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Abstract

Soil organic carbon stocks have been declining for more than a century, mostly in the tropics.
Maintaining soil organic matter is critical to tackling climate change and controlling soil health.
One way to address this problem is to encourage farmers to improve soil carbon on their farms.
We provide an ex-ante assessment of the cost-effectiveness of innovative Agri-Environmental
Measures (AEM) that subsidize the use of compost. To do so, we ran a choice experiment in
Guadeloupe, in the northeastern Caribbean, where there is an urgent need to preserve soil or-
ganic matter levels. The 305 farmers who participated were asked to choose one of several AEM
that offer financial support in exchange for using compost in their farming activities, as well as free
technical assistance, a collective financial bonus, and the possibility of combining chemical fer-
tilisers with composts. We found that offering free technical assistance increases the participation
rate by 30 percentage points and offering a collective bonus increases it by 14 percentage points.
In contrast, including a requirement on the reduction of chemical fertilization would decrease
the probability of participation by only two percentage points. We then estimated the amount of
carbon that would be sequestered in the soil using compost as prescribed under each of the AEM
proposed. We found that the most effective AEM would sequester up to 25,000 teqCO2 per ha and
per year and that the most cost-effective scheme would reach this target at a cost of about 500
euros per teqCO2. Finally, we find that the so-called 4 per 1000 target could be reached through
AEM under a variety of scenarios.
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Significance statement

Maintaining soil organic matter is critical to tackling climate change and controlling soil health. In

this article, we study the effectiveness of a series of innovative Agri-Environmental Measures (AEM)

that subsidize the use of compost in Guadeloupe, in the northeastern Caribbean. We combined esti-

mates of the likelihood of farmers adopting agri-environmental measures, with biophysical simula-

tions of the effects of adopting these measures on soil carbon sequestration. We find that measures

incorporating non-monetary incentives such as free technical assistance for the choice and use of

compost, administrative support for the preparation of the application file, or a collective bonus that

would compensate large groups of voluntary farmers could be used to achieve the 4 per 1000 target.

This suggests that such incentives should be included in future AEM to improve soil carbon.
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1 Introduction

Maintaining soil organic matter is critical to tackling climate change because soil organic matter is

rich in carbon. Soil organic matter is also the keystone element controlling soil health, which enables

soils to be resilient as droughts and intense rainfall events increasingly occur (Lynch, 2014, 2019). Yet,

soil organic carbon stocks have been decreasing for more than a century, mainly in the tropics, due

notably to an increase in agricultural land, the intensification of deforestation, the shortening of fal-

low periods, the increasing use of agricultural heavy machinery and the decrease in organic fertilisers

(Lal, 2019). Faced with this problem, the choice of the most efficient instrument to encourage farmers

to improve soil carbon is a central issue.

For several years now, the European Union’s Common Agricultural Policy (CAP) has implemented

Agri-Environmental Measures (AEM), to encourage ecologically friendly practices such as adding

compost to the soil.1 This is a crucial concern in the small island states of the Caribbean where there

is an urgent need for recycling solid wastes because of the collapse of landfill sites. However, farm-

ers’ participation in these schemes is often low and their effectiveness has not always been demon-

strated (Behaghel et al., 2019; Kuhfuss and Subervie, 2018; Arata and Sckokai, 2016; Chabé-Ferret and

Subervie, 2013; Pufahl and Weiss, 2009; Blazy et al., 2015).

The determinants of farmers’ adoption of innovative, sustainable agricultural systems have been a

central question of research in agricultural economics for a long time (Sunding and Zilberman, 2001).

The challenge is to identify the obstacles to the adoption of the most innovative agri-environmental

techniques on the one hand, and the public policy instruments that can remove these obstacles on

the other (Espinosa-Goded et al., 2010). In the context of a limited EU budget, high priority should

be placed on the cost-effectiveness of public schemes. For this reason, ex-ante evaluation of the cost-

effectiveness of environmental programs – i.e. determining the maximum environmental benefit for

a fixed cost or the minimum cost of achieving a specific environmental outcome – has become a

central concern of public authorities in the last ten years (Thoyer and Préget, 2019; Colen et al., 2016;

Smismans, 2015). However, such evaluations are generally lacking in the literature on environmental

programs.

In this article, we perform an ex-ante evaluation of the cost-effectiveness of a series of innovative

AEM designed to promote the use of organic soil enrichments containing compost among farmers

in Guadeloupe. Our objective is to determine which types of AEM could significantly improve soil

carbon in Guadeloupe farms and at what cost. To do so, we make use of an original methodological

procedure, combining a choice experiment involving 305 volunteer farmers with biophysical simula-

tions of the effects of the adoption of the proposed measures on soil carbon sequestration in Guade-

loupe. The proposed analysis includes three steps: (i) predicting the participation rate of farmers

in each AEM, (ii) simulating the environmental impacts of the adoption of each AEM in areas with

possibly heterogeneous land uses and pedoclimatic conditions, and (iii) computing and extrapolat-

1AEMs are one of the major tools of the 2nd pillar of the Common Agricultural Policy (CAP). The CAP has two objectives:
to facilitate changes in agricultural practices in order to reduce pressure on the environment and to maintain environmen-
tally favourable agricultural practices. Under this scheme, farmers sign a contract with the State in which they commit to
environmentally friendly practices, in return for which they receive payment for the environmental and climatic services
rendered.
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ing environmental gains and economic costs in order to rank the AEM considered according to their

cost-effectiveness.

The farmers who participated in the choice experiment were asked to choose among several AEM

that offer both monetary and non-monetary incentives to use compost in their farming activities. In

addition to financial support, we studied three potential levers for improving farmers’ participation

rates in the AEMs encouraging compost use: free technical assistance, a collective financial bonus,

and the possibility of combining chemical fertilisers with composts. We found that offering free

technical assistance increases the participation rate by 30 percentage points and offering a collec-

tive bonus increases it by 14 percentage points. In contrast, including a requirement on the reduction

of chemical fertilization would decrease the probability of participation by only 2 percentage points.

We then estimated the amount of carbon that would be sequestered in the soil using compost as pre-

scribed under the AEMs proposed. We found that the most effective measure sequesters up to 25,000

teqCO2 per ha and per year and that the most cost-effective measure reaches this target at a cost of

about 500 euros per teqCO2. Finally, we found that AEM could be used to reach the 4 per 1000 target

launched by France at the 2015 United Nations Climate Change Conference (Minasny et al., 2017).

