ECe, dSm−1) were determined (US Salinity Laboratory 152 

Method,1954). Moreover, soil moisture was determined gravimetrically, and in the topsoil and 153 

subsurface of 62 above-mentioned soil pits, water contents at field capacity (-33 kPa) were 154 

measured using a pressure plate (Dane and Hopmans, 2002) (Fig.2). Subsequently, the ratio of soil 155 

moisture to the water content at field capacity was calculated. 156 

 157 

2.2.1.2. Apparent electrical conductivity data  158 
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      EM38-MK2 device was employed to measure the apparent electrical conductivity (ECa, 159 

mSm−1). The EM38-MK2 implements simultaneous measurements of ground conductivity 160 

(Quad-Phase) and magnetic susceptibility (In-Phase) in vertical and horizontal dipole mode by 161 

couple transmitter-receiver coil detachment at 1 m and 0.5 m (Geonics Limited, 2009).  162 

       ECa was measured between 9th to 15th March 2019 when in the study area, the soil profile 163 

contains near to field capacity water content, which ensured reliable EMI signal data because 164 

EM38 survey in arid conditions is especially problematic as the conductance through the liquid 165 

pathway reduced (Corwin and Lesch.,2013; Corwin and Scudiero.,2016).  166 

        Using the conditioned Latin hypercube method (Minasny and McBratney, 2006) 214 points 167 

were selected for the EM38-MK2 survey (Fig.1) and the EM38-MK2 measurements were made at 168 

the location of the 124 sites with real measurements and the remaining (90) on new sites. The 169 

apparent electrical conductivity was measured in the vertical (v) and in the horizontal (h) mode 170 

that confirmed the recognition of variations in ECa to effective depths of 0.38 (MK2-h-0.5), 0.75 171 

(MK2-h-1.0), 0.75 (MK2-v-0.5), and 1.5 m (MK2-v-1.0). The EM38-MK2 was nulled and 172 

calibrated according to the user manual (Geonics Limited, 2009) before each day and during the 173 

survey. 174 

      175 

2.2.2. Spatial soil covariates 176 

2.2.2.1. Digital elevation model (DEM) and derivatives:  177 

      A 10-m spatial resolution digital elevation model was provided from the National Cartographic 178 

Center of Iran (2014). From DEM, different terrain attributes including elevation, curvature, slope 179 

gradient, aspect, Multi-Resolution Valley Bottom Flatness (MRVBF), and Flow direction were 180 

acquired using SAGA GIS software (Conrad et al., 2015). 181 
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 182 

2.2.2.2. Maps 183 

1:100,000 scale geological map to picture the spatial pattern of the parent material soil forming 184 

factors. This map was obtained from Geological Survey and Mineral Exploration of Iran.  185 

A land use map has been produced by the Natural Resources Office of Fars province, updated 186 

using intensive field surveys and Google Earth image interpretation. 187 

 188 

2.2.2.3. Remotely-sensed Data 189 

Sentinel-1A, Sentinel 2A, Landsat-8 OLI/ TIRS satellite images, which are free of charge for users 190 

and proper for digital soil mapping investigations, were used in this research.  191 

        Sentinel-1A: The Sentinel-1A C-band SAR imagery with the advantage of being insensitive 192 

to water vapor or cloud cover, and a 12- day revisit cycle was acquired in Interferometric Wide 193 

swath mode (IW) with dual polarization, resulting in a VV and VH band for the image. The 194 

penetration capability of C-band radars is limited but slightly better than X-band. The Sentinel-1 195 

toolbox in the SNAP 7.0 software was employed for the preprocessing, including radiometric 196 

calibration, thermal noise removal,  and terrain correction with Shuttle Radar Topography Mission 197 

(SRTM-30m).  198 

       Sentinel-2: The cloud-free Sentinel-2 Image satellite with 13 spectral bands and 10, 20, 60 m 199 

spatial resolution in the visible, NIR, and SWIR spectrums was acquired from ESA Sentinel 200 

Scientific Data Hub within the time window of fieldwork and soil sampling. The Sentinel-2 Level 201 

1C image was atmospherically corrected and was processed to atmospherically corrected bottom 202 

of atmosphere reflectance (Level 2A) using the Sen2Cor algorithm. 203 

 204 
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    Table 1: The soil remote sensing attributes. 205 

 206 

Normalized Difference Vegetation Index (Rouse et al., 1974) (1) NDVI = (NIR − R) ⁄ (NIR + R) 

Normalized Difference Water Index (Cheng et al., 2008) (2) NDWI = (NIR − SWIR.) ⁄ (NIR + SWIR.) 

Normalized Difference Salinity Index (Khan et al., 2001) (3) NDSI = (R − NIR) ⁄ (R + NIR) 

Salinity Index (Khan et al., 2001) (4) SI. = √G × R 

Douaoui et al, 2006)(Salinity Index (5) SI2 = 3G2 + R2 + NIR2 

Salinity Index (Douaoui et al, 2006) (6) SI4 = 3G2 + R2 

Brightness Index (Khan et al., 2001) (7) BI = 3R2 + NIR2 

Simple Ratio Water Index (Maffei et al, 2007) (8) SRWI = (B2) ⁄ (B6) 

Clay index (Carranza and Hale (2002)) (9) CI = (SWIR1) ⁄ (SWIR2) 

Visible Atmospherically Resistant Index (Stow et al., 2005) (10) VARI = G − R G + R − B⁄  

Ratio Vegetation Index (Pearson and Miller 1972) (11) RVI = (NIR) ⁄ (R) 

Modified Triangular Vegetation Index (Karnieli et al., 2001) (12) MTVI = 1.2(1.2(800nm − 550nm) − 2.5(670nm − 550nm)) 

Optimized Soil Adjusted Vegetation Index (Rondeaux et al. 

