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A B S T R A C T   

The widespread use of perfluoroalkyl substances (PFAS) is resulting in a broad human exposure to these 
endocrine disrupting chemicals (EDCs), prompting biomonitoring research to evaluate its magnitude and impact, 
especially during critical windows of exposure such as fetal and perinatal periods. This study was focused on 
developing a method to determine 10 PFAS in placental tissue by combining salt-assisted liquid-liquid extraction 
with dispersive liquid-liquid microextraction and using liquid chromatography-tandem mass spectrometry. 
Chemometric strategies were applied to optimize the experimental parameters. The limit of quantification was 
0.02 ng g− 1 for all analytes, and the inter-day variability (as relative standard deviation) ranged from 7.9% to 
13.8%. Recoveries ranged from 88.2% to 113.9%. The suitableness of the procedure was demonstrated by 
assessing the targeted compounds in 20 placenta samples. The highest concentrations were recorded for per
fluorooctanoic acid and perfluorooctane sulfonate, with maximum concentrations of 0.62 and 1.02 ng g− 1 and 
median concentrations of 0.13 and 0.53 ng g− 1, respectively. Median concentrations of the other PFAS ranged 
from detected values to 0.08 ng g− 1. This analytical procedure yields useful data on fetal exposure to PFAS.   

1. Introduction 

Perfluoroalkyl substances (PFAS) are widely utilized in the manu
facture of numerous types of domestic and industrial materials. Their 
high thermal and chemical stability has led to their incorporation in 
firefighting foams, impregnating agents, and surface coatings for furni
ture, textiles, paper products, and kitchenware, among others [1]. The 
resulting continuous human exposure to PFAS is well documented in 
biomonitoring studies [2–4] and there is increasing evidence of their 
negative impact on health. For instance, PFAS exposure has been 
implicated in various endocrine disorders, including subfertility in 
women [5], reduced testosterone levels in men [6], and insulin resis
tance or elevated serum lipids [7,8]. Indeed, two of the most common 

PFAS, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate 
(PFOS), have been designated as endocrine disrupting chemicals (EDCs) 
[9–11]. 

The persistence, bioaccumulation, and possible harmful effects of 
PFAS have prompted to officially avoid or minimize exposure to PFOA, 
PFOS, perfluorohexanoic acid (PFHxA), and perfluorohexane sulfonate 
(PFHxS) [12–14]. In this line, the European Food Safety Authority 
(EFSA) [14] recently established the tolerable weekly intake (TWI) of 
PFOA and PFOS to 6 ng [kg bw]− 1 and 13 ng [kg bw]− 1, respectively. In 
addition, the European Human Biomonitoring Initiative HBM4EU (htt 
ps://www.hbm4eu.eu) has been launched to generate high-quality ev
idence on the exposure of Europeans to priority chemicals, including 
PFAS, and on the health repercussions. 
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The health impact of PFAS on the fetus, new-born, and child is of 
special concern. PFAS exposure has been associated with abnormal fetal 
growth and behavioral disorders in children [15–17], and prenatal 
exposure to PFOA and PFOS has been linked to low birth weight, 
although the results were not conclusive [18,19]. In addition, maternal 
serum concentrations of the long-chain PFAS perfluorodecanoic acid 
(PFDA) and perfluoroundecanoic acid (PFUnA) have been related to a 
higher risk of miscarriage [20]. Some gender differences in their effects 
have been observed. Thus, cord blood concentrations of PFOS and PFOA 
were associated with an increased risk of congenital cerebral palsy in 
Danish boys but not girls [21], and it was suggested that cord plasma 
PFOA may increase thyroxine hormone levels in new-born girls but not 
boys [22]. Rodent studies have associated exposure to PFOA and PFOS 
during gestation with reduced postnatal survival, lower birth weight, 
decreased pup growth, altered lactation, and disrupted thyroid function 
[23–25]. 

