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Summary

Genomic selection has been successfully implemented in both animal and agricultural crop
breeding programmes. Recently, forest tree breeding has also implemented genomic tools to
improve the efficiency of breeding and selection procedures. Due to high genetic complexity
of most economically important traits, genomic selection shows promise in operational
breeding programmes for forest trees. Our two case studies, performed in economically
important conifer species, showed that a genomic-based approach can reach similar prediction
accuracies compared to the pedigree-based alternative. However, larger training population
sample sizes should be used to increase the efficiency of genomic selection and outperform
the traditional pedigree-based scenario. Moreover, broad genetic diversity is needed to
successfully estimate genetic correlations and perform multivariate analyses.

Introduction

Conifers are long-lived organisms with rotation ages from 20 to 100 years depending on the
species and economic context. Genomic selection offers new opportunities to accelerate
genetic gain per unit time with the ability to rapidly integrate new traits in response to
adaptation to climate change. Most conifer breeding programs were established in the 1950s
or 1960s from base populations with a large effective size and a high level of genetic diversity
(the base population consists of superior trees, called “plus-trees”, selected in unimproved
plantations or from wild stands). These breeding programmes follow a recurrent selection
scheme, focused mainly on general combining ability. Generally, only 2-3 selection cycles
have been completed to date due to low investment and logistical complexity (late sexual
maturity and large genetic evaluation trials). Although molecular markers have not yet been
implemented in operational tree breeding, several projects have explored the potential for
genomic selection in conifers. The main obstacle to the implementation of genomic selection
in conifers is the limited number of genomic tools (low number of markers per cM due to the
large genome, and no reference genome for most conifers). Nevertheless, successive breeding
populations are available in clonal archives which should facilitate the calibration of genomic
models.

In this paper, we present genomic prediction proof-of-concept for two major conifer
species: maritime pine and radiata pine. Maritime pine (Pinus pinaster) is the most important
plantation species in France (44 millions seedlings in 2016) and radiata pine (Pinus radiata)
constitutes 90% of the planted forest estate in New Zealand. In this paper we present case
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studies for both species, followed by general recommendations based on our learnings, for
genomic selection in conifers.

Maritime pine genomic prediction proof-of-concept

The maritime pine breeding program follows a recurrent selection scheme from a base
population of 635 “plus-trees” (called G0 trees) selected during the 1960s. The main
population has cycled through three generations (G0, G1 and G2). In order to reduce selection
cycle length, to increase the selection intensity and implement new selection traits, genomic
selection (GS) is under study for future implementation in the maritime pine breeding
program (Bartholomé et al., 2016).

Given the low level of linkage disequilibrium and the low number of markers available
(<5,000) to cover the large genome of maritime pine (24 Gb), we have set up a proof-of-
concept experiment with a limited effective size population (NS = 25) over the three
generations of the breeding program (G0, G1 and G2). The reference population (n=818) was
established with 710 G2 trees and all their progenitors (ie. 62 G1 and 46 G0). Thus each G2
of the reference population has its 2 parents and its 4 grand-parents represented in this
population. This reference population was successfully genotyped with 4,332 polymorphic
SNPs (MAF>0.01). The pseudo-phenotypes (EBV) considered for genomic selection analyses
consisted of breeding values (height, diameter and stem straightness) evaluated from a BLUP
analysis of the breeding population from more than 500,000 trees.

Two validation methods were considered to evaluate the effect of calibration and
validation sets on genomic prediction accuracy: the “subset validation method” and the
“progeny validation method” (Figure1). In the first method, the G2 population was split into
calibration and validation sets with three sampling strategies (high or low level of
relatedness). In the second method, the progenitors (G0 and G1 trees) were used for the
calibration set and the G2 trees as the validation set.

Figure 1: Validation methods considered to evaluate the performance of prediction models.

Three prediction models were considered to estimate breeding values: ABLUP (based
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only on pedigree information), GBLUP (all markers are assumed to have the same effects)
and Bayesian LASSO (marker effects distributed following a Gaussian likelihood method).
Table 1 (“subset validation method”) and Figure 2 (“progeny validation method”) show
results for prediction accuracy which is the coefficient of correlation between the EBV and
the GEBV obtained from the three models (ABLUP, GBLUP, and Bayesian LASSO).

Table 1: Prediction accuracy results for the “subset validation method”.