(1996) 

(13) OSAVI = (NIR − RED) ⁄ (NIR + RED + 0.16) 

Soil adjusted vegetation index (Huete .,1988) (14) SAVI = [(NIR	 − 	red) ⁄ (near	infrared	 + 	red	 + 	L)]

∗ (1 + L) 

Difference vegetation index (Tucker., 1979) (15) DVI = (NIR − RED) 

Enhanced vegetation index (Huete .,2002) 

Huang et al. (2002) 

Haralick et al. (1973) 

Haralick et al. (1973) 

Haralick et al. (1973) 

Haralick et al. (1987) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21)                       

EVI = 2.5(NIR − RED) ⁄ (NIR + 6 ∗ RED − 7.5 ∗ BLUE + 1) 

Tasseled cap transformation 

GLCM mean 

GLCM correlation 

GLCM Variance 

Median Filter 

 207 

Landsat 8 : Landsat 8 with 16 days revisiting frequency, carries the Operational Land Imager (OLI) 208 

and thermal Infrared Sensor (TIRS) which collect data in VIS, NIR and SWIR bands with 30 m, 209 

the panchromatic band with 15 m, and TIR bands with 100 m spatial resolution. 210 
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 Cloud free image of Landsat-8 OLI/ TIRS was obtained on the 11th of March, 2019 from the 211 

USGS Earth Explorer website (https://earthexplorer.usgs.gov). ENVI5.3 was employed for the 212 

atmospheric correction by FLAASH algorithms (Cooley et al., 2002)  and radiometric calibration. 213 

       We acquired the tasseled cap transformation as a practical data dimensionality reduction 214 

approach(Crist and Cicone.,1984), several image textural features, soil, and vegetation 215 

transformations by utilizing Eqs.1 to 16 (Table 1). The textural variables were provided using the 216 

grey level co-occurrence matrix (GLCM) with the 5*5 kernel size (Haralick et al., 1973).  217 

The spatial soil covariates explained above were registered to a common grid of 30 m cell size. 218 

 219 

2.3. Methods 220 

2.3.1. Mapping Model: Quantile Regression Forest 221 

For the prediction of soil ECe and ECa, the Quantile regression forest (QRF)  algorithm 222 

(Meinshausen., 2006) was applied. Breiman (2001) and Meinshausen (2006) reported the 223 

comprehensive explanation of random forests and quantile random forests, respectively. 224 

QRF is a non-parametric and robust ensemble learning method that has been increasingly applied 225 

to DSM (Dharumarajan et al., 2020; Liu et al., 2020; Szatmári and Pásztor., 2019; Vaysse and 226 

Lagacherie, 2017). Similar to the random forest (RF), the QRF algorithm comprises numerous tree 227 

predictors with randomly split nodes. RF uses bagging (bootstrap aggregating) to improve the 228 

stability of results and decrease the risk of overfitting. RF Predictions are usually constructed from 229 

the mean of predicted values created from numerous decision trees. In contrast, QRF considers the 230 

response variable's spread of values at each node and infer estimates for conditional quantiles, 231 

prediction intervals, or other statistics from the distribution (Dobarco et al.,2019; Meinshausen, 232 

2006; Vaysse and Lagacherie, 2017). If there are extreme values in the samples applying the 233 
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sample mean in the leaf node may result in biasness (Gyamerah et al., 2020), therefore the median 234 

value was used for point prediction in the QRF model to enhance the accuracy of the prediction. 235 

 For the present study, the ranger package (Wright and Ziegler, 2017) as the fast implementation 236 

of RF especially fitted for high dimensional data  and the tuneRanger package (Probst et al., 2018) 237 

were applied for operating the QRF models in R software. 238 

Hyperparameters of Random Forest algorithms require to be tuned to gain bias-reduced assessment 239 

and better performances (Probst et al., 2018). tuneRanger package helps to identify the best RF 240 

hyperparameters for running the model using sequential model-based optimization (Hutter et al., 241 

2011; Jones et al., 1998; Probst et al., 2018). Regarding computing costs, 100 repetitions showed 242 

to be suitable for a fine convergence to an optimized adjustment (Lagacherie et al., 2020). 243 

 244 

2.3.2. Feature screening  245 

Determining the most important covariates to obtain the most accurate predictions is the purpose 246 

in numerous machine learning researches. Random Forest is not affected by a vast number of 247 

covariates; also more covariates than measurements can be applied (Hengl et al.,2018) and with a 248 

more expansive selection, the probabilities of having the most suitable covariates accessible to the 249 

algorithm will be enhanced (Khaledian and Miller, 2020). In terms of prediction, Random Forest 250 

can handle the correlated covariates, using bootstrap and an out-of-bag (OOB) strategy. 251 

Nonetheless, the covariate importance grade would be influenced if the covariates that are highly 252 

correlated to the really influential covariates getting picked up together and over-selected (Huang 253 

and Boutros., 2016; Strobl et al.,2007). Consequently, the most important covariates were selected 254 

using the Pearson correlation coefficients, principal component analysis (PCA), and QRF. The 255 

PCA explores underlying properties that summarize a group of highly correlated properties. In this 256 
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regard,  the Pearson correlation coefficients and the PCA of covariates were determined, and some 257 

covariate with similar information were omitted.   258 

 Then, the QRF was trained on the filtered covariates, and variables importance were ranked and 259 

further the least important covariates were removed. Finally, QRF was built using 41 selected 260 

covariates among 500 initially defined. In this study, a permutation-based method (Breiman, 2001) 261 

was used to measure the factor's importance. In this method, the variable is recognized as important 262 

if it positively influences the prediction's performance (Probst et al.,2018). 263 

 264 

2.3.3. Ordinary Co-Kriging  265 

     The co-kriging was applied as the best linear unbiased estimator, owning minimum estimating 266 

error variance (Wackernagel, 1995) which integrates a sparely measured primary variable with a 267 

more densely secondary variable to employs the cross-correlation of them (Grunwald, 2006). 268 

Ordinary co-kriging was applied using the package GSTAT R (Pebesma, 2004). The predicted soil 269 

properties employing CK can be formulated as Eq.17 (Li and Yeh., 1999). 270 

 271 

𝑓(𝑥)U =V𝜆X𝑓(𝑥X)
Y

XZ.

+V 𝜆[\𝑓]𝑥[^
_

`Z.
													(Eq. 17	) 272 

 273 

    Where 𝑓(𝑥)U	is	the	predicted value of soil properties, n and m are the numbers of locations with 274 

observed soil properties and secondary variables respectively, 𝑓(𝑥X)	and	𝑓]𝑥[^	 are; respectively, 275 

observed values of the soil property at location i and of the secondary variable at location j and 276 

	𝜆X	and	𝜆[\	are	the	CK weights of those observed values. Where the 𝜆X´			s and  𝜆 [́	’s solve the 277 

consequent cokriging method with ni+nj+2 equations to confirm the minimization of the MSE and 278 

unbiasedness:	 279 
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	280 
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(ln)
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r

qZ.