Research on the effects of exposure during pregnancy has revealed 
the presence of PFAS in placental tissue, a complex matrix in which 
xenobiotics are usually present at low concentrations, requiring an 
adequate technique for their detection and measurement [26–28]. 
Large-scale biomonitoring studies need methods that are not only ac
curate and sensitive but also rapid, inexpensive, and easy to apply. To 
date, biomonitoring studies have used classical extraction with solvents 
[26,28], sometimes followed by solid phase extraction (SPE) to 
concentrate and/or clean-up samples [27]. These procedures offer low 
limits of detection (LODs) and reliable results, but they require long 
extraction times and repeated extraction cycles, reducing their useful
ness for extensive biomonitoring. In relation to other typical bio
monitoring matrices as serum or breast milk, most of proposed 
procedures are based on several manual and automated SPE modalities 
[29–31]. Nevertheless, some microextraction methodologies, with a 
remarked PFAS extraction specificity, have been applied in environ
mental matrices [32,33]. 

The combination of salt-assisted liquid-liquid extraction (SALLE) and 
dispersive liquid-liquid microextraction (DLLME) has achieved 
remarked extraction efficiencies for numerous sorts of compounds in 
various complex matrices [34–37] and may offer an alternative. This 
approach has demonstrated high extraction efficacy for most 
non-hydrophilic compounds, combining the capacity of SALLE to extract 
chemicals with the ability of DLLME to provide elevated enrichment 
factors. This combination has been used to measure pesticide and her
bicide concentrations in fish [38], maize [39], vegetables [40] and milk 
[41], among other complex matrices, and to analyze the presence of 
bisphenol A in canned foods [42,43]. However, this binary extraction 
system has been little used to measure xenobiotic concentrations in 
human matrices and, to our best knowledge, it has not previously been 
used to study PFAS concentrations in human placenta samples. 

The purpose of this study was to develop and validate a method to 
assess 10 PFAS in placental tissue using SALLE combined with DLLME 
and LC-MS/MS. The proposed procedure was applied to 20 placenta 
samples from anonymous donors. 

2. Materials and methods 

2.1. Chemicals and reagents 

All reagents were analytical grade unless otherwise specified. Water 
(18.2 MΩ cm) was purified using a Milli-Q system from Millipore 
(Bedford, MA). Perfluorohexanoic (PFHxA), perfluoroheptanoic acid 
(PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid 
(PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 
(PFUnA), perfluorododecanoic acid (PFDoA), perfluorotridecanoic acid 
(PFTrA), perfluorohexane sulfonate (PFHxS), and perfluorooctane sul
fonate (PFOS) were purchased from Sigma-Aldrich (Madrid, Spain). 
Mass-labelled internal standards (13C5-PFHxA, 13C4-PFOA, 13C2-PFDA, 
13C2-PFDoA, 13C4-PFOS) were supplied by Wellington Laboratories 

(Ontario, Canada). Individual solutions of target analytes and internal 
standards (200 mg L− 1) were prepared in acetonitrile and stored at 4 ◦C. 
Solutions were stable for at least six months. Standard mixtures were 
prepared with acetonitrile. A set of solutions from 2.0 to 200 μg L− 1 were 
used for optimization, calibration, and validation purposes. 

HPLC-grade hexane and trichloromethane (TCM) were purchased 
from Merck (Darmstadt, Germany), and phosphate buffer saline (PBS), 
sodium chloride, calcium chloride, magnesium sulfate, ammonium ac
etate, LC–MS grade acetonitrile, and acetic acid from Sigma-Aldrich 
(Madrid, Spain). Collagenase type-I from Clostridium histolyticum was 
supplied by Sigma-Aldrich. The enzymatic solution was prepared 
immediately before use by dissolving 1 mg of enzyme powder in 10 mL 
of PBS medium (0.01 M, pH = 7.4) with the presence of 5 mM Ca2+. 

2.2. Analytical equipment and software 

LC–MS/MS analyses were conducted with a NexeraXR LC-20A liquid 
chromatography instrument (Shimadztu, Japan) and a QTRAP MS/ 
MS4500 mass spectrometer (AB Sciex, Framinham, MA). Statgraphics 
Centurion XVI 16.0.07 (Manugistics Inc., Rockville, MD) was used for 
statistical analyses. Placenta samples were homogenized with a Mixer B- 
400 (Buchi Labortechnik AG, Switzerland), and the collagenase enzy
matic treatment was performed using a Hei-MIX incubator 1000 (Hei
dolph Instruments GmbH & Co, Germany). 

2.3. Sample collection and storage 

Placental samples were collected from 20 volunteers after the de
livery (San Cecilio University Hospital of Granada, Spain). Informed 
consent documents, approved by the Institutional Ethical Committee of 
San Cecilio University Hospital, were signed by all donors. After being 
examined and accurately weighed, half of the placenta (maternal and 
fetal sides as well as central and peripheral parts were included) was 
homogenate in a glass container of the Mixer B-400. Aliquots of 35 g 
were coded and stored at − 86 ◦C until chemical analysis. 