A number of studies have run ex-post evaluations of the impact of environmental programs in

developed countries (Lynch et al., 2007; Lynch and Liu, 2007; Pufahl and Weiss, 2009; Chabé-Ferret

and Subervie, 2013; Arata and Sckokai, 2016; Kuhfuss and Subervie, 2018) and developing countries

(Robalino and Pfaff, 2013; Arriagada et al., 2012; Alix-Garcia et al., 2012, 2015; Costedoat et al., 2015;

Sims et al., 2014; Jayachandran et al., 2017). Apart from a few exceptions (Chabé-Ferret and Subervie,

2013; Jayachandran et al., 2017), no study has attempted to translate the additional effects on land use

into environmental gains in order to compare them with the costs of the program. In the literature

that focuses on ex-ante evaluation of environmental programs, a growing number of studies rely on

choice experiments to estimate farmers’ willingness to provide ecosystem services (see for example

Kaczan et al. (2013) and references therein, Villanueva et al. (2017), or Latacz-Lohmann and Breustedt

(2019) for more recent references). However, very few attempt to then use these estimated participa-

tion rates in broader frameworks that would allow for an estimation of the cost-effectiveness of the

program under study,2 something we aim to do in this paper.

The remainder of the paper is structured as follows. We outline the statistical model and the em-

pirical strategy used to estimate participation in AEM in Section 2. We present the original data col-

lected in the study area and the estimations of carbon sequestration used to compute cost-effectiveness

in Section 3. We present the results in Section 4 and discuss them in Section 5. We conclude with pol-

icy implications of our study in Section 6.

2One exception is Gillich et al. (2019), who combine partworth coefficients obtained from choice modelling and stochas-
tic simulations to assess the potential of new crop adoption in Southwestern Germany.
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2 Economic Model

2.1 Statistical model to predict participation in AEM

In order to predict participation in AEM, we use a standard theoretical framework of choice mod-

elling, based on the random utility theory (Marschak, 1960; Thurstone, 1927). We use the framework

developed by Revelt and Train (1998), in which N respondents can choose from among J alterna-

tives (here, AEMs for adding compost to the farmland) on T choice occasions. A farmer is assumed

to choose an AEM if the net utility from choosing that alternative is greater than choosing either no

AEM or any of the competing AEMs. The utility that farmer n derives from choosing alternative j is

given by Unj = Vnj + εnj, where Unj denotes the overall utility of respondent n for AEM j , which con-

sists of an observed systematic component of utility Vnj and an unobserved random component εnj.

The observed component of utility of respondent n is a linear additive function of the variables Xnjk

for k = [1, ...,K ] attributes that describe AEM j , each weighted with a coefficient βnjk:

Vnj =
K∑

k=1
Xnjkβnjk

The probability Pn j that an individual n chooses alternative j from among the set C of alternatives

reflects the probability that alternative j gives him the greatest utility:

Pnj = P [Vnj +εnj >Vni +εni],∀i ∈C , i 6= j

Different discrete choice models are obtained from different assumptions about the distribution

of the random term ε. We used a mixed logit (ML) model, which overcomes several drawbacks of

the standard logit model by allowing for heterogeneity in tastes, correlation in unobserved factors

over repeated choices made by each individual, and the complete relaxation of the independence of

irrelevant alternatives (IIA) assumption (Train, 1998; Greene and Hensher, 2003).

The model assumes that the coefficients β j k vary among respondents with a density function

f (β). This density is characterized by the parameters θ of the mean and the variance of β in the

population. The ML model also takes into account the fact that choices are repeated by respondents

in different choice situations (Revelt and Train, 1998). The ML choice probability is given by:

Pnj =
∫ exp(x ′

njβ)∑I
i=1 exp(x ′

niβ)
f (β|θ)dβ

Our model also includes an alternative specific constant (ASC) that takes the value of one if the

status quo alternative describing the current situation is chosen and zero otherwise (Adamowicz

et al., 1998; Scarpa et al., 2005). We estimated this model by maximum simulated likelihood using

Halton draws (Hole, 2007), assuming that all of the parameters follow a normal distribution. We es-

timated this model from our survey data using STATA software (StataCorp, 2013), and the model was

implemented using the mixlogit command.

We then used the estimated value of the model parameters to simulate the probability of adoption

of a series of innovative AEMs. In practice, we used the predicted value of each coefficient βnjk to
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compute the utility that each farmer n derives from choosing AEM j . When this utility was greater

than the utility of the status quo, we deduced that the farmer would have chosen the AEM. From

there, we compiled the adoption rate of the 26 possible AEM.

2.2 Attributes of the AEM

We first identified the attributes relevant to addressing the research question and we then defined

possible levels for each of these attributes (Hensher et al., 2005). Since the levels chosen should reflect

the range of situations that respondents might expect, we conducted a focus group to select relevant

levels. Such a survey is likely to increase the accuracy of the parameter estimates (Hall et al., 2004).

The attributes that were chosen correspond to the levers that we wanted to study in order to remove

the constraints to adoption identified through a consultation with experts from the Guadeloupean

agricultural extension services.

More precisely, our objective was to assess the relevance of a certain number of economic levers

aimed at subsidizing the practice of soil amendment with compost, within the framework of so-called

Agro-Environmental and Climate Measures (AEM). In Guadeloupe, this system has existed since 2007

for the practice of soil amendment with composts, but it has been extremely little adopted so far (with

an adoption rate of less than 0.1 percent). Among the probable reasons for this failure, the adminis-

trative complexity of the contracting procedure, the sometimes insufficient payment amount or even

the reduction of chemical fertilization as an additional obligation included in the requirements are

most often reported. For the present choice experiment, we therefore constructed AEM profiles made

up of four attributes to overcome these constraints. They are described in Table 1.

The first attribute is a free technical and administrative and assistance service, provided for free

to the participant, to help with the preparation of the AEM application file and technical advice. The

inclusion of such support can be expected to increase the likelihood of adopting the measure. The

second attribute refers to the requirement of reduction of chemical fertilization by 20 percent. When

included in the AEM, a 20 percent reduction in chemical fertilization from the recommended fertil-

ization rates is required. Although this reduction can be compensated by the addition of compost,

it can be expected that the introduction of this constraint in the contract will decrease the chances

of adoption of the measure. The third attribute is the standard monetary allocation provided by an

AEM. It is the amount received each year by the participant, in exchange for the implementation of

the practice, per hectare enrolled. This amount is expected to cover the purchase price of the com-

post, its transport and its spreading. Knowing that in the past (from 2007 to 2013), the amount offered

to farmers in a measure of this type was of the order of 900e/ha/year, we considered three levels for

this attribute in our setting: 600, 800 and 1,000.

One of the original characteristics of our experience of choice is to associate an individual incen-

tive, namely the standard monetary remuneration, with a collective incentive, in the form of a bonus,

paid individually, but conditional on the participation of other farmers from the same sector. In prac-

tice, this means that the participant receives 300 e/ha/year, as soon as 50 percent of the agricultural

areas of the sector to which he belongs (banana, sugar cane or fruit and vegetable gardening) are un-

der AEM contract. This collective bonus is expected to play the role of what is referred to as a nudge
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in the behavioural economic literature (Thaler and Sunstein, 2009).