= 𝐶[,s	
(ln)																				𝑓𝑜𝑟	𝑗 = 1, … , 𝑛[							

V𝜆X			 = 1
Ym

XZ.

													𝑎𝑛𝑑																V𝜆´[			 = 0

Yo

[Z.

	(Eq. 18	) 281 

 282 

2.3.4. Regression Kriging 283 

Regression kriging incorporates the spatial dependency in the regression residuals into the kriging 284 

procedure (Hengl et al., 2004). This method combines the relationships between soil properties 285 

and spatial soil covariates through different linear and non-linear regression models with kriging 286 

of the regression residuals (Hengl et al., 2007; Vaysse and Lagacherie, 2017). The regression 287 

kriging (RK) of soil properties for location x, 𝑍}q(𝑥), is defined as the sum of regression estimate 288 

𝑍~(𝑥) and the estimate of spatially correlated residual values 𝜀��(𝑥) applying the subsequent 289 

equation (Hernndez-Stefanoni et al., 2011) (Eq.19): 290 

𝑍}q(𝑥) = 𝑍~(𝑥) + 𝜀��(𝑥)								(Eq. 19) 291 

 292 

2.3.5. Using EM38MK2 data in DSM 293 

In this study, the EM38MK2 data were used as surrogate soil inputs following three approaches 294 

that are detailed below. 295 

 296 

2.3.5.1. Approach 1: “ EM38MK2 as new measured sites”  297 

    As a first approach, we aim adding the sites measured with EM38MK2 to the set of laboratory 298 

measurements of ECe. A pedotransfer function that convert EM38MK2 values into real values of 299 
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ECe was first calibrated onto the 120  sites having the two measurements. Finally, a QRF model 300 

was built from all the sites data to find the relationships between ECe and the environmental 301 

covariates at each depth interval (Fig.3). In this case, the estimations of a pedotransfer function at 302 

the point with only EM38MK2 data were supposed to be accurate enough to be considered as real 303 

measurements of a soil ECe. This potentially substitutes a sparsely measured objective variable 304 

with a more dense soil ECe data, which has the benefit to improve covering the changes in soil 305 

ECe in the study area. Nevertheless, these extra approximations carry uncertainties that can 306 

influence the model's result. 307 

 308 

Fig. 3. Flowchart of the first approach 309 

 310 

        Stepwise multiple linear regression (SMLR) method was implemented to model correlation 311 

among soil ECe and the MK2-h-0.5, MK2-h-1.0, MK2-v-0.5, and MK2-v-1.0 data. The model was 312 

tested for the multi-co-linearity of the selected independent variables. Avoiding collinearity due to 313 

closely correlated variables, allowed us to achieve more precise models because applying the 314 
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collinear variables decreases the model's accuracy. In this analysis, the most suitable models were 315 

chosen based on the criteria with higher R2, lower RMSE, and employing Variance Inflation 316 

Factor and tolerance values (Kutner et al., 2005). 317 

 318 

Fig. 4. Flowchart of the second approach 319 

 320 

2.3.5.2. Approach 2 : “EM38MK2 as a new soil covariate”  321 

    In this second approach, the EM38MK2 data were used to produce exhaustive ECa maps that 322 

were added to the set of covariates applied by the DSM model that was built from the 120 sites 323 

with real measurements of EC. Four ECa maps were produced (MK2-h-0.5, MK2-h-1.0, MK2-v-324 

0.5, and MK2-v-1.0) on the basis of EM38MK2 measurements and the environmental covariates 325 

by calibrating QRF from the 210 sites with EM measurements. The most important ECa map 326 

regarding Pearson correlation coefficients, collinearity between MK2-h-0.5, MK2-v-0.5, MK2-h-327 

1.0, MK2-v-1.0 measurements, and QRF as feature selection algorithms was selected. This new 328 



18 
 

covariate was added to the set of covariates and a DSM model was calibrated using the 120 sites 329 

with real measurements (Fig.4). 330 

 331 

2.3.5.3. Approach 3 : “EM38MK2 as soft data of EC”  332 

   The third approach followed a regression co-kriging approach. A QRF model using as calibration 333 

data the 120 sites with real measurements was first built. Their residuals were calculated both on 334 

the sites with real measurements of EC (hard data) and on the sites with EC estimates obtained as 335 

described in section 2.3.5.1. (soft data). Regression co-kriging approach of the residuals using the 336 

former as hard data and the latter as soft data was performed. The final predictions were calculated 337 

by adding the cokriged residuals to the ECe values predicted by the QRF model. In this approach, 338 

we dealt with the uncertainties related with ECe estimations from ECa evoked for the first 339 

approach by considering residuals in regression co-kriging (Fig.5).  340 

 341 

Fig. 5. Flowchart of the third approach 342 

 343 
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      The three above-described approaches were compared to a baseline approach (approach 0) that 344 

consists in simply calibrating QRF from the 120 sites with ECe measurements, without considering 345 

the EM measurements. 346 

 347 

2.3.6. Comparing soil inputs with different sizes of ECe laboratory measurements  348 

         In the perspective of providing accurate soil maps with a fair expense and time, we explored 349 

the possibilities of reducing the costly ECe laboratory measurements in situations where may exist 350 

spatial sampling of EM38MK2 measurements. This part of the study was done only for the best 351 

out of the three above-mentioned approaches. 352 

In this respect, we produced two new spatial sampling of ECe measurements by sampling 50% 353 

and 75% of the sites with real measurements (120 sites) using a stratified random sampling method. 354 

EM38MK2 measurements were substituted to ECe at non-selected locations. Consequently, the 355 

first dataset contained 60 sites with real measurements and 120 sites with in-field EM38MK2 356 

measurements and the second dataset contained 90 sites with real measurements and 150 sites with 357 

in-field EM38MK2 measurement.   358 

 359 

2.3.7. Evaluation Protocol 360 

All the three tested approaches were evaluated from the 120 sites with real measurements.  361 