2.4. Preparation of positive control (spiked) samples 

The method was optimized and validated using a pool of three ho
mogenized placenta samples. Pooled samples were spiked at 0.5 ng g− 1 

for optimization purposes and at concentrations ranging from 0.02 to 
2.0 ng g− 1 for validation purposes (calibration curves and recovery 
assay). Spiking was carried out by adding 10 μL of the corresponding 
solution (see section “chemical and reagents”) to 1-g aliquots of the 
pooled sample. In the case of mass-labelled internal standards, samples 
were spiked at 0.25 ng g− 1 with 25 μL of a solution containing 13C5- 
PFHxA, 13C4-PFOA, 13C2-PFDA, 13C2-PFDoA, and 13C4-PFOS at 10 μg 
L− 1. 

2.5. Sample liquefaction by enzymatic treatment 

For this treatment, 1 g of homogenate was placed in a polypropylene 
centrifuge tube, followed by the addition of 2 mL of collagenase solution 
and incubation at 37 ◦C for 4 h. 

2.6. Sample treatment 

First, 6.0 mL of acetonitrile (saturated with hexane) was poured over 
the liquefied sample, and the resulting mixture was agitated by vortex 
for 30 s. Then, 600 mg of NaCl were added and 60 s of manual shaking 
was performed, with the subsequent centrifugation at 4000 rpm for 10 
min (2600×g). The supernatant was deposited in a 7 mL glass vial, 
concentrated to 1 mL under a nitrogen stream, and poured into a 15 mL 
screw-cap glass test tube, with the addition of 10.0 mL of 6% NaCl 
aqueous solution (w/v) at pH of 2, being ready for the DLLME process. 
Next, 800 μL of TCM were rapidly injected using a syringe, and the 
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mixture was gently shaken for 60 s and centrifuged for 5 min at 4000 
rpm (2600×g). All the sedimented phase was transferred to a glass vial 
and dried under a nitrogen stream. The residue was dissolved with 100 
μL of a 30:70 (v/v) mixture of 5 mM ammonium acetate (pH 4.5) and 
acetonitrile and then vortexed for 30 s, being ready for injection into the 
LC-MS/MS system. 

2.7. Chromatography and mass spectrometry conditions 

A Gemini C18 column (100 mm × 2 mm i.d., 3 μm particle) from 
Phenomenex (Torrance, CA) was used for chromatographic purposes. 
Injection volume and temperature maintained in the column were 10 μL 
and 25 ◦C, respectively. PFAS were separated using a gradient mobile 
phase consisting of 5 mM ammonium acetate (pH = 4.5) aqueous so
lution (solvent A) and acetonitrile (solvent B). Gradient conditions were 
as follows: 0.0–1.0 min, 30% B; 1.0–5.0 min, 30–60% B; 6.0–8.0 min, 
70% B; 8.0–8.50, 70–90% B; 8.50–9.50, 90% B and back to 30% in 0.1 
min. Flow rate was 0.35 mL min− 1. Total run time was 12.0 min. 

Compounds were determined in negative ion mode, using the 
selected reaction monitoring (SRM) mode and unit mass resolution for 
Q1 and Q3. Perfusion of standard solutions (50 μg L− 1) were conducted 
in order to optimize mass spectrometry conditions. Ion source temper
ature and capillary voltage were set at 400 ◦C at − 4.5 kV respectively. 
Nitrogen was used as curtain gas at 35 psi and as ion source gas 1 and 2 
at (40 psi). All electric potentials related to the spectrometric process 
were conveniently adjusted for each compound. Regarding dwell time, a 
value of 50 ms was adopted. Table 1 compiles the optimal values for 
each compound and their corresponding diagnostic signals (SRM MS/ 
MS transitions). 

2.8. Quality control 

Background contamination was controlled by analyzing procedural 

blanks. No quantifiable concentrations of target PFAS were recorded. In 
addition, a pool of placental tissue spiked at 0.5 ng g− 1 and 2.0 ng g− 1 

was injected in triplicate every 15 injections. 