3 Data

3.1 Surveys

The surveys were carried out over three months by two interviewers who received training on com-

posting methods and on survey administration, including choice experiments specifically. The ques-

tionnaire was presented in paper form and consisted of three parts. The first part elicited the socio-

economic profile of the farmers and included questions to establish an initial assessment of farmers’

practices, knowledge and perceptions of composting. The second part of the questionnaire contained

the choice experiment. The interviewers organised appointments with the farmers, which mainly

took place on their farms. Once on site, the interviewers provided farmers with a letter explaining the

interview process, as well as a brochure describing the project.

Before starting the choice experiment, the interviewers described each of the attributes to the

respondents, which were also provided as a handout that could be consulted at any time during the

experiment. In particular, the participants were informed that the proposed AEMs involved either the

application of 10 tonnes of compost per hectare per year for 5 years or the application of 50 tonnes

per hectare once every 5 years, at an average cost of 600e per hectare per year.

Farmers were also given the opportunity to ask questions before the choice experiment began.

To help them understand how the choice experiment would be conducted, the farmers were given a

test card, presenting a trivial trade-off. These cards also enabled us to check the respondent’s under-

standing and identify possible “yea-saying” phenomenon. This test revealed that only three farmers

did not understand the objective of the experiment. We removed these individuals from the sample.

In order to avoid any order effects, choice cards were presented in a different order from one

farmer to another. A pilot survey was carried out with twenty farmers who varied by location and

individual characteristics. This test made it possible to validate the attribute levels used and to verify

that the questionnaire and the choice experiment were easily understandable.

3.2 Design of the choice experiment

We followed a D-efficient design approach to construct the choice sets, using prior information we

had about the sign and relative values of the attribute coefficients, based on the pilot survey. This al-

lows for a small number of choice option profiles and combinations of these profiles while remaining

as close as possible to an orthogonal factorial design.

Tables 2 and 3 present the incomplete D-Optimal design selected for the study. This design was

constructed with XLSTAT software (Addinsoft 2013) and includes six profiles distributed in six choice

sets, without any trivial sets and a good balance in terms of attribute levels used. An example of a

choice set is depicted in Figure 3. Farmers were asked to choose between two AEMs and the status

quo option, i.e. neither of the proposed profiles.
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3.3 Sample

The surveys were conducted by targeting the three agricultural sectors that present the greatest chal-

lenges in terms of compost adoption in Guadeloupe, namely banana, sugar cane and fruit and veg-

etable gardening. The banana sector is characterised by the highest adoption rate and consumes

most of the compost produced in Guadeloupe. An increase in the doses used and/or the frequency of

the spreading of compost on banana plantations could significantly increase the development of the

composting sector. On the other hand, the sugarcane sector consumes little compost but represents

almost 50 percent of the territory’s agricultural area. An increase in the amount of land using com-

post would thus have a very significant impact on the local demand for compost (Paul et al., 2017).

Finally, the use of compost in the gardening sector is relevant to food security insofar as it has the

greatest need for organic fertilization due to the progressive soil degradation this type of agriculture

can cause (Sierra et al., 2017).

Our sample consists of 305 farmers, among which 99 banana producers, 105 sugar cane producers

and 101 fruit and vegetable crop producers. These farmers were randomly selected from a database

covering most of the territory of Guadeloupe (Chopin et al., 2015), according to a stratification strat-

egy aiming for representativeness in the diversity of soil types in each sector (Table 4). This stratifica-

tion was important for measuring cost-effectiveness on a territorial scale, since the amount of carbon

sequestered depends on the type of cropping system and the nature of the soil (Sierra et al., 2015).

3.4 Carbon sequestration in soil

We estimated the extent of carbon sequestration induced by each AEM considered via the MorGwanik

model (Sierra et al., 2015). MorGwanik is a model designed to simulate changes in soil organic carbon

(SOC) at the plot scale, as a function of annual carbon inputs (e.g., crop residues, including roots, and

organic amendments, including compost) and carbon outputs (e.g., SOC mineralization). Both car-

bon inputs and outputs are affected by pedoclimatic conditions (e.g., soil type and local climate) and

farming practices (e.g., rotation, soil tillage, management of crop residues, type and rate of organic

fertilisers).

The model was calibrated and tested for the agro-ecological regions of interest and most crop-

ping systems in Guadeloupe. Further detail on the model can be found in Sierra et al. (2015). We used

parameter values reported for the soils, the crops and the compost by Sierra et al. (2015) and Sierra

et al. (2017). The parameter values for compost were 0.5 kg kg−1 for the water content, 0.33 kg C kg−1

for the C content, and 0.51 kg C kg C−1 for the coefficient of humification. The rate of compost used

in simulations was 50 Mg ha−1 every 5 yr for sugarcane and bananas, and 10 Mg ha−1 yr−1 for veg-

etable crops, in line with what was proposed to the participants in the choice experiment. The model

was initialized with the mean C content observed for each soil and cropping system combination in

Guadeloupe (SOC year 0).

It is well established now that carbon sequestration is not a linear process but it tends towards

an equilibrium (or asymptote) over time, where the amount of SOC diminishes as time elapses (Don

et al., 2011). To take this into account, we performed simulations for a period of 30 years and the

rate of carbon sequestration was expressed as the mean annual SOC increase over that period (e.g.,
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in Mg C ha−1 yr−1). In this way, we were able to get the mean impact of compost application on C

sequestration in the long term, which agrees with the proposal of the IPCC (IPCC, 2006).

4 Results

4.1 Descriptive statistics

Descriptive statistics of the farms owned or managed by the survey respondents as well as their main

socioeconomic characteristics are shown in Table 5. Only 9 percent of farmers have a poor perception

of composting, 33 percent of farmers think that composting is beneficial, and 58 percent are not aware

of the issue. Finally, 71 percent of farmers are aware of the existing European AEM scheme. With

respect to socio-economic variables, the average age of farmers in the sample is 50 years and the

average area farmed is 12 ha, 30 percent of which is fully owned by the farmer. Farmers’ plots are

generally able to be farmed using machinery (82 percent). Most farmers are members of a group of

producers (76 percent), which can be a potential lever for technical and administrative support, as

well as collective action.

4.2 Levers for participation in AEM

Table 6 presents the parameters estimated by a model of participation in the AEM, using the choice

experiment data collected from the 305 farmers. We used data from our sample to fit a mixed logit

(ML) model, which gives the relative importance of the attributes in the decision to participate in the

AEM and can then be used to predict the probability of each farmer’s participation in each AEM. The

lower part of the table indicates that the distribution of the coefficients have statistically significant

variances across the sample, which reflects some heterogeneity in respondents’ preferences. The

results presented in the upper part of the table show that the levers tested (payment, administrative

and technical support and collective bonus) all play a (statistically) significant and positive role in

a farmer’s decision to participate in an AEM, as p-values indicate strong evidence against the null

hypothesis of no effect.