In order to use all the data and increase the robustness of the evaluation, the total dataset was 362 

divided randomly into ten folds with the same size on the basis of the k-fold cross-validation (k = 363 

10) method with 20 times replication. This strategy involved employing the first fold as an 364 

evaluation set and fitting the model on the left k-1 fold and k times was iterated until all folds had 365 

been utilised as the evaluation set. In this way, all three horizons' predictions of all soil data were 366 

compared with the observed data for the entire dataset. It should be noted that the production of 367 
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EC maps from EM measurements performed in approach 2 was included in the cross-validation 368 

loop. This ensured that the ECa maps used as covariates were not produced using EM 369 

measurements performed at the same locations as the validation sites, which guarantee an 370 

independent (and unbiased) evaluation . 371 

       The model's performances were evaluated, using mean square error skill score (SSmse) ( 372 

Nussbaum et al., 2018), root mean squared error (RMSE), normalized root mean square error 373 

(nRMSE), where RMSE is normalized by dividing by the means of the observed data, and mean 374 

error (ME). SSmse has the same interpretation as the R2 and is the percentage of variance that 375 

explained by the model. ME and RMSE also displayed estimation errors; nevertheless, RMSE has 376 

more sensitivity to outliers (Taylor,1997). Furthermore, we calculated the ratio of the performance 377 

to interquartile distance (RPIQ = (Q3 − Q1)/RMSE), where Q1 and Q3 are the first and third 378 

quartiles (Khaledian and Miller, 2020), considering the reliability of the prediction: very poor 379 

model (RPIQ < 1.4), fair (1.4 ≤ RPIQ < 1.7), good model (1.7 ≤ RPIQ < 2.0), very good models 380 

(2.0 ≤ RPIQ ≤ 2.5), and excellent models (RPIQ > 2.5).  381 

        For the models built from reduced sets of measurements, the number of samples in the 382 

calibration set was 60 and 90 sites, and the evaluation was conducted over the same sample size 383 

set (120 measurement sites). Consequently, in the K-fold cross-validation, for the former 384 

calibration set, the first fold plus 60 sites and for the latter calibration set, the first fold plus 30 sites 385 

were used as a validation set, and the model was fit on the rest K-1 folds. The MSE was measured 386 

on the sites in the held-out fold and 60 and 30 sites respectively and then RMSE, SSmse, and ME 387 

were calculated. 388 

 389 

3. Results  390 
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3.1. Statistical analysis 391 

3.1.1. Exploratory Data Analysis 392 

     Table 2 indicates the descriptive statistics of the soil ECe at the different depths before and after 393 

normalization and the ratio of soil moisture to the water content at field capacity. The 0.05 level 394 

of significance (Kolmogorov–Smirnov) was used for assessing the normality of distributions. Soil 395 

ECe showed positively skewed distributions and so were subjected to log-transformation, which 396 

agrees with the most frequently reported results. Hence, the model was created from the Log-397 

transformed data, and later the predicted EC was achieved by back transformation of data. With 398 

respect to the mean and Q1 to Q3 of ECe, the salinity varied from non-saline (< 2 dS m−1) to 399 

extremely saline (> 16 dS m−1) at all depths. In general, salinity was higher in the subsurface and 400 

subsoil.  401 

      To present soil ECe changes in vertical direction, the topsoil samples were classified into the 402 

common soil salinity classes (Richards, 1954): 0-2 dS m−1 (S1), 2-4 dS m−1 (S2), 4-8 dS m−1 403 

(S3), 8-16 dS m−1 (S4), and >16 dS m−1 (S5). Based on the soil salinity classes of the topsoil 404 

samples, the box plots were calculated for all layers. These plots showed that the mean values of 405 

ECe in subsurface and subsoil were higher than topsoil samples in all categories. By increasing in 406 

depth, approximately, soil categories seem to shift toward more saline ones, i.e., S1 in topsoil to 407 

S2 the subsurface, even S3 in the subsoil (Fig.6).  408 

      The ratio of soil moisture to the water content at field capacity showed that the water content 409 

was near field capacity with the mean value of 0.75 and 0.76 for topsoil and subsurface layers, 410 

respectively (Table 2), and electrical conductance was not limited by inadequate soil moisture in 411 

the study area. These results suggest that rising shallow saline and alkaline groundwater, high 412 
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temperature, and slightly salt leaching from the topsoil in winter result in salt accumulation in the 413 

subsurface because of insufficient drainage.  414 

 415 

Fig. 6. Calculated ECe (dS m−1) box plot based on soil salinity classes of topsoil samples. 416 

 417 

Table 2: Descriptive statistics of soil ECe (dS m-1) and water content (represented as percent of field capacity) in 418 
the study area 419 

Layer (cm) Min Max Mean SD CV% Q1 Median Q3 Skewness Kurtosis Kolmogorov

-Smirnov 

ECe 0-30  0.16 61.22 8.48 13.02 1.53 0.95 2.1 10.07 2.22 4.71 0.00 

ECe 30-60  0.10 58.90 11.39 13.94 1.22 1.52 4.58 16.99 1.62 1.93 0.00 

ECe 60-90  0.60 68.00 12.37 15.07 1.21 2.13 5.5 16 1.88 3.08 0.00 

Log ECe 0-30  -0.78 1.78 0.48 0.63 1.31 -0.02 0.32 1.00 0.36 -0.89 0.08 

Log ECe 30-60  -1.00 1.77 0.70 0.60 0.86 0.18 0.66 1.23 -0.07 -0.83 0.48 

Log ECe 60-90  -0.22 1.83 0.78 0.54 0.69 0.32 0.73 1.20 0.04 -0.96 0.77 

water content  

(% of FC) 0-30 

0.66 0.84 0.75 0.04 0.06 0.74 0.76 0.79 - - - 

water content 

 (% of FC)30-60 

0.65 0.87 0.76 0.06 0.08 0.70 0.75 0.83 - - - 

FC: Field capacity 420 

 421 
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 422 

3.1.2. Relationship between ECe and ECa data  423 

      For all the ECe and ECa data, Pearson correlation coefficients were calculated, as can be seen 424 

in Table 3, and indicated that the vertical (v) mode of EM38MK2 is strongly correlated with the 425 

horizontal (h) mode.  According to the results using EM38MK2 data will be informative to predict 426 