3. Results and discussion 

3.1. Optimization of SALLE conditions 

The acetonitrile volume and manual shaking extraction time were 
optimized using univariate experimental designs. Figs. S1 and S2 depict 
the upward trend of extraction efficacies at larger volumes and longer 
times, reaching a plateau from 6.0 mL of acetonitrile and 60 s of 
extraction time. 

The influence of NaCl and MgSO4 masses was studied using a com
posite experimental design with six replicates at the central point (two- 
level factorial 22 experimental design with star points). The experi
mental domain of this design is summarized in Table S1. Extraction ef
ficacies for all target PFAS were found strongly dependent on NaCl mass, 
whereas the effect of MgSO4 mass was not significant. As an example, 
Fig. 1 shows that the highest extraction efficacies were obtained at the 
maximum NaCl mass and that selection of a null mass of MgSO4 did not 
reduce the extraction yield. Therefore, 600 mg of NaCl was adopted as 
optimal value, with no addition of MgSO4. 

3.2. Optimization of DLLME conditions 

After establishing SALLE conditions, multivariate experiments were 
performed to optimize the response (absolute chromatographic peak 
area) for each PFA in relation to the experimental DLLME parameters, i. 
e., TCM volume, pH of aqueous solution, percentage NaCl in aqueous 
solution, and extraction time. The effect of these variables on signal 
response intensity (peak area) were examined using a two-level 24 

factorial experimental design, with six replicates of the central point (the 
design was executed twice). Range and domain of this assay are shown 
in Table S2. Fig. 2 depicts the standardized effects of the evaluated pa
rameters for four PFAS, taken as examples. A clear positive influence of 
NaCl mass and TCM volume was observed for all target compounds, 
while the standardized effects of pH and extraction time were not sta
tistically significant for any compound except for PFOS, which showed a 
small effect of extraction time. Therefore, a pH value of 2 and extraction 
time of 60 s were selected to evaluate the optimal values of TCM volume 
and percentage NaCl by the use of a quadratic response surface design. 

A Doehlert design was executed (six central point replicates), 
because of practical advantages of this type of chemometric procedure 
compared to other response surface designs [44]. The experimental 
domain is described in Table S3. Maximum peak area values were ob
tained between central and high levels of the studied variables, as 
illustrated in Fig. S3. Consequently, the desirability function was used to 
obtain the optimal values. This chemometric procedure makes it 
possible to determine the best compromise values of experimental fac
tors for multiple simultaneous responses. Thus, the ideal desirability 
value would be the unit (i.e. all individual responses would be opti
mized). In the present case, a maximum desirability value of 0.76 was 
obtained with 800 μL TCM and 6% NaCl. Fig. 3 depicts the response 
surface associated with the desirability function obtained. 

3.3. Analytical performance and method validation 

According to US Food and Drugs Administration guidelines [45] and 
the criteria specified in EU Commission Decision 2002/675/EC [46] a 
proper evaluation of analytical merits was performed in terms of line
arity, sensitivity, accuracy (trueness and precision) and selectivity. 

A calibration function was established for each PFA using ten con
centration levels (four replicates) from 0.02 to 2.0 ng g− 1, plotting the 
analyte/mass-labelled surrogate peak area ratio against the analyte 
concentration. The matrix effect (ME) was evaluated by comparing the 

Table 1 
Selected transitions and optimized potentials.  

Compound Transitions DP (V) EP (V) CE (V) CXP (V) 