The estimate of the alternative-specific constant (SQ) also has a significant positive sign, which

means that respondents derive more utility from not participating in an AEM than participating in

one. This could be due to delays in the payment of European subsidies that they may have experi-

enced from previous participation. On the contrary, the reduction in the use of chemical fertilisers,

which we expected to be a barrier to the adoption of an AEM, was found to have no statistically sig-

nificant effect on the probability of adoption on average (P ≥ |z| = 0.32), which may reflect farmers’

indifference to chemical fertilization in the context of subsidized compost; it could at least reflect the

considerable variability of respondent preferences for this attribute.

From the coefficients of the ML model, we then investigated how the probability of choosing an

AEM changes when a single element of the AEM changes.3 We found that the probability of choosing

3We estimated the marginal effect of offering technical assistance (or a collective bonus) by taking the difference between
the predicted probability provided by the mixed logit model when technical assistance (or bonus) is included in the mea-
sure, and the predicted probability obtained when it is not. In practice, we used the mixlpred command after the mixlogit
command under STATA software.
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an AEM changes dramatically if the AEM includes free technical assistance (+31 percentage points)

or a collective bonus (+14 percentage points), while including the requirement of reducing chemical

fertilization decreases the probability of participation by only 2 percentage points.

4.3 Estimated participation rates

We estimated participation in all of the AEMs that could be generated from our experimental design:

the combination of all attribute levels, i.e. 26 measures (Table 7). For each measure, we predicted the

adoption decision of each farmer in the sample from the parameters of the ML model. Table 8 shows

participation rates simulated from the parameters of the ML model for the different AEM, constructed

from the different values of the four attributes. Unsurprisingly, the lowest adoption rate is observed

for the M02 measure (39 percent) which is the most restrictive and includes the fewest incentives.

The highest adoption rate is obtained for measures M16, M20 and M24 (94 percent), which include

technical assistance and a collective bonus and do not require the reduction of chemical fertiliser

use. It is interesting to note that the participation rate of measure M16, which offers a payment of

600 euros per ha per year is equal to the participation rate of measures M20 and M24, which offer

higher payments.

4.4 Carbon sequestration and cost-effectiveness

Assuming that each participant in the AEM would engage all of its land in the chosen scheme,4 we

extrapolated the amount of land that would be engaged throughout the territory, taking into account

the representativeness of each farm in the sample in terms of crop (banana, cane, fruit and vegetable

gardening) and soil type (andosol, vertisol, nitisol, and ferralsol). We then estimated the amount of

carbon sequestration that would take place in these areas based on the results of the MorGwanik

model for each of the AEMs. Table 9 provides the average carbon sequestration induced by compost

application for the different cropping situations.

We then calculated the cost of implementing each AEM, including not only the payment per

hectare enrolled in the AEM, but also the payment of the collective bonus of 300 e (if applicable)

and the cost of technical assistance (if applicable), i.e. 50 e per hectare per year. This figure is an

approximation based on the total cost of hiring a technical assistant in Guadeloupe.

The ratio of the average carbon sequestration induced by compost application to the cost of the

AEM gives us a measure of the AEM cost-effectiveness. Table 10 presents the results of the cost-

effectiveness calculation for each AEM considered. The results show that the cost of an AEM ranges

from 293 e (measure M3) to 649 e per tonne of CO2 sequestered (measure M24). This cost includes

the amount paid as direct conditional payments, the amount paid as collective bonuses (if there are

any), and the cost of technical assistance that is offered in the AEM.

4The theory of innovation adoption suggests that farmers often go through a test phase in which they try out the inno-
vation on a small area of their farm, before adopting it on their entire farm, or abandoning it completely. Since our study
aims to enlighten policy makers on the sequestration potential of a variety of long-term scenarios, we take a long-term
perspective, in which farmers who would have accepted an AEM would ultimately have applied the compost to all their
farmland.
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One can observe that M24, the AEM that sequesters the greatest total amount of carbon (25,824

teqCO2), is also the least cost-effective measure (698 e per ton). The most cost effective AEM is M2

(310eper ton), which is also the second to last in total sequestered carbon (i.e., 10,521 teqCO2). This

is not very surprising, since increasing participation in AEMs requires increasing incentives. How-

ever, the relationship between efficiency and cost is not necessarily linear because farmers may have

different preferences for technical assistance or collective bonus type incentives, and are endowed

with different carbon sequestration capacities, depending on the nature of their soil.

Figure 1 shows the annual carbon sequestration of the AEMs as a function of their total cost of

implementation and cost-effectiveness. For each AEM, the diameter of the bubble is proportional

to the average cost of the sequestered teqCO2 (in e per teqCO2), so that the smaller the bubble, the

more economically efficient the environmental program. The most effective measures appear in the

upper part of the graph. Table 10 moreover shows that four measures sequester a quantity of carbon

greater than 25,000 teqCO2 (M16, M20, M24, M25) but only one (M16) does so for a cost lower than

500e per ton. This figure is much higher than the estimated carbon value provided by Quinet (2019)

for the year 2019 (87 e per ton); it however ranges between the value estimated for 2020 (250 e per

ton) and the value estimated for 2030 (775e per ton).

Interestingly, we observe that the cost-effectiveness of M16, which offers the lowest payment but

includes all the three of the other participation levers, is very close to that of M10, which offers the

highest payment but none of the other levers of participation. However, M16 outperforms M10 by

far, as it sequesters more than 25,000 teqCO2 while M10 sequesters less than 15,000 teqCO2. The

measure M17 is also of interest insofar as it achieves a level of sequestration very close to that of M16

while also reducing the amount of pollution generated by the use of chemical fertilisers.

Finally, the SOC annual average growth rate displayed in the fourth column suggests that the

AEMs could be used to reach the 4 per 1000 target launched by France at the 2015 United Nations

Climate Change Conference (Minasny et al., 2017).

4.5 Sensitivity tests

One concern with our findings is that they are driven by the price we used to compute the costs of

technical assistance that is offered in the AEMs (50 e per ha and per year). We thus recalculated the

cost-efficiency ratios using 100 e per ha and per year to compute the cost of the AEMs. Results for

these estimations are displayed in Figure 2. The ranking of the AEMs holds under these alternative

assumptions.

Another concern is that the estimate of the total number of hectares enrolled into AEM relies upon

the assumption that all the farmers in the three sectors would have been offered to participate in an

AEM. We re-estimated the cost-efficiency ratios assuming that only half of the respondents would

be offered to participate in an AEM. We arbitrarily focused on half of the respondents who have the

largest farms. These results are displayed in Table 11. We found that the most effective measures

make it possible to sequester more than 18,000 tons of carbon (M16, M20, M24, M25, just as when we

use the whole sample). Again, we found that only one measure achieves this at a relatively low cost

(484 e). As before, it is M16, which offers the lowest payment but includes all of the three other in-
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centives to participate. Again, we found that the 4-per-1000 goal could be reached with this measure.

This result supports our conclusion that incentives for participation, such as technical assistance and

a collective bonus, are likely to significantly improve the efficiency of composting measures in the

pursuit of the 4 per-1000 goal.