ECe and closely reflects the spatial distribution ECe (Corwin and Lesch., 2005). This could be 427 

relevant to the fact that the salt content mainly affected ECa in the saline area's soil (Rhoades, 428 

1990). The MK2-v-1.0 readings were used to produce exhaustive ECa map in the second approach 429 

with regard to the most significant correlation value between Log ECe and MK2-v-1.0 at all depths 430 

and collinearity between MK2-h-0.5, MK2-v-0.5, MK2-h-1.0,and MK2-v-1.0 measurements. In 431 

addition, feature screening using QRF confirmed that the MK2-v-1.0 was the most important 432 

covariate. 433 

      In order to evaluate the effect of soil moisture on ECa, the correlation coefficients between 434 

ECa readings and soil moisture were calculated (Table 3). The most significant correlation (r-435 

value) was obtained between MK2-v-1.0 and soil moisture in the subsoil layer (0.44), followed by 436 

the subsurface (0.40) and topsoil layer (0.37). These results revealed that salinity is the soil feature 437 

that controls the ECa measurement and could be applied to predict ECe at all depths in the study 438 

area with regard to the larger correlation value between ECe and ECa (Zhao et al., 2020). In 439 

addition, the correlation trend of soil moisture with the soil depth may be relevant to the average 440 

values of soil moisture in the subsoil layer (23.55%), which was more than the subsurface (20.53%) 441 

and the topsoil layer (19.63%). 442 

 443 

 444 

 445 
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Table 3: Pearson coefficients (r) between the ECe (dS m-1), ECa data and Soil Moisture. 446 

Layer (cm) ECe 

0-30 

ECe 

30-60 

ECe 

60-90 

MK2-h-0.5 MK2-v-0.5 MK2-h-1.0 MK2-v-1.0 Log ECe 

0-30 

Log ECe 

30-60 

Log ECe 

60-90 

SM  

0-30 

SM  

30-60 

SM  

60-90 

ECe 0-30 1 0.91** 0.77** 0.87** 0.87** 0.87** 0.86** 0.84** 0.73** 0.66** 0.27** 0.34** 0.36** 

ECe 30-60 0.91** 1 0.86** 0.87** 0.88** 0.88** 0.88** 0.86** 0.85** 0.78** 0.30** 0.40** 0.47** 

ECe 60-90 0.77** 0.86** 1 0.91** 0.93** 0.93** 0.92** 0.76** 0.75** 0.85** 0.33** 0.40** 0.47** 

MK2-h-0.5 0.87** 0.87** 0.91** 1 0.98** 0.98** 0.95** 0.75** 0.70** 0.72** 0.32** 0.39** 0.41** 

MK2-v-0.5 0.87** 0.88** 0.93** 0.98** 1 0.99** 0.98** 0.77** 0.72** 0.75** 035** 0.40** 0.42** 

MK2-h-1.0 0.87** 0.88** 0.93** 0.98** 0.99** 1 0.98** 0.77** 0.72** 0.75** 0.35** 0.40** 0.43** 

MK2-v-1.0 0.86** 0.88** 0.92** 0.95** 0.98** 0.98** 1 0.79** 0.75** 0.78** 0.37** 0.40** 0.44** 

Log ECe 0-30 0.84** 0.86** 0.76** 0.75** 0.77** 0.77** 0.79** 1 0.92** 0.80** 0.30** 0.35** 0.38** 

Log ECe30-60 0.73** 0.85** 0.75** 0.70** 0.72** 0.72** 0.75** 0.92** 1 0.86** 0.31** 0.36** 0.42** 

Log ECe60-90 0.66** 0.78** 0.85** 0.72** 0.75** 0.75** 0.78** 0.80** 0.86** 1 0.37** 0.39** 0.47** 

SM 0-30 0.27** 0.30** 0.33** 0.32** 0.35** 0.35** 0.37** 0.30** 0.31** 0.37** 1 0.66** 0.60** 

SM 30-60 0.34** 0.40** 0.40** 0.39** 0.40** 0.40** 0.40** 0.35** 0.36** 0.39** 0.66** 1 0.86** 

SM 60-90 0.36** 0.47** 0.47** 0.41** 0.42** 0.43** 0.44** 0.38** 0.42** 0.47** 0.60** 0.86** 1 

SM:Soil Moisture, **and * significant at the 0.01 and 0.05 level (2-tailed) respectively. 447 

 448 

      To establish calibration between ECa and ECe from soil samples, we applied SMLR between 449 

ECa data as independent variables and ECe as dependent variables for each depth of investigation.  450 

The SLMR was performed to the data from 120, 90 and 60 sampling sites and the results are 451 

summarized in Table 4. Fig. 7 showed the relationship between ECe (120 sites) and ECa of soil 452 

from the SMLR model. All the written regression equations meet the basic assumptions, including 453 

no or little multicollinearity among explanatory variables. According to the results, the recorded 454 

data in the 1.0-m vertical orientation allowed more reliable models (Heil and Schmidhalter., 2015) 455 

at the different depths and the models were satisfactory as regards calibration and thus the 456 

prediction of ECe. Besides, the correlation values between ECe and ECa were ranked as MK2-v-457 

1.0, MK2-h-1.0 (MK2-v-0.5), MK2-h-0.5 in all the soil layers, which can be related to an increase 458 

in average soil moisture with depth. 459 
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 460 

Table 4:  Summary of SMLR relationships between measured ECe and ECa (n = 120, 90, 60) 461 

 462 

 463 

 464 

 465 

 466 

 467 

 468 

 469 

 470 

 471 

 472 

Fig. 7. Plot of coefficient of determination (R2) achieved between the Log ECe (dS m−1) and MK2-V-1.0 473 

 474 

 LogECe = a + b ( MK2-v-1.0 ) 