PFHxA 313.0 → 269.0a 

313.0 → 119.0b 
− 43 
− 43 

− 8 
− 8 

− 12 
− 27 

− 10 
− 9 

13C5-PFHxA 318.0 → 272.9a 

318.0 → 121.0b 
− 32 
− 32 

− 10 
− 10 

− 12 
− 30 

− 11 
− 10 

PFHpA 363.0 → 319.1a 

363.0 → 169.0b 
− 40 
− 40 

− 8 
− 8 

− 12 
− 25 

− 9 
− 11 

PFOA 413.0 → 369.0a 

413.0 → 219.2b 
− 40 
− 40 

− 9 
− 9 

− 13 
− 24 

− 10 
− 10 

13C4-PFOA 417.1 → 371.8a 

417.1 → 222.1b 
− 44 
− 44 

− 10 
− 10 

− 12 
− 27 

− 9 
− 10 

PFNA 463.0 → 419.0a 

463.0 → 219.2b 
− 40 
− 40 

− 10 
− 10 

− 13 
− 35 

− 10 
− 9 

PFDA 513.1 → 469.0a 

513.1 → 269.2b 
− 51 
− 51 

− 9 
− 9 

− 13 
− 32 

− 10 
− 9 

13C2-PFDA 515.0 → 470.1a 

515.0 → 220.2b 
− 46 
− 46 

− 9 
− 9 

− 15 
− 33 

− 9 
− 8 

PFUnA 563.0 → 519.0a − 60 − 9 − 15 − 10 
563.0 → 269.2b − 60 − 9 − 31 − 10 

PFDoA 613.0 → 569.0a − 62 − 10 − 15 − 8 
613.0 → 319.1b − 62 − 10 − 36 − 9 

PFTrA 662.9 → 619.0a − 52 − 11 − 17 − 9 
662.9 → 369.1b − 52 − 11 − 40 − 8 

13C2-PFDoA 615.0 → 570.0a − 54 − 9 − 14 − 11 
615.0 → 320.2b − 54 − 9 − 32 − 10 

PFHxS 399.1 → 79.9a − 52 − 11 − 68 − 13 
399.1 → 98.8b − 52 − 11 − 54 − 10 

PFOS 499.0 → 80.1a − 80 − 10 − 97 − 9 
499.0 → 98.9b − 80 − 10 − 80 − 11 

13C4-PFOS 502.9 → 80.1a − 81 − 10 − 97 − 11 
502.9 → 99.1b − 81 − 10 − 75 − 10  

a SRM transition used for quantification. 
b SRM transition used for confirmation; DP: declustering potential; EP: 

entrance potential; CE: collision energy; CXP: collision cell exit potential. 
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slopes of two calibration curves for each compound, one in milliQ water 
(W) and the other in placenta (P). The percentage ME was assessed as 
follows: 

ME (%) = [1 - (Slope of calibration in P/Slope of calibration in W)] x 
100. 

Negligible ME values were obtained for all PFAS, ranging from − 7.6 
to 5.2%. This fact is especially important, given that it is very difficult to 

find a placenta with no detectable concentrations of PFAS. Hence, milliQ 
water was used as a matrix for calibration purposes. Fig. 4 depicts the 
chromatograms obtained from water and placenta spiked at 0.25 ng g− 1 

with all the target compounds. 
Accuracy (precision and trueness). 
A recovery study with spiked pooled placenta samples (0.02, 0.25, 

1.0 and 2.0 ng g− 1) was performed on three consecutive days. As 

Fig. 1. Examples of response surfaces obtained for extraction efficacy in the NaCl mass optimization experiment.  

Fig. 2. Standardized effects of DLLME conditions on peak areas.  
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Fig. 3. Estimated response surface for desirability function.  

Fig. 4. Chromatograms obtained from a) milliQ water and b) placenta, spiked at 0.25 ng g− 1.  
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reported in Table 2, the precision of the method can be stated on account 
of relative standard deviation (RSD) values were lower than 15%. In an 
analogue way, the method trueness was supported by recovery values 
ranging from 85% to 115%. 

3.4. Limits of detection and quantification 

The limit of quantification (LOQ) was determined as the lowest 
concentration at which trueness and precision were within ±20%. The 
limit of detection (LOD) was defined as the lowest concentration at 
which signals were three times greater than background noise. For the 
present method, LOQ and LOD values were, respectively, 0.02 and 
0.006 ng g− 1 for all analytes, as shown in Table 3. 

3.5. Linearity 

Since p-values of the lack-of-fit test (%Plof) were >5% and determi
nation coefficient (R2) ranged from 99.1% to 99.7%, a good linearity 
could be declared. Thus, linear dynamic range (LDR) of concentrations 
from the LOQ to 2.0 ng g− 1 was established (Table 3). 

3.6. Selectivity 

The selectivity of the method was evaluated by analyzing the chro
matograms of the procedure blank. No interferences were observed at 
the analyte retention times, as it is shown in Fig. S4. In addition, there 
was not any carry-over phenomenon (see Fig. S5). 

3.7. Method application 

The proposed method was used to determine the target PFAS in 20 
placenta samples. Table 4 shows that all samples contained detectable 
concentrations of several analytes under study. 