Calibration set 80% of the G2 Calibration set 80% of the G2 + G0/G1

ABLUP GBLUP B-LASSO ABLUP GBLUP B-LASSO

Circum
-

ference

Rand 0.78 (0.68-0.85) 0.73 (0.62-0.80) 0.72 (0.62-0.80) 0.83 (0.79-0.89) 0.74 (0.67-0.81) 0.74 (0.67-0.81)
S1 0.55 (0.34-0.74) 0.52 (0.24-0.67) 0.52 (0.24-0.67) 0.81 (0.65-0.89) 0.69 (0.51-0.81) 0.69 (0.51-0.81)

S2 0.80 (0.73-0.85) 0.74 (0.67-0.81) 0.74 (0.67-0.80) 0.84 (0.80-0.89) 0.75 (0.68-0.84) 0.75 (0.68-0.82)

Height

Rand 0.68 (0.54-0.78) 0.66 (0.56-0.77) 0.66 (0.56-0.77) 0.75 (0.66-0.82) 0.68 (0.60-0.76) 0.68 (0.59-0.75)
S1 0.58 (0.46-0.77) 0.58 (0.43-0.75) 0.58 (0.38-0.74) 0.74 (0.63-0.87) 0.67 (0.54-0.79) 0.66 (0.53-0.79)

S2 0.70 (0.60-0.77) 0.69 (0.60-0.76) 0.68 (0.59-0.76) 0.75 (0.66-0.83) 0.70 (0.59-0.79) 0.69 (0.59-0.79)

Stem
straight
- ness

Rand 0.86 (0.80-0.90) 0.81 (0.75-0.86) 0.82 (0.76-0.86) 0.90 (0.86-0.94) 0.82 (0.74-0.88) 0.82 (0.75-0.88)
S1 0.67 (0.51-0.79) 0.65 (0.48-0.77) 0.66 (0.48-0.77) 0.88 (0.78-0.93) 0.77 (0.62-0.87) 0.77 (0.63-0.87)

S2 0.87 (0.84-0.91) 0.81 (0.77-0.87) 0.81 (0.77-0.88) 0.91 (0.88-0.94) 0.80 (0.76-0.85) 0.80 (0.76-0.86)

Figure 2: Prediction accuracy results for the “progeny validation method”. Closed circles
represent the calibration set (46 G0 genotypes in blue and 62 G1 genotypes in orange). The
validation set is represented in open green circles (710 G2 genotypes).
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The subset validation method highlights the importance of relatedness between
calibration and validation sets. The progeny validation method shows that higher prediction
accuracies are obtained over multiple generations which is a key issue when applying
genomic selection. The pedigree-based model, however, had prediction accuracies similar or
greater than that of marker-based models. This means that our genomic models are not better
than a basic pedigree recovery analysis, and thus, are not able to predict within-family
variability. This can be explained by several factors such as the low number of markers, the
low number of trees per family in the calibration set or the poor accuracy of pseudo-BLUP
for G2 trees.

Radiata pine genomic prediction proof-of-concept

The current radiata pine breeding program was established by the selection of a large number
of “plus-trees” from forest stands planted across New Zealand. A subset of these (588) were
selected in 1968, which were subsequently tested through open-pollinated progeny tests and
forward selection to create a new generation. Forward selection from these breeding
populations, along with the original plus trees, represent the parental population for the
genomic selection training population. The training population consists of 988 individuals,
representing 85 families. It includes two sub-populations POP2 and POP3 (Li et al., 2016)
selected from the same gene pool (NS=32 for POP2 and NS=35 for POP3). The POP2 sub-
population was created from two selection lines: 1) individuals selected for growth and form
through GF score combining breeding values from diameter at breast height (DBH) and
acceptability considering straightness, malformation and branching pattern (POP2GF), and 2)
individuals selected through tandem selection, weakly for growth and form and strongly for
high wood density, with the aim of breaking the population-level negative genetic correlation
between growth and wood density (POP2HD). The sub-population POP3 was selected only
for growth and form. The training population was phenotyped on 4 ramets per genotype (a
ramet is vegetative copy of a genotype) for diameter at breast height (DBH), wood density
(WD), straightness (STR9) and branching (BR9). Genomic data were generated through an
exome-capture genotype-by-sequencing (GBS) genotyping platform (Neves et al 2012)
producing 80,160 single nucleotide polymorphisms (SNPs). An Eigen-decomposition of the
marker-based relationship matrix found structure that reflects the selection history of each
sub-population (Figure 3). The pedigree-based (ABLUP) and marker-based (GBLUP) models
were performed separately for each population (using only genotyped individuals) at a single-
trait or multi-trait level using the MTG2 package (Lee & van der Werf, 2016) and breeding
value reliabilities were estimated Additionally, the Krzanowski test (Krzanowski 1979) was
performed to investigate correlations between correlation matrices estimated in each
population and found strong correlations of 0.88 and 0.95 between populations passing the
same selection history (POP2GF and POP3) while low correlations from 0.13 to 0.24 were
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reached between population following different selection regimes.