Layer (cm) n a b R2 

ECe 0-30 cm (dS m-1) 120 0.092 0.003 0.63 

ECe 30-60 cm (dS m-1) 120 0.349 0.003 0.57 

ECe 60-90 cm (dS m-1) 120 0.457 0.002 0.61 

ECe 0-30 cm (dS m-1) 90 0.096 0.003 0.63 

ECe 30-60 cm (dS m-1) 90 0.334 0.002 0.56 

ECe 60-90 cm (dS m-1) 90 0.460 0.002 0.63 

ECe 0-30 cm (dS m-1) 60 0.01 0.072 0.60 

ECe 30-60 cm (dS m-1) 60 0.24 0.079 0.56 

ECe 60-90 cm (dS m-1) 60 0.41 0.060 0.56 
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Table 5: Performances of the different approaches 475 

      R^2 RMSE nRMSE ME RPIQ 

Approache 1  

ECe 0-30 cm 

 (dS m-1)  

0.67 7.55   0.89 -2.38 1.21 

Approach 2 0.72 7.61  0.89 -2.66 1.20 

Approach 3 0.76 6.26  0.73 -0.32 1.46 

Base Approach  0.69 7.21  0.85 -1.63 1.26 

Approache 1  

ECe 30-60 cm  

(dS m-1)  

 

0.68 7.95 0.69 -2.09 1.95 

Approach 2 0.71 7.76 0.68 -2.22 1.99 

Approach 3 0.79 6.61 0.58 -0.13 2.34 

Base Approach  0.70 7.52 0.66 -1.57 2.06 

Approache 1  

ECe 60-90 cm  

(dS m-1)  

0.71 8.47 0.68 -2.50 1.64 

Approach 2 0.75 8.06 0.65 -2.08 1.72 

Approach 3 0.77 7.72 0.62 -0.08 1.80 

Base Approach  0.73 7.94 0.64 -1.35 1.75 

 476 

3.2. Prediction of spatial distribution of ECe  477 

      Table 5 indicates the performances for the three tested approaches for mapping electrical 478 

conductivities, through the cross validation procedure for different depth intervals. The first 479 

approach which relied on using EM38MK2 as measured points, showed the lowest performance 480 

and did not bring any improvement of the baseline approach. The second approach which use a 481 

spatially exhaustive ECa map, presented only a very slight improvement from the baseline 482 

approach. Conversely, the third approach which use Regression cokriging, improved significantly 483 

the performances compared to the baseline approach, especially for the subsurface soil layers (30-484 

60 cm). In terms of RMSE, the approaches resulted in approximately the same prediction accuracy; 485 

which is related to the dependency of RMSE to the observed data's range. The RMSE values for 486 

the topsoil, subsurface, and subsoil layers were, respectively, 6.26, 6.61, 7.72 dS m−1, which are 487 

acceptable regarding the wide range of ECe (61.06, 58.8, 67.4 dS m−1) in the study area. The 488 
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RPIQ values ranged between 1.46 to 2.34, which exhibited that the third approach were accurate 489 

concerning the equivalent ranges of dataset spread. In addition, the predicted ECe by the third 490 

approach was, in general, unbiased given the small ME. The third approach showed an increasing 491 

trend in R2 and RPIQ with increasing depth to subsurface layer, and a reverse trend for nRMSE 492 

and ME. Furthermore, the subsurface layer’s prediction performances outperformed the subsoil 493 

layer concerning the R2, nRMSE, RMSE and RPIQ. 494 

Table 6: Performances of approach 3 with the different sample size 495 
 496 

  Approach 3 Base Approach  

ECe (dS m-1) n R^2 RMSE ME R^2 RMSE ME 

ECe 0-30 cm  n:120 0.76 6.26 -0.32 0.69 7.21 -1.63 

ECe 30-60 cm  0.79 6.61 -0.13 0.70 7.52 -1.57 

ECe 60-90 cm  0.77 7.72 -0.08 0.73 7.94 -1.35 

ECe 0-30 cm  n:90 0.64 9.28 -1.40 0.56 9.60 -1.8 

ECe 30-60 cm  0.70 8.76 -1.18 0.62 9.15 -1.47 

ECe 60-90 cm  0.74 8.58 -1.03 0.69 8.94 -1.19 

ECe 0-30 cm  n:60 0.48 10.73 -1.52 0.39 11.38 -1.69 

ECe 30-60 cm  0.54 10.78 -3.00 0.44 11.29 -3.04 

ECe 60-90 cm  0.49 11.9 -4.25 0.40 12.88 -4.48 

 497 

   3.3. Effect of calibration models with different sample set sizes 498 

       According to the financial expenditure of soil analysis, choosing an optimal sample size to 499 

merge laboratory analysis and in-field EM38MK2 measurement as a surrogate data, was done on 500 

the third approach as the best above-mentioned method. Table 6 summarizes R2, RMSE and ME 501 

values, resulting from the approach validations for soil depths regarding the approach's type and 502 

sample's size. Table 6 illustrate that prediction accuracy improves with the increasing sampling 503 

size for all approaches and soil depths. 504 
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        Comparison of the large size (120 soil sample) dataset models' accuracy with a medium size 505 

(90 soil sample) and small size dataset (60 samples) models' accuracy, showed that with decreasing 506 

sample sizes, differences between the third approach and base approach predictions increased. 507 

Nevertheless, the decreasing rate in the model's accuracy differs, and the highest reduction 508 

happened in the subsurface layer (0.3–0.6 m). This results revealed the importance of merging 509 

EM38MK2 data in the sparse dataset to cover the variation of the target variables in the study 510 

region, especially when there is a lack of intensive field data. 511 

 512 

3.4. Spatial distribution of soil salinity 513 

Spatial distributions of soil salinity content as mapped by approach three are shown in Fig.8. The 514 

main spatial distribution patterns of soil salinity in all soil depths revealed the directional reduction 515 

of the soil salinity from the coastal lake area to the further away region, and therefore at the outside 516 

margin, soil salinity did not affect the normal plant's growth. This distribution may be attributed 517 

to the different environmental and human-induced elements, notably comprising groundwater 518 

level, topography, drainage, saline irrigation water, and soil management manners. 519 

4. Discussion 520 

4.1. Added value of EMI data 521 

The SMLR equations for converting EM38MK2 data into ECe data, in order to predict ECe from 522 

EMI data in the sites without soil sampling, conveyed uncertainties that could be explained by 523 

the fact that ECa readings were affected by diverse soil properties, for instance, soil texture and 524 

soil moisture, although salinity is commonly the soil feature that controls the ECa measurement  525 