PFHxA and PFHpA were detected in more than 70% of samples, 
while the remaining PFAS were detected in almost 100% of samples. 
PFOA and PFOS showed the highest concentrations, with median con
centrations of 0.14 and 0.60 ng g− 1 and maximum concentrations of 
0.62 and 1.02 ng g− 1 (samples M16 and M10), respectively. Median 
concentrations of the other PFAS ranged from detected values to 0.08 ng 
g− 1. This profile is in agreement with previous studies reporting 
significantly higher concentrations of PFOS and PFOA than of other 
PFAS and the detection of PFNA, PFDA, PFUnA, and PFDoA in almost all 
placenta samples [26–28]. However, variations in exposure levels 
among study populations hamper the comparison of results. For 
instance, Mamsen et al. [26] reported median concentrations of 0.30 ng 
g− 1 PFOA and 1.24 ng g− 1 PFOS in 71 placenta samples from a Danish 
population, and substantially higher median concentrations of 1.22 ng 
g− 1 PFOA and 3.64 ng g− 1 PFOS [27] and 1.41 ng g− 1 PFOA and 7.32 ng 
g− 1 PFOS [28] have been recorded in Chinese populations. 

3.8. Comparison with previous methods 

The LOQs obtained with the present method appear similar to those 
achieved with others, as shown in Table 5. However, it does not require 
a specific extraction device and it offers significantly shorter pre- 

Table 2 
Recovery assay, precision and trueness of the method.   

Spiked (ng g− 1) Founda (ng g − 1) Recovery (%) RSD (%)  Spiked (ng g − 1) Founda (ng g − 1) Recovery (%) RSD (%) 

PFHxA 0.02 0.019 94.5 11.0 PFUnA 0.02 0.018 88.9 10.4 
0.25 0.265 106.1 11.7 0.25 0.262 104.9 9.2 
1.0 1.025 102.5 10.7 1.0 1.012 101.2 10.1 
2.0 2.162 108.1 13.8 2.0 2.168 108.4 9.1 

PFHpA 0.02 0.019 95.5 9.4 PFDoA 0.02 0.019 95.5 11.9 
0.25 0.243 97.2 8.9 0.25 0.273 109.3 12.4 
1.0 0.971 97.1 12.4 1.0 1.047 104.7 8.5 
2.0 2.046 102.3 13.1 2.0 2.036 101.8 9.7 

PFOA 0.02 0.018 88.5 10.4 PFTrA 0.02 0.019 94.2 10.4 
0.25 0.224 89.6 10.1 0.25 0.259 103.7 9.6 
1.0 0.924 92.4 9.0 1.0 1.004 100.4 12.7 
2.0 2.064 103.2 9.8 2.0 2.091 104.5 10.9 

PFNA 0.02 0.020 100.9 12.4 PFHxS 0.02 0.022 109.7 9.4 
0.25 0.261 104.4 11.2 0.25 0.264 105.6 11.9 
1.0 1.079 107.9 12.0 1.0 1.103 110.3 8.9 
2.0 2.256 112.8 13.2 2.0 2.184 109.2 10.4 

PFDA 0.02 0.021 102.9 13.4 PFOS 0.02 0.018 88.2 11.7 
0.25 0.279 111.5 8.7 0.25 0.227 90.7 10.7 
1.0 1.139 113.9 9.1 1.0 1.017 101.7 11.2 
2.0 2.203 110.2 11.6 2.0 1.998 99.9 7.9  

a Mean of 18 determinations. 

Table 3 
Analytical and statistical parameters.   

b (g ng− 1) sb (g ng− 1) R2 (%) LOD (ng g− 1) LOQ (ng g− 1) LDR (ng g− 1) 

PFHxA 3.54 0.04 99.6 0.006 0.02 0.02–2.0 
PFHpA 3.62 0.07 99.1 0.006 0.02 0.02–2.0 
PFOA 5.18 0.06 99.5 0.006 0.02 0.02–2.0 
PFNA 1.77 0.03 99.4 0.006 0.02 0.02–2.0 
PFDA 3.18 0.04 99.3 0.006 0.02 0.02–2.0 
PFUnA 9.17 0.10 99.7 0.006 0.02 0.02–2.0 
PFDoA 4.42 0.05 99.5 0.006 0.02 0.02–2.0 
PDTrA 2.86 0.03 99.1 0.006 0.02 0.02–2.0 
PFHxS 4.74 0.07 99.2 0.006 0.02 0.02–2.0 
PFOS 3.85 0.06 99.2 0.006 0.02 0.02–2.0 

b, slope; sb, slope standard deviation; R2, determination coefficient; LOD, limit of detection; LOQ, limit of quantification; LDR, linear dynamic range. 
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treatment and extraction times. For instance, sample pre-treatment took 
four days in the study by Chen et al. [27] and one day in the study by 
Zhang et al. needed one [28]. This time-saving is especially advanta
geous when a high number of samples must be treated every day, as in 
large-scale biomonitoring studies. 