5 Discussion

5.1 Farmers’ willingness-to-pay

Our results suggest that including non-cash incentive elements in agro-environmental schemes of-

fering AEMs can contribute to the pursuit of ambitious environmental goals such as the 4 per 1000.

Table 10 indeed shows that most of the proposed measures would achieve this objective quite eas-

ily. Computing the average value that respondents place on each non-cash attribute – something

referred to as the willingness-to-pay (WTP) in the literature5 –, we found that participants value the

opportunity to receive a collective bonus of up to 380e as much or even slightly more than receiving

the same amount as a certain payment. The participants also value technical assistance at 710e, i.e.

14 times more than it would cost the policy-maker.

Moreover, the aversion to AEMs in general (the so-called preference for the status quo) is very

strong, as evidenced by a valuation of the status quo of up to 800 e. This corroborates the fact that

significant compensation, although not necessarily monetary, must be provided in order for farmers

to engage in environmentally friendly farming practices. The provision of administrative support for

the preparation of the AEM file is valued highest by farmers. Including this element in future AEMs

therefore seems essential to promoting their uptake in the field. The collective bonus also plays an

important role, since when added to the basic payment, it compensates for the attractiveness of the

status quo.

5.2 Compost supply

Some studies have pointed out that while demand for compost could be stimulated, increasing the

supply of compost to meet this new demand could face certain obstacles, at least in the short term

(Arrouays et al., 2002; Mondini et al., 2018). To assess the extent to which the supply of compost

in Guadeloupe could meet the increase in compost demand associated with the implementation of

AEM, we compared the current compost production and the amount of compost needed to effec-

tively implement the AEM proposed. The last can be calculated using the rate of compost (e.g. aver-

age 10 Mg ha−1 yr−1), the participation rate for each AEM, and the land area occupied by the cropping

systems. We calculated that the amount of compost needed to implement AEM at the territory scale

varied from 42,435 Mg yr−1 for AEM 3 to 132,963 Mg yr−1 for AEM 25. A recent study carried out in

Guadeloupe indicates that the current production of composts is around 26,000 Mg yr−1 and could

5These willingness-to-pay estimates have been computed from the estimates of a mixed logit model where the price is

assumed to be a fixed parameter, and for which we have the convenient result that E(WTPk ) = − E(βk )
βmoney . The estimates of

this model are however very similar to those displayed in the main specification in Table 10.
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reach 70,000 Mg yr−1 with better management of organic resources derived from agro-industrial fac-

tories, green wastes and water treatment plants (Paul et al., 2017).

These figures suggest that, although the current compost supply is not sufficient to cover the need

of the proposed AEM, the production potential, which is important in this sector, may well meet the

demand for compost that would result from the implementation of measure M1 to measure M13.

In the more conservative the scenario in which only half of the farms would actually enrol in the

proposed AEM, however, the production potential would meet the demand for compost under any of

the proposed AEM.

6 Conclusion

In this study, we sought to show that certain types of Agri-Environmental Measures (AEM) are likely

to improve soil carbon at a lower cost. We designed an original framework coupling a mixed logit

model to perform an ex-ante assessment of the adoption of AEM devoted to promote compost use,

with a biophysical model describing soil carbon dynamics to establish the impact of AEM adoption

on carbon sequestration in tropical soils. This approach was useful to assess a variety of scenarios

combining monetary and non-monetary incentives in terms of their cost-effectiveness, and to iden-

tify the land area where the so-called 4-per-1000 target for carbon sequestration could be reached

using compost. This should help policy makers to design new AEM for the tropics that are more en-

vironmentally and economically appropriate than previous schemes.

One of the main conclusions of the study is that non-monetary incentives, such as technical as-

sistance provided for the choice and use of compost, and administrative support for the preparation

of the application file, can play a key role in farmers’ perception of the cost of participation in the

scheme, and should therefore be included in future AEMs to improve adoption. This would be par-

ticularly important for the very conservative rural population studied here, which is characterized

by a relatively high level of aversion to AEMs, as evidenced by a high valuation of the status quo

(800e/ha/year) compared to the amount of proposed subsidy (from 600 to 1000e/ha/year).

Despite the relatively high rates of carbon sequestration obtained for most of the tested AEM, the

cost of the carbon sequestration unit is quite expensive, on average 500 e/teqCO2, which is much

greater than the values reported in studies carried out in Europe. This is mainly associated with the

level of subsidy payments, which should offset the high cost of the practice in Guadeloupe (product,

transport and application of the product). Indeed, the AEMs proposed to promote the use of compost

should be considered as a policy tool offering several simultaneous benefits in addition to carbon se-

questration, such as the reduction of pollution risks linked to the overuse of mineral fertilizers, the

recycling of organic wastes, and the restoration of degraded tropical soils. In this sense, the frame-

work proposed in this study seems appropriate to assess the cost-effectiveness of these additional

environmental services in future research.

13



Acknowledgments and funding sources

Research funded by French National Research Institute for Agriculture, Food and Environment (IN-

RAE).

References

Adamowicz, W., Boxall, P., Williams, M., and Louviere, J. (1998). Stated preference approaches for
measuring passive use values: Choice experiments and contingent valuation. American Journal of
Agricultural Economics, 80(1):64–75.

Alix-Garcia, J. M., Shapiro, E. N., and Sims, K. R. E. (2012). Forest conservation and slippage: Evidence
from mexico’s national payments for ecosystem services program. Land Economics, 88(4):613–638.

Alix-Garcia, J. M., Sims, K. R. E., and Yanez-Pagans, P. (2015). Only one tree from each seed? environ-
mental effectiveness and poverty alleviation in mexico’s payments for ecosystem services program.
American Economic Journal: Economic Policy, 7(4):1–40.

Arata, L. and Sckokai, P. (2016). The impact of agri-environmental schemes on farm performance in
five e.u. member states: A did-matching approach. Land Economics, 92(1):167–186.

Arriagada, R. A., Ferraro, P. J., Sills, E. O., Pattanayak, S. K., and Cordero-Sancho, S. (2012). Do pay-
ments for environmental services affect forest cover? a farm-level evaluation from costa rica. Land
Economics, 88(2):382–399. matching sur PES au Costa Rica.

Arrouays, D., Balesdent, J., Germon, J., Jayet, P., Soussana, J., and Stengel, P. (2002). Stocker du carbone
dans les sols agricoles de france ? expertise scientifique collective. Technical report, The French
National Institute for Agricultural Research (INRA).

Behaghel, L., Macours, K., and Subervie, J. (2019). How can randomised controlled trials help im-
prove the design of the common agricultural policy? European Review of Agricultural Economics,
46(3):473–493.

Blazy, J.-M., Barlagne, C., and Sierra, J. (2015). Environmental and economic impacts of agri-
environmental schemes designed in french west indies to enhance soil c sequestration and reduce
pollution risks. a modelling approach. Agricultural Systems, 140:11 – 18.