 526 

 527 

 528 
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 529 

Fig.8. Predicted maps of ECe (dS m−1) for the entire study region: (a) 0–30 cm, (b) 30–60 cm, (c) 60–90 cm. 530 

 531 
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(Lesch et al.,1998; Rhoades et al.,1990; Slavich 1990; Taghizadeh-Mehrjardi et al.,2014). In 532 

addition, this may be related to the quite different volumes of soil measured by the EM38MK2 533 

survey and the soil samples provided using a rotating auger from the three equal soil depth ranges 534 

(0–0.3 m, 0.3–0.6 m, and 0.6–0.9 m) to measure ECe (Martini et al., 2013; Rhoades et al.,1990). 535 

Calibration of ECa measurements using linear regression model were already used by Taghizadeh-536 

Mehrjardi et al. (2014; 2016), Ding and Yu (2014) and numerous studies documented these 537 

approaches (Feikema and Baker., 2011; Herrero and Hudnall., 2014; Rhoades et al., 1990; 538 

Slavich., 1990; Triantafilis et al., 2000; Triantafilis and Buchanan., 2010; Yao and Yang., 2010). 539 

Other researchers (Khongnawang et al., 2019; Zhao et al., 2020) have reported that where a direct 540 

linear regression model between soil properties and ECa can not be set up, ECe may be mapped 541 

by creating a linear regression among estimates of true electrical conductivity with soil properties. 542 

According to the results, the ECa map provided by the readings of the 1.0-m vertical configuration 543 

is the most important covariates in approach 2, which can be related to an increase in average soil 544 

moisture with depth. Heil and Schmidhalter (2015), Taghizadeh-Mehrjardi et al.,(2014) and Wang 545 

et al., (2021) reported the similar results for soil texture and ECe predictions at surface and 546 

subsurface of the soil.  547 

The results indicated that inclusion of soil ECa had more advantages for enhancing the ECe 548 

prediction in the subsurface layer (0.3–0.6 m) which can be related to the effective depth of the 549 

instrument. Heil and Schmidhalter (2015) described that the vertical mode's sensitivity at a coil 550 

distance of 1 m is most significant at nearly 0.4 m under the device, while the horizontal mode's 551 

sensitivity is highest at a depth of 0.2 m under the device. The complicated correlations between 552 

soil ECa, terrain features, and soil properties hamper soil ECa data analysis for mapping the target 553 

variable (Lu et al., 2017). 554 
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 555 

4.2.  EMI integration approach 556 

The comparisons of the EMI integration approaches showed strong differences in performances 557 

across the three approaches with only a significative improvement of ECe prediction performances 558 

when EMI measurements are integrated through the regression co-kriging approach. 559 

Although a larger number of sites were used for calibrating the RF algorithms in approach 1, we 560 

did not observe an improvement of the results as observed by Somarathna et al., 2017, Wadoux et 561 

al., 2019a, Lagacherie et al., 2020 and Styc et al., 2021. Conversely, the introduction of pseudo 562 

values of ECe derived from EMI measurements decreased the performances, which revealed the 563 

sensitivity of RF calibration to the uncertainty of data inputs. Alternate models that better account 564 

for such uncertainty (Wadoux et al., 2019b) should be applied for improving these results

          The results of approach 2 revealed that using a new covariate obtained from EM38MK2 566 

measurements did not improve significantly the predictions of ECe. Already, Taghizadeh-567 

Mehrjardi et al., 2014 and Wang et al., 2021 investigated soil salinity variation via a regression 568 

tree analysis and RF algorithms respectively. Contrary to our result, they emphasized the 569 

importance of EM38 data. Taghizadeh-Mehrjardi et al., (2014) performed regression kriging to 570 

map ECa data using cubist (regression tree) and kriging with local variograms of residuals to model 571 

the deterministic spatial trend and stochastic variation of the spatial model. Although an increase 572 

in performance was observed by the residual analysis, estimation performances were still biased 573 

according to the reported results. Wang et al., (2021) created ECa map using RF algorithms 574 

through environmental variables and electrical magnetic induction data. Then, to study the ECa 575 

data's influence on EC prediction, all environmental covariates, including and excluding ECa, were 576 

used to generate the EC prediction model. In comparison to our study, regarding the impact of the 577 
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good correlation between ECe and EM data on the one hand, and sensitivity of the uncertainty 578 

indicators (e.g., R2, ME) to the size and the positions of the soil measurements utilized for 579 

determining them (Lagacherie et al., 2019) on the other hand, might reveal why different results 580 

have been achieved. To avoid these, we used the same test sets in parallel to provide ECa and ECe 581 

maps. However, to investigate the models results other influential factors such as spatial density, 582 

the range of soil measurements and the environmental covariates need to be considered. 583 

         For all the soil layers, a significant increase in performance was observed for approach 3 584 

using regression co-kriging, especially for subsurface soil properties for which the remote sensing 585 

data were less appropriate. Taghizadeh-Mehrjardi et al., (2014) reported more reliable predictions 586 

in the soil surface layer than the subsoil layer related to the soil's moisture condition. Because the 587 

lower conductivity in the soil with a lower moisture content results in restricted penetration ability 588 

of EMI signals (Wang et al., 2021) and the accurate EMI data will be achieved when the soil profile 589 

contains near to field capacity water content (Corwin and Lesch., 2013; Corwin and Scudiero., 590 

2016). Besides, the more reliable results that have been observed in the subsurface layers might be 591 

relevant to this fact that the response of EM38 is affected by various indirect factors, including soil 592 

type and texture (Corwin and Scudiero.,2016) as clay content in some part of the basin exceeds 593 

35% in the subsurface horizon of soils (Abtahi,1980; Khormali et al.,2003). Concerning the 594 

undefined range of adequate water contents in the previous studies (Corwin and Lesch., 2013; 595 