4. Conclusions 

Concentrations of 10 PFAS were successfully measured in placenta 
samples from 20 randomly selected women using SALLE coupled to 
DLLME and LC–MS/MS. The experimental parameters were optimized 
by chemometric procedures, and the procedure was validated. The 
operational advantages of this approach offer major benefits for bio
monitoring research on exposure to these prevalent EDCs, especially in 
early life. This is the first application of SALLE-DLLME combination to 
determine PFAS in placental tissue, which is able to provide significant 

operational improvements compared to previous methods. The pro
posed procedure can be used to explore PFAS exposure of embryos and 
fetuses through placenta and relate it to health effects, a line of research 
that needs further study. 

Authorship contributions 

F. Vela-Soria: conceptualization, methodology, validation, formal 
analysis, investigation, writing-original draft, writing-review and edit
ing. J. García-Villanova: conceptualization, formal analysis, investiga
tion, resources, writing-original draft. V. Mustieles: validation, formal 
analysis, writing-original draft, writing-review and editing. T. de Haro: 
resources, writing-review and editing, supervision. J.P. Antignac: 
conceptualization, resources, writing-original draft, writing-review and 
editing, supervision, project administration. M.F. Fernandez: concep
tualization, resources, writing-original draft, writing-review and 

Table 4 
Application of the proposed method to placenta samples.  

Sample Found concentration, ng g− 1 (RSD %)a 

PFHxA PFHpA PFOA PFNA PFDA PFUnA PFDoA PFTrA PFHxS PFOS 

M01 D D 0.22 (11.2) 0.10 (12.8) 0.06 (13.2) 0.22 (9.6) 0.08 (10.0) 0.55 (7.5) 0.05 (13.4) 0.91 (8.0) 
M02 D D 0.05 (7.9) 0.02 (13.5) D 0.02 (12.7) D 0.02 (10.3) 0.09 (9.0) 0.24 (10.4) 
M03 D D 0.11 (13.5) 0.04 (7.4) 0.02 (12.7) 0.02 (13.5) D 0.05 (7.8) 0.04 (8.9) 0.24 (10.2) 
M04 0.03 (11.4) D 0.06 (12.2) 0.03 (11.3) D 0.05 (10.0) D 0.07 (12.5) 0.03 (13.3) 0.27 (7.2) 
M05 D D 0.22 (7.8) 0.06 (6.9) 0.03 (9.1) 0.05 (7.5) 0.02 (12.8) 0.08 (11.8) 0.10 (10.0) 0.93 (8.0) 
M06 ND 0.39 (7.1) 0.09 (9.4) 0.04 (9.4) 0.02 (14.0) 0.03 (7.8) 0.02 (14.0) 0.07 (7.2) D 0.16 (12.4) 
M07 D ND 0.17 (10.7) 0.07 (12.6) 0.04 (11.9) 0.10 (6.8) 0.03 (7.8) 0.13 (9.2) 0.08 (8.3) 0.86 (7.2) 
M08 ND ND 0.13 (12.9) 0.05 (8.1) 0.03 (10.1) 0.12 (11.6) 0.03 (8.6) 0.13 (9.9) 0.06 (13.5) 0.84 (11.0) 
M09 ND D 0.32 (8.7) 0.09 (12.7) 0.05 (7.0) 0.06 (9.2) 0.02 (11.9) 0.10 (10.4) 0.05 (10.3) 0.50 (9.4) 
M10 D D 0.10 (11.0) 0.06 (7.1) 0.03 (12.6) 0.09 (9.9) D 0.03 (11.4) 0.17 (6.9) 1.02 (7.1) 
M11 D 0.39 (9.4) 0.15 (12.5) 0.07 (7.3) 0.04 (8.7) 0.03 (13.6) D 0.02 (12.6) 0.05 (12.1) 0.61 (11.5) 
M12 0.07 (8.1) 0.02 (12.4) 0.10 (11.6) 0.04 (10.7) 0.02 (9.4) 0.04 (11.9) 0.05 (7.9) 0.08 (11.5) 0.05 (9.0) 0.26 (11.1) 
M13 ND ND 0.14 (9.4) 0.09 (8.7) 0.05 (10.1) 0.11 (8.2) 0.02 (13.8) 0.10 (6.4) 0.05 (11.5) 0.91 (7.5) 
M14 0.33 (10.7) 0.07 (8.3) 0.21 (9.9) 0.08 (12.8) 0.04 (12.2) 0.10 (10.7) 0.14 (8.3) 0.17 (7.9) 0.08 (8.1) 0.63 (6.9) 
M15 0.03 (7.8) D 0.13 (13.4) D D D D 0.02 (12.1) 0.04 (12.9) 0.24 (6.2) 
M16 D 0.03 (9.9) 0.62 (7.2) 0.19 (8.5) 0.11 (13.1) 0.08 (11.2) 0.04 (12.2) 0.08 (12.7) 0.11 (7.4) 0.81 (8.8) 
M17 ND D 0.14 (12.0) 0.05 (12.9) 0.03 (9.3) 0.06 (7.3) 0.02 (12.0) 0.09 (7.4) 0.04 (13.5) 0.59 (7.9) 
M18 ND D 0.14 (9.1) 0.07 (9.6) 0.04 (13.2) 0.05 (12.5) 0.02 (9.9) 0.07 (8.6) 0.07 (9.5) 0.47 (9.8) 
M19 D D 0.13 (7.6) 0.07 (13.1) 0.04 (10.4) 0.09 (10.3) 0.03 (7.6) 0.15 (8.3) 0.06 (9.9) 0.61 (12.6) 
M20 0.03 (12.2) ND 0.05 (12.6) 0.04 (7.9) 0.02 (11.7) 0.10 (7.1) 0.03 (11.2) 0.19 (10.1) 0.03 (12.2) 0.48 (10.0) 