Chabé-Ferret, S. and Subervie, J. (2013). How much green for the buck? estimating additional and
windfall effects of french agro-environmental schemes by did-matching. Journal of Environmental
Economics and Management, 65(1):12 – 27.

Chopin, P., Blazy, J.-M., and Doré, T. (2015). A new method to assess farming system evolution at the
landscape scale. Agronomy for Sustainable Development, (35):325–337.

Colen, L., Gomez y Paloma, S., Latacz-Lohmann, U., Lefebvre, M., Préget, R., and Thoyer, S. (2016).
Economic experiments as a tool for agricultural policy evaluation: Insights from the european cap.
Canadian Journal of Agricultural Economics/Revue canadienne d’agroeconomie, 64(4):667–694.

Costedoat, S., Corbera, E., Ezzine-de Blas, D., Honey-Rosés, J., Baylis, K., and Castillo-Santiago, M. A.
(2015). How effective are biodiversity conservation payments in mexico? PloS one, 10(3):e0119881.

Don, A., Schumacher, J., and Freibauer, A. (2011). Impact of tropical land-use change on soil organic
carbon stocks: a meta-analysis. Global Change Biology, 17(4):1658–1670.

14



Espinosa-Goded, M., Barreiro-Hurlé, J., and Ruto, E. (2010). What do farmers want from agri-
environmental scheme design? a choice experiment approach. Journal of Agricultural Economics,
61(2):259–273.

Gillich, C., Narjes, M., Krimly, T., and Lippert, C. (2019). Combining choice modeling estimates and
stochastic simulations to assess the potential of new crops. the case of lignocellulosic perennials in
southwestern germany. GCB Bioenergy, 11(1):289–303.

Greene, W. and Hensher, D. (2003). A latent class model for discrete choice analysis: contrasts with
mixed logit. Transportation Research Part B: Methodological, 37(8):681–698.

Hall, J., Viney, R., Haas, M., and Louviere, J. (2004). Using stated preference discrete choice modeling
to evaluate health care programs. Journal of Business Research, 57(9):1026–1032. Managing the
Future of Health Care Delivery.

Hensher, D. A., Rose, J. M., and Greene, W. H. (2005). Applied choice analysis. Cambridge University
Press.

Hole, A. R. (2007). Fitting mixed logit models by using maximum simulated likelihood. The Stata
Journal, 7(3):388–401.

IPCC (2006). Ipcc guidelines for national greenhouse gas inventories, prepared by the national green-
house gas inventories programme. Technical report, IGES, Japan.

Jayachandran, S., de Laat, J., Lambin, E. F., Stanton, C. Y., Audy, R., and Thomas, N. E. (2017). Cash for
carbon: A randomized trial of payments for ecosystem services to reduce deforestation. Science,
357(6348):267–273.

Kaczan, D., Swallow, B., and Adamowicz, W. (2013). Designing a payments for ecosystem services
(pes) program to reduce deforestation in tanzania: An assessment of payment approaches. Ecolog-
ical Economics, 95(C):20–30.

Kuhfuss, L. and Subervie, J. (2018). Do european agri-environment measures help reduce herbicide
use? evidence from viticulture in france. Ecological Economics, 149:202 – 211.

Lal, R. (2019). Promoting "4 per thousand" and "adapting african agriculture" by south-south coop-
eration: Conservation agriculture and sustainable intensification. Soil and Tillage Research, 188:27
– 34. Soil Carbon and Climate Change: the 4 per Mille Initiative.

Latacz-Lohmann, U. and Breustedt, G. (2019). Using choice experiments to improve the design of
agri-environmental schemes. European Review of Agricultural Economics, 46(3):495–528.

Lynch, D. (2014). Managing Energy, Nutrients, and Pests in Organic Field Crops, chapter Sustaining
soil organic carbon, soil quality and soil health in organic field crop management systems, pages
107–132. CRC Press.

Lynch, D. (2019). How soil carbon can help tackle climate change. The Conversation.

Lynch, L., Gray, W., and Geoghegan, J. (2007). Are farmland preservation program easement restric-
tions capitalized into farmland prices? what can a propensity score matching analysis tell us? Re-
view of Agricultural Economics, 29(3):502–509.

Lynch, L. and Liu, X. (2007). Impact of Designated Preservation Areas on Rate of Preservation and
Rate of Conversion: Preliminary Evidence. American Journal of Agricultural Economics, 89(5):1205–
1210.

15



Marschak, J. (1960). Stanford Symposium on Mathematical Methods in the Social Sciences, chapter
Binary choice constraints on random utility indications, pages 312–329. Stanford University Press.

Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V.,
Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B.,
Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., de Forges, A. C. R., Odeh,
I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman,
Y., Tsui, C.-C., Vagen, T.-G., [van Wesemael], B., and Winowiecki, L. (2017). Soil carbon 4 per mille.
Geoderma, 292:59 – 86.

Mondini, C., Cayuela, M. L., Sinicco, T., Fornasier, F., Galvez, A., and SÃ¡nchez-Monedero, M. A. (2018).
Soil c storage potential of exogenous organic matter at regional level (italy) under climate change
simulated by rothc model modified for amended soils. Frontiers in Environmental Science, 6:144.

Paul, J., Sierra, J., Causeret, F., Guinde, L., and Blazy, J.-M. (2017). Factors affecting the adoption
of compost use by farmers in small tropical caribbean islands. Journal of Cleaner Production,
142:1387 – 1396.

Pufahl, A. and Weiss, C. R. (2009). Evaluating the effects of farm programmes: results from propensity
score matching. European Review of Agricultural Economics, 36(1):79–101.

Quinet, A. (2019). The value for climate action. a shadow price of carbon for evaluation of investments
and public policies. Technical report, Report by the Commission Chaired by Alain Quinet. France
Strategies.

Revelt, D. and Train, K. (1998). Mixed Logit With Repeated Choices: Households’ Choices Of Appli-
ance Efficiency Level. The Review of Economics and Statistics, 80(4):647–657.

Robalino, J. and Pfaff, A. (2013). Ecopayments and deforestation in costa rica: A nationwide analysis
of psa’s initial years. Land Economics, 89(3):432–448.

Scarpa, R., Ferrini, S., and Willis, K. (2005). Applications of Simulation Methods in Environmental
and Resource Economics. The Economics of Non-Market Goods and Resources, vol 6., chapter Per-
formance of Error Component Models for Status-Quo Effects in Choice Experiments. Springer,
Dordrecht.

Sierra, J., Causeret, F., and Chopin, P. (2017). A framework coupling farm typology and biophysical
modelling to assess the impact of vegetable crop-based systems on soil carbon stocks. application
in the caribbean. Agricultural Systems, 153:172–180. cited By 6.

Sierra, J., Causeret, F., Diman, J., Publicol, M., Desfontaines, L., Cavalier, A., and Chopin, P. (2015).
Observed and predicted changes in soil carbon stocks under export and diversified agriculture in
the caribbean. the case study of guadeloupe. Agriculture, Ecosystems & Environment, 213:252 – 264.