Triantafilis et al., 2001;  Moghadas et al., 2016), and the mean and Q3 of the ratio of soil moisture 596 

to the water content at the field capacity, these results might be due to the more suitable condition 597 

for ECa surveys in the subsurface layer compared to the topsoil layer. 598 

RPIQ, a dimensionless metric that represent the population spread (Bellon-Maurel et al., 2010), 599 

revealed the superiority of the third approach better than RMSE, which is related to the dependency 600 
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of RMSE to the observed data's range (Aman et al., 2015). The RMSE values for the topsoil, 601 

subsurface, and subsoil layers were, respectively, 6.26, 6.61, 7.72 dS m−1, that mainly due to the 602 

wide range of soil salinity in the study region and the smaller sample size in the extremely saline 603 

soils such as lowland and alluvial plains (Wu et al., 2018; Wang et al., 2020). This result was 604 

comparable with Koganti et al. (2017), who obtained an RMSE value of 8.31 dS m−1, in the region 605 

that the overall range in ECe was 111 dS m−1, and Taghizadeh-Mehrjardi et al. (2014), who 606 

reported the RMSE value ranged between 37.5 and 38.4 dS m−1, which is related to the wide range 607 

of ECe (244.4 and 237.3 respectively). Furthermore, Wang et al., (2020) and Zare et al., (2015) 608 

achieved RMSE values of 6.46 and 5.28 dS m−1 in the region that the range of soil salinity varies, 609 

respectively from 0.15 to 77.90 and from 1.9 to 70.3 dS m−1. 610 

   The combined effects of the correlation between estimated and predicted values by the QRF 611 

model and incorporation regression co-kriging on residuals by considering the uncertainties and 612 

bias of the first approach, result in more precise prediction in comparison with the other methods. 613 

Coupling regression co-kriging on residuals revealed the effect of the first and third quantiles of 614 

data especially in the topsoil (0–0.3 m) and subsurface (0.3–0.6 m) soil ECe with lower median 615 

value than mean value. 616 

 617 

4.3. Effect of different sample set sizes  618 

     Our results clearly showed that the performances of our DSM approach were strongly affected 619 

by the size of the calibration data sets. These results confirmed the previous finding of Lagacherie 620 

et al., (2020) who verified that the average spacing, strongly influenced the results of a DSM 621 

approach, and of Somarathna et al. (2017) and Wadoux et al. (2019a) who, regardless of the 622 
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algorithms applied to make the DSM models, reported that increasing the amount of input data 623 

results in the better performances of Soil Carbon Mapping. 624 

      However, our results demonstrated also that using EM38MK2 data was a solution for partially 625 

mitigating the sparsity of costly measurements of soil salinity. The gain of performance obtained 626 

by integrating EM38MK2 increased as the sizes of ECe measurements decreased. Therefore, by 627 

raising the number of measured sites, EM38MK2 data can be a valuable input for broader scale 628 

digital soil mapping of ECe where measurements possibilities are much more limited than for this 629 

case study. Lagacherie and Gomez (2018), reported that using the VNS-I estimates instead of 630 

costly laboratory analysis will be a good decision in the areas where denser spatial sampling is 631 

essential for covering the variations.  632 

 633 

4.4. Insights on soil salinity distribution 634 

    Most saline soils are located in the lake bankside and central parts of the basin that Quaternary 635 

sediments with different degrees of salinity make the substratum. Due to the high solubility of 636 

halite minerals in salt domes (Hormuz salt formation) and also evaporite formations such as the 637 

Sachun, these formations could probably be the major potential source of soil salinity in the study 638 

area. Previous studies indicated that the poor quality of the groundwater is mainly relevant to the 639 

salt domes and, to a lower degree, from evaporitic and argillitic units (Raeisi et al., 1996). In 640 

addition, Raeisi et al.,(1996) and Samani and Gohari (2001) reported that the general flow direction 641 

in the Sarvestan basin is downdip from southeast to northwest (from the plain to the Maharlu 642 

Lake). Besides, Abtahi., 1980 demonstrated that intensive evaporation from the saline water table, 643 

could be a potential source of soil salinity. Therefore, it can be inferred that salt domes and gypsum 644 

layers through the runoff and seepage affect groundwater quality and surface deposits, eventually 645 
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extend the soil salinity in the study region, especially with regard to the intensive conditions 646 

throughout recent years, including droughts, an increase in demand for water resources as well as 647 

the excessive use of chemical fertilizers. 648 

 649 

5. Conclusions 650 

    The main lessons of this research works are as follows: 651 

• EM38MK2 could be used in DSM as a surrogate input data for mapping soil salinity 652 

• The selection of an appropriate method for integrating such new input is crucial. 653 

Regression co-kriging seems to be the best method to do so. 654 

• The impact of EM38MK2 data on the gains of performance is become greater and greater 655 

as the sizes of real measurements of soil salinity decrease. 656 

     The present study's contribution is the development of a method for mapping electrical 657 

conductivities based on merging the sites with EM38MK2 data and its processing products, in situ 658 

ECe data and spatially exhaustive covariates which have not been considered generally for DSM 659 

studies. Three different approaches are tested for putting in synergy real measurement and 660 

EM38MK2 data. The developed methods suggest that EM38MK2 products could be coupled to 661 

enhance the accuracy of DSM outputs, especially where the remote sensing data were less relevant. 662 

Hence, in other areas worldwide that soil sensing as alternative data is accessible, this research's 663 

future utilization could be possible as a promising way to tackle one of the essential constraints of 664 

DSM. The correlations between measured and predicted values and, using regression cokriging on 665 

residuals, were the main reasons for the best-proposed method's capability, comparing to the other 666 

approaches.  667 
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      Comparing the models' accuracy with different dataset sizes revealed that the model's 668 

prediction accuracy could increase with increasing the sample set's size. According to soil 669 

analysis's financial expenditure, increasing sample size in the EM38MK2 survey is an appropriate 670 

way for covering the variation of the target variables, especially when there is a lack of intensive 671 

field measurements.  672 

      Digital soil mapping presents critical information for practical soil rehabilitation programs, 673 

policy-making, and natural resources managing. Here, the extended method is simple and clear to 674 

reclaim using cheap EM38MK2 data and freely available remote sensing images from its online 675 

sources. However, EM38 survey in arid conditions or shallow soils above bedrock is especially 676 

problematic because conductance through the liquid pathway reduced when there is insufficient 677 

moisture through the depth of investigation. Other soil sensing such as different proximal soil 678 

sensing data, remote sensing images, and even unmanned aerial vehicles' images (drone) are 679 

suggested as a promising alternative to direct soil measurements that could provide much denser 680 

spatial samplings, under some measurement conditions. 681 
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