Det. (n, (%))b 14 (70) 16 (80) 20 (100) 20 (100) 20 (100) 20 (100) 20 (100) 20 (100) 20 (100) 20 (100) 
Median D D 0.14 0.06 0.03 0.06 0.02 0.08 0.05 0.60 
C.rangec ND-0.33 ND-0.39 0.05–0.62 D-0.19 D-0.11 D-0.22 D-0.14 0.02–0.55 D-0.17 0.16–1.02  

a Mean of 3 determinations; RSD: relative standard deviation; ND, not detected (<LOD); D, detected (>LOD and <LOQ). 
b Detected. 
c Concentration range. 

Table 5 
Comparison of this SALLE-DLLME procedure with previous methods for determining PFAS in placenta samples.  

PFAS Sample pre-treatment Treatment 
techniquesa 

Sample 
amount 

Extraction-cleanup global 
time/solvent consumption 

Instrumental 
techniqueb 

LOQc (ng 
g− 1) 

Ref. 

PFOA, PFNA, PFDA, PFUnA, 
PFHxS, PFOS 

Homogenisation by 
ultrasonication 

LLE 0.1 g 30 min/— LC-MS/MS 0.09–0.60 26 

PFOA, PFHxS, PFOS -Mechanical 
homogenisation. 
-Lyophilisation, 72 h. 
-Treatment with 1 N NaOH 
in methanol, 24 h. 
-Drying and reconstitution. 

SPE (HLB) 10 g —/7 mL LC-MS/MS 0.01–0.05 27 

PFHxA, PFHpA, PFOA, PFNA, 
PFDA, PFUnA, PFDoA, PFHxS, 
PFOS 

-Lyophilisation, 24 h Ion pairing-LLE 10 g 60 min/11 mL LC-MS/MS 0.01–0.03 28 

PFHxA, PFHpA, PFOA, PFNA, 
PFDA, PFUnA, PFDoA, PFTrA, 
PFHxS, PFOS 

-Enzymatic treatment with 
collagenase, 4 h. 

SALLE-DLLME 1.0 g 2 min/6.8 mL LC-MS/MS 0.02 This 
study  

a LLE: liquid liquid extraction; SPE: solid phase extraction. 
b LC: liquid chromatography; MS: mass spectrometry. 
c LOQ: limit of quantification. 
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