Sims, K., , Alix-Garcia, J., Shapiro-Garza, E., Fine, L., Radeloff, V., Aronson, G., Castillo, S., Ramirez-
Reyes, C., and Yañez Pagans, P. (2014). Improving environmental and social targeting through adap-
tive management in mexico’s payments for hydrological services program. Conservation Biology,
28(5):1151–1159.

Smismans, S. (2015). Policy evaluation in the eu: The challenges of linking ex ante and ex post ap-
praisal. European Journal of Risk Regulation, 6(1):6–26.

Sunding, D. and Zilberman, D. (2001). Chapter 4 the agricultural innovation process: Research and
technology adoption in a changing agricultural sector. In Agricultural Production, volume 1 of
Handbook of Agricultural Economics, pages 207 – 261. Elsevier.

16



Thaler, R. H. and Sunstein, C. R. (2009). Nudge: Improving Decisions About Health, Wealth, and Hap-
piness. New York: Penguin Books.

Thoyer, S. and Préget, R. (2019). Enriching the CAP evaluation toolbox with experimental approaches:
introduction to the special issue. European Review of Agricultural Economics, 46(3):347–366.

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4):273–286.

Train, K. E. (1998). Recreation Demand Models with Taste Differences over People. Land Economics,
74(2):230–239.

Villanueva, A., Rodríguez-Entrena, M., Arriaza, M., and Gómez-Limón, J. (2017). Heterogeneity
of farmers’ preferences towards agri-environmental schemes across different agricultural subsys-
tems. Journal of Environmental Planning and Management, 60(4):684–707.

17



Figures and tables

Table 1: Description of the attributes in the AEMs

Attribute Definition
Requirement 20 percent reduction in chemical fertilization yes/no
Payment Cash payment (e/ha/an) 600; 800; 1000
Technical assistance Administrative support for the submission of the application file yes/no

and technical support for compost use
Collective bonus Cash payment of 300e/ha/an yes/no

if at least 50 percent of the sector is enrolled

Table 2: Description of the AEMs proposed

Free administrative and Chemical fertilization Payment Collective Bonus
technical support service reduction of 20% (e/ha/an) (e/ha/year)

Profile 1 yes yes 1000 0
Profile 2 no yes 800 300
Profile 3 no no 600 0
Profile 4 yes yes 600 300
Profile 5 no no 1000 300
Profile 6 yes no 800 300

Table 3: Choice cards

AEM 1 AEM 2
Choice card 1 Profile 2 Profile 1
Choice card 2 Profile 4 Profile 3
Choice card 3 Profile 6 Profile 5
Choice card 4 Profile 3 Profile 2
Choice card 5 Profile 5 Profile 4
Choice card 6 Profile 1 Profile 6
Note: The number refers to the alternative
displayed in Table 2.
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Table 4: Representativeness of the sample

Sample Population
Crop Soil ha % ha %
Banana Andosol 646 60 1 062.7 50
Banana Ferralsol 321 30 304.8 14
Banana Nitisol 78.5 7 594.7 28
Banana Vertisol 32.6 3 177.9 8

Total 1 078.0 100 2 140.0 100
Sugar cane Andosol 140 16 214.2 2
Sugar cane Ferralsol 255.2 29 3 720.0 33
Sugar cane Vertisol 474.7 55 7 212.6 65

Total 869.9 100 11 146.8 100
Gardening Andosol 5.9 2 140.5 17
Gardening Ferralsol 44 15 119.6 14
Gardening Nitisol 14.5 5 81.9 10
Gardening Vertisol 236.1 79 486 59

Total 300.5 100 827.9 100

Table 5: Characteristics of the sample

Variable Obs Mean Std. Dev. Min Max
Banana grower (yes=1) 305 0.32 0.47 0 1
Sugar cane producer (yes=1) 305 0.34 0.48 0 1
Vegetable grower (yes=1) 305 0.33 0.47 0 1
Already apply compost (yes=1) 305 0.26 0.44 0 1
Believes compost is good (yes=1) 305 0.33 0.47 0 1
Believes compost is bad (yes=1) 305 0.09 0.29 0 1
Believes nothing about compost (yes=1) 305 0.58 0.49 0 1
Knows what an AEM is (yes=1) 305 0.71 0.46 0 1
Age 305 50 9 24 74
Education (college level=1) 305 0.29 0.45 0 1
Total area (ha) 305 12.12 17.7 1 202
Area under property (share of total area) 305 0.3 0.44 0 1
Mechanized soil cultivation (yes=1) 305 0.82 0.3 0 1
Member of SICA (yes=1) 305 0.76 0.43 0 1
Member of CUMA (yes=1) 305 0.18 0.39 0 1
Family labor (yes=1) 305 0.75 0.32 0 1
Location (Basse Terre South-West =1) 305 0.06 0.24 0 1
Location (Basse Terre North =1) 305 0.17 0.38 0 1
Location (Basse Terre South-East =1) 305 0.28 0.45 0 1
Location (Grande Terre =1) 305 0.49 0.5 0 1
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Table 6: Results of the mixed logit model

Mean of β coef. Coef. Std. Err. z P > |z| [95% Conf.Int.]
Requirement on fert. (yes=1) -0.16 0.16 -1 0.32 -0.48 0.16
Technical assistance (yes=1) 3.27 0.25 12.85 0.00 2.77 3.76
Payment (0; 600; 800; 1000) 0.39 0.05 8.27 0.00 0.3 0.48
Collective bonus (yes=1) 1.63 0.18 9.27 0.00 1.28 1.97
Status Quo (yes=1) 3.2 0.42 7.54 0.00 2.37 4.03
Standard deviation of β coef.
Requirement on fert. (yes=1) 1.83 0.22 8.23 0.00 1.39 2.26
Technical assistance (yes=1) 2.23 0.26 8.55 0.00 1.72 2.74
Payment (0; 600; 800; 1000) 0.34 0.04 8.93 0.00 0.27 0.42
Collective bonus (yes=1) 1.69 0.2 8.26 0.00 1.29 2.09
Status Quo (yes=1) -0.97 0.63 -1.52 0.13 -2.21 0.28
Number of obs is 5490; LR chi2(5) = 426.05 ; Log likelihood = -1299.0035 ;
Prob > chi2 = 0.0000; For the sake of readability, the coefficients of the payment
attribute have been divided by 100.
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Table 7: Description of the attributes of all AEMs considered

Technical Requirement Collective
AEM Assistance on fertilizers Bonus Payment Status Quo
M1 0 0 0 0 1
M2 0 0 0 600 0
M3 0 1 0 600 0
M4 0 0 1 600 0
M5 0 1 1 600 0
M6 0 0 0 800 0
M7 0 1 0 800 0
M8 0 0 1 800 0
M9 0 1 1 800 0