Figure 3: Eigen-decomposition of the marker-based relationship matrix

Table 2: Reliability of breeding values obtained from the single trait model

Site Population
Pedigree-based model Marker-based model

BR9 DBH ST9 WD BR9 DBH ST9 WD

Tarawera

POP2GF 0.52 0.50 0.40 0.63 0.51 0.48 0.37 0.60

POP2HD 0.63 0.58 0.40 0.62 0.57 0.54 0.35 0.61

POP3 0.60 0.54 0.52 NA 0.63 0.55 0.54 NA

Woodhill

POP2GF 0.53 0.51 0.35 0.11 0.52 0.51 0.31 0.08

POP2HD 0.62 0.62 0.52 0.05 0.58 0.58 0.50 0.03

POP3 0.47 0.38 0.42 0.71 0.49 0.35 0.43 0.75

Kinleith POP3 0.49 0.37 0.37 0.38 0.53 0.38 0.34 0.42

Currently, several studies have explored the benefit of utilizing multivariate over
univariate analysis (Jia & Jannink, 2012; Marchal et al., 2016) to improve the accuracy of
genomic predictions, in traits with low heritability, through genetic correlations. We
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investigated the likely benefit of multivariate analysis in the context of radiata pine
populations under different selection histories. The multivariate analysis uncovered that the
tandem selection strategy broke most of the commonly expected correlations within the
population. The expected improvement in the accuracy of genomic breeding values in the
multivariate analysis was surprisingly realized only in the POP2HD populations for BR9, ST9
and WD (Table 2 and 3). This could be due to the small sample size used to estimate genetic
correlations as the requirements for the reliable estimation of genetic correlations are more
demanding compared with heritability estimates (White et al., 2007). As reported in Bijma &
Bastiaansen, (2014), at least 100 families should be employed for the estimation of genetic
correlations with reasonable precision. Generally, the multivariate analysis was found to not
produce any benefit and instead gave rather inferior results among the uncorrelated traits (Jia
& Jannink, 2012) but this was not the case in the present study.

Table 3: Reliability of breeding values obtained from the multi-trait model

Site Population
Pedigree-based model Marker-based model

BR9 DBH ST9 WD BR9 DBH ST9 WD

Tarawera

POP2GF 0.50 0.40 0.39 0.56 0.48 0.38 0.36 0.54

POP2HD 0.67 0.56 0.49 0.68 0.58 0.50 0.42 0.67

POP3 0.57 0.51 0.50 NA 0.60 0.51 0.52 NA

Woodhill

POP2GF 0.52 0.48 0.35 NA 0.52 0.43 0.34 NA

POP2HD 0.62 0.62 0.57 NA 0.62 0.56 0.58 NA

POP3 0.44 0.31 0.34 0.68 0.43 0.28 0.33 0.71

Kinleith POP3 0.42 0.32 0.39 0.40 0.45 0.31 0.36 0.47

Recommendations

In these two conifer case studies, genomic-based approaches reach similar prediction
accuracies compared with the pedigree based alternatives. This means that, at this stage,
Mendelian sampling is not correctly predicted. Several hypotheses can explain these results:

- a low number of markers in comparison to the large size of conifer genome (more
than 20 Gb)

- the selection of the SNP set (mainly SNP from EST with low MAF)
- the reliability of the pseudo-phenotype considered as the reference to estimate the

genomic selection accuracy
- the design of the training population, generally constituted with a low number of tree

per full-sib family
The last hypothesis is probably a key point to outperform the traditional pedigree-based
scenarios. The decreasing cost of genotyping should allow to genotype larger training
population sample sizes with a focus on increasing the number of genotyped trees per family.
In conifer breeding, crossing can generate large numbers of offspring. Capturing Mendelian
sampling would allow to select superior trees without testing and thus deliver genetic gain
improvements through acceleration of the breeding cycle.
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