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Background: Increasing crop production to feed a growing population has driven the use of mineral fer-
tilizers to ensure nutrients availability and fertility of agricultural soils. After nitrogen, phosphorus (P) is
the second most important nutrient for plant growth and productivity. However, P availability in most
agricultural soils is often limited because P strongly binds to soil particles and divalent cations forming
insoluble P-complexes. Therefore, there is a constant need to sustainably improve soil P availability. This
may include, among other strategies, the application of microbial resources specialized in P cycling, such
as phosphate solubilizing bacteria (PSB). This P-mediating bacterial component can improve soil biolog-
ical fertility and crop production, and should be integrated in well-established formulations to enhance
availability and efficiency in use of P. This is of importance to P fertilization, including both organic and
mineral P such as rock phosphate (RP) aiming to improve its agronomic efficiency within an integrated
crop nutrition system where agronomic profitability of P and PSB can synergistically occur.
Aim of Review: The purpose of this review is to discuss critically the important contribution of PSB to crop
P nutrition in concert with P fertilizers, with a specific focus on RP. We also highlight the need for PSB
bioformulations being a sustainable approach to enhance P fertilizer use efficiency and crop production.
Key Scientific Concepts of Review: We first recognize the important contribution of PSB to sustain crop
igher P
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production, which requires a rational approach for both screening and evaluation of PSB enabling an
accurate assessment of the bacterial effects both alone and in intertwined interaction with plant roots.
Furthermore, we propose new research ideas about the development of microbial bioformulations based
on PSB with a particular focus on strains exhibiting synergetic effects with RP.
� 2021 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Human population is expected to reach 9 billion by 2050, an
increase of 0.7% per year, accompanied by a 70% increase in food
demand [1]. For many years, the aim for applying fertilizers is to
supply nutrients to plants to sustainably secure adequate crop
yield. Besides nitrogen (N) and potash (K), phosphorus (P) has been
crucial to sustain crops yield for the production of both food and
feed [2-4].

Phosphorus is an essential macronutrient directly involved in
nucleic acids, cells division and growth of new tissues, which all
regulate protein synthesis and energy transfer [5]. This nutrient
is needed for diverse cellular processes like photosynthesis, carbo-
hydrate metabolism, energy production, redox-homeostasis, and
signaling [6]. Phosphorus plays a key role in root development,
root traits anatomy modifications and root hair density with a sig-
nificant contribution in increasing yield of crops [7]. Phosphorus
can limit normal plant growth if not provided by the soil or by
appropriate quantities of fertilizers. Consequently, P deficiency
can cause significant reductions (up to 15%) of crop yield [8]. For
this reason, P application remains one of the main agricultural
practices to meet plant needs.

Obviously, application of water-soluble P fertilizers improves
soil mineral fertility and increase P availability in soils, thereby
plant P uptake will be enhanced leading to a higher plant produc-
tivity and yield [9]. Although P fertilizers are agriculturally vital to
secure crop growth and productivity, their use efficiency by crops
significantly may be very low due to P fixation to soil cations. For
example, P fertilizers can rapidly react with soil divalent cations
such as calcium (Ca), iron (Fe) and aluminum (Al) to form insoluble
soil P mineral forms [10,11]. Therefore, improving use efficiency of
P fertilizers in terms of nutrient uptake and crop yield remains
highly important. Unlike water-soluble P fertilizers, RP directly
applied in agricultural soils could be an efficient P form for crop
production in high P retention soils [12]. The agronomic efficiency
of RP has been extensively studied and reported over the past
50 years [13], and the positive effects of its direct application on
soil properties and plants growth have been well reported to rely
mainly on RP solubility [14-16]. However, the rate of RP dissolu-
tion needs to be improved in most agricultural soils, which is ulti-
mately needed to meet plant P demand. To increase RP agronomic
efficiency, use of agriculturally beneficial microorganisms involved
in P-cycling is a promising biotechnological strategy that has
gained worldwide interest in recent decades.

These microbes are commonly known as P solubilizers (PSM)
belonging to the group of plant growth promoting microbes
(PGPM) due to their phyto-stimulation capacities [17,18]. Among
PGPM, plant growth promoting rhizobacteria (PGPR), exhibiting
higher P solubilizing abilities, have been categorized as PSB
exhibiting substantial benefits for plant growth and yield
[19-21]. For example, Pseudomonas [22], Azotobacter [23],
Xanthomonas [24], Rhodococcus, Arthrobacter, Serratia, Chryseobac-
terium, Gordonia, Phyllobacterium, and Delftia sp. [25,26] are known
to exhibit higher P solubilization capacities along with multiple
plant growth promoting activities.

In addition to their native P solubilizing capacity in soils, PSB
can be combined to RP, as both are natural resources and their
2

co-application has been demonstrated to improve RP agronomic
efficiency [27-30]. Indeed, exploitation of microbial functional
traits related to P solubilization, mainly in high P-retention agricul-
tural soils, is paramount in order to propose microbial-based
strategies enabling RP use efficiency, [31]. Many experimental
studies provided evidence that synergies can occur when combin-
ing both PSB and RP likely leading to cost-effective P-based biofer-
tilizers directly applicable in acidic or alkaline soils. For instance,
dual application of RP and PSB (e.g., Azotobacter, Azosporillum, Rhi-
zobium and Klebsiella) significantly improved plant P nutrition of
both cereal and legume crops [32-37].