M10 0 0 0 1000 0
M11 0 1 0 1000 0
M12 0 0 1 1000 0
M13 0 1 1 1000 0
M14 1 0 0 600 0
M15 1 1 0 600 0
M16 1 0 1 600 0
M17 1 1 1 600 0
M18 1 0 0 800 0
M19 1 1 0 800 0
M20 1 0 1 800 0
M21 1 1 1 800 0
M22 1 0 0 1000 0
M23 1 1 0 1000 0
M24 1 0 1 1000 0
M25 1 1 1 1000 0
M26 0 0 0 900 0
M27 0 1 0 900 0
Note: “Technical assistance” refers to a free administrative and tech-
nical support service for the submission of the AEM application file
and the use of compost, “Requirement on fertilizers” refers to a reduc-
tion in chemical fertilization of 20 percent, “Collective bonus” refers
to a monetary compensation conditional on the participation of other
farmers from the same sector, “Payment” refers to the standard mon-
etary compensation paid individually. The value of 1 means that the
proposed AEM includes the attribute, while zero indicates that it does
not.
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Table 8: Simulation of adoption rates for the whole sample

AEM Technical Requirement Collective Payment Adoption
assistance on fertilizers Bonus

M02 0 0 0 600 0.39
M03 0 1 0 600 0.33
M04 0 0 1 600 0.61
M05 0 1 1 600 0.56
M06 0 0 0 800 0.55
M07 0 1 0 800 0.53
M08 0 0 1 800 0.66
M09 0 1 1 800 0.61
M10 0 0 0 1000 0.6
M11 0 1 0 1000 0.6
M12 0 0 1 1000 0.75
M13 0 1 1 1000 0.64
M14 1 0 0 600 0.91
M15 1 1 0 600 0.84
M16 1 0 1 600 0.94
M17 1 1 1 600 0.9
M18 1 0 0 800 0.91
M19 1 1 0 800 0.87
M20 1 0 1 800 0.94
M21 1 1 1 800 0.91
M22 1 0 0 1000 0.92
M23 1 1 0 1000 0.88
M24 1 0 1 1000 0.94
M25 1 1 1 1000 0.92
M26 0 0 0 900 0.57
M27 0 1 0 900 0.55
Note: “Technical assistance” refers to a free administrative and tech-
nical support service for the submission of the AEM application file
and the use of compost, “Requirement on fertilizers” refers to a reduc-
tion in chemical fertilization of 20 percent, “Collective bonus” refers
to a monetary compensation conditional on the participation of other
farmers from the same sector, “Payment” refers to the standard mon-
etary compensation paid individually. The value of 1 means that the
proposed AEM includes the attribute, while zero indicates that it does
not.
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Table 9: Carbon sequestration induced by compost application

Annual change in carbon stock
compared to initial stock (%yr−1)

Cropping system Vertisol Ferralsol Andosol Nitisol
Banana 1.1 1.4 0.9 1.4
Sugarcane 0.7 0.8 0.5 (a)
Gardening 1 1.2 0.9 1.2
(a) No sugarcane is grown on nitisol in the sample.

Table 10: Simulation of the cost-effectiveness at the territory level (whole sample)

Amount of teqCO2 Total cost of Cost of teqCO2
sequestered SOC annual average adoption sequestered

AEM (extrapol.) growth rate (e/year extrapol.) (e/teqCO2)
M2 10,521 3.07 3,263,881 310
M3 8,063 2.35 2,580,163 320
M4 15,188 4.43 5,385,772 355
M5 13,684 3.99 4,813,848 352
M6 13,313 3.88 5,469,791 411
M7 13,528 3.94 5,595,781 414
M8 16,116 4.70 9,129,788 567
M9 15,333 4.47 8,727,436 569
M10 14,669 4.28 7,540,006 514
M11 14,947 4.36 7,719,868 516
M12 19,347 5.64 12,992,415 672
M13 16,551 4.83 11,091,201 670
M14 24,609 7.17 8,272,985 336
M15 22,398 6.53 7,541,327 337
M16 25,615 7.47 12,581,921 491
M17 24,132 7.04 11,869,447 492
M18 24,625 7.18 10,824,113 440
M19 23,783 6.93 10,450,806 439
M20 25,824 7.53 15,352,541 595
M21 24,771 7.22 14,733,342 595
M22 24,638 7.18 13,378,091 543
M23 24,523 7.15 13,314,476 543
M24 25,824 7.53 18,022,548 698
M25 25,614 7.47 17,864,814 697
M26 13,857 4.04 6,405,938 462
M27 14,167 4.13 6,606,392 466
Note: Costs are calculated assuming that technical assistance costs equale50/ha/year.
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Table 11: Simulation of the cost-effectiveness at the territory level (using half of the farms in the sam-
ple)

Amount of teqCO2 Total cost of Cost of teqCO2
sequestered SOC annual average adoption sequestered

AEM (extrapol.) growth rate (e/year extrapol.) (e/teqCO2)
M2 7,713 2.25 2,355,287 305
M3 5,866 1.71 1,866,224 318
M4 10,744 3.13 3,834,212 357
M5 9,786 2.85 3,183,553 325
M6 9,583 2.79 3,877,604 405
M7 9,787 2.85 4,000,451 409
M8 11,372 3.32 5,218,791 459
M9 10,948 3.19 4,976,220 455
M10 10,423 3.04 5,269,922 506
M11 10,561 3.08 5,384,287 510
M12 13,953 4.07 7,732,193 554
M13 11,970 3.49 6,659,676 556
M14 17,672 5.15 5,857,239 331
M15 15,757 4.59 5,240,084 333
M16 18,725 5.46 9,067,479 484
M17 17,561 5.12 8,530,981 486
M18 17,672 5.15 7,659,467 433
M19 16,857 4.91 7,305,101 433
M20 18,934 5.52 11,100,000 586
M21 18,000 5.25 10,600,000 589
M22 17,672 5.15 9,461,694 535
M23 17,434 5.08 9,331,169 535
M24 18,934 5.52 13,000,000 687
M25 18,663 5.44 12,800,000 686
M26 10,050 2.93 4,574,397 455
M27 10,070 2.94 4,640,932 461
Note: Costs are calculated assuming that technical assistance costs equale50/ha/year.
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Figure 1: Average annual SOC growth rate according to the total cost of the adoption (technical assis-
tance costs equale50/ha/year)

Note: For each AEM, the diameter of the bubble is proportional to the average cost of the
sequestered teqCO2 (ineper teqCO2), so that the smaller the bubble, the more economically
efficient the environmental program.
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Figure 2: Average annual SOC growth rate according to the total cost of the adoption (technical assis-
tance costs equale100/ha/year)

Note: For each AEM, the diameter of the bubble is proportional to the average cost of the
sequestered teqCO2 (ineper teqCO2), so that the smaller the bubble, the more economically
efficient the environmental program.
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Figure 3: Example of a choice card
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