Indeed, various formulations containing PSB have been estab-
lished to increase RP dissolution as well as achieving high yield
of crops. The use of PSB becomes effective as it could continuously
offer biological solutions in concert with mineral P fertilization as
both are highly beneficial for plant growth. In this review, we focus
on the importance of both RP and PSB in terms of agronomic prof-
itability within an integrated P biofertilization approach. We also
detail agronomic profitability of P (mineral and organic) and PSB
co-application in amended soils and inoculated crops, establishing
the connection between the influence of PSB co-application on
agroecosystem production. Moreover, we discuss the importance
of both a rational and functional screening approach of PSB, which
is based on different screening levels to help construct efficient
consortia. Additionally, we highlight PSB formulation to be a cru-
cial step for bacterial survival and P solubilization activities within
the root/rhizosphere interface. Specifically, our review discusses a
real need to exploit PSB based on their ability to solubilize RP to
advance research on a possible development of controlled-release
P fertilizers as part of an environmentally sustainable approach
alleviating low P availability issue while enhancing P use efficiency
(PUE).

Phosphorus is an essential nutrient for food production

Phosphorus is considered as a macronutrient majorly involved
in central and important molecules for living organisms including
DNA, RNA, sugar, lipids, proteins, ATP, ADP and NADPH [38]. It is
therefore an essential nutrient for plants development and growth
given that P concentration reaches up to 0.5% of plant dry weight
[5]. Adequate levels of P availability in soils, among other factors,
significantly contributes to crop productivity assuming that P fer-
tilizers are vital to meet plant P nutritional requirements that is
partly responsible for sustaining crop production.

Phosphorus in the soil–plant continuum

Phosphorus in soil exists in different chemical forms, either
organic or inorganic (Pi). Besides the readily available P fraction
that P fertilizers can significantly provide, activities of both roots
and associated microorganisms also contribute to improve P avail-
ability in the rhizosphere soil. Inorganic P forms include precipi-
tated P containing minerals (Fig. 1) defined as minerals that
contain P as a structural element [39] such as apatites, strengite
and variscite that are very stable, and their solubility depends on
soil pH [40]. Meanwhile the secondary forms are adsorbed or
bound P (Fig. 1) such as P-sorbing minerals, mainly Al-, Ca- and

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Schematic representation of P cycling processes in soil–plant- microorganisms systems. ‘‘Insoluble P” represents P fixed with soil particles (ions, humus and primary P
minerals) and ‘‘organic P” represents the organically bound component of P in microbial biomass and plant residues. Extracellular enzymatic hydrolysis and organic acid
production are the biochemical process involved by roots and microorganisms to increase P availability.
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Fe- P whose dissolution depends on soil particles and soil pH
[41,42]. Organic P forms consists of compounds varying in terms
of bioavailability and solubility. For instance, most organic P forms
usually exist as inositol P, anhydrides of phosphoric acid and phos-
phonates forms [43,44] originated from plant residues and animal
manure [45-47]. Meanwhile, an important organic P proportion,
between 3 and 14%, is bound in microbial biomass [48], which
competes with plants for available P [49]. In the long term, this
microbial biomass could represent a temporary immobilized pool
of P, which can be mineralized and released in the soil solution
as available P.

Despite the high capacity of P to bind strongly to soil particles
[10], P availability for plant uptake is generally a balanced process
of both adsorption and desorption phenomena. Indeed, rhizo-
sphere biological processes play key roles in P dynamic and avail-
ability in agricultural soils. Both plants, via roots, and rhizosphere
microbes significantly contribute to soil biological activities, thus
driving P dynamic in the root-soil interface where P bioavailability
highly dependent on organic and inorganic compounds such as
mucilage, organic acids, phosphatases, and some specific signaling
substances (proton release, chelation and ligand exchange) (Fig. 1).
All considered to be key drivers of various rhizosphere processes
[10] including P-cycling microorganisms that improve P availabil-
ity in agricultural soils.

To facilitate P acquisition from soils, different modifications in
root architectural traits are employed such as increasing root
length and root hair density [50]. Root hairs are the most special-
ized for nutrient uptake [51]. In addition, formation of cluster roots
is also considered among the major adaptations for a better P
acquisition [52]. Crops may respond differently to soil P levels such
as wheat, maize and rice exhibiting longer root hairs that improve
PUE [53-55]. On the other hand, leguminous crops (such as Cicer
arietinum and Vicia Faba) significantly change root physiology
(such as exudates) than root morphology [56]. For example, exuda-
3

tion of organic acids such as oxalate and malate are involved in
increasing P availability [57]. Another study on two contrasting
soybean genotypes reported significant induction of oxalate,
malate and citrate under P deficiency and/or aluminum toxicity
[57]. Moreover, extracellular exudation of enzymes into the rhizo-
sphere, either by roots or associated microorganisms, are
additional mechanisms significantly contributing to improve P
availability [58] with acid phosphatases being the most abundant
P-hydrolyzing enzymes produced under low P conditions [59].

In connection with this research review, PSM can solubilize/
mineralize unavailable P forms in soils through different
mechanisms such as rhizosphere acidification and/or phosphatases
excretion, resulting in enhanced plant P uptake [37]. For instance,
PSB inoculation can modify root morphology and architecture
through phytohormones production such as abscisic acid, cytoki-
nin, indole-3-acetic acid and gibberellic acid [60,61]. Moreover,
PSB could modulate the expression of auxin-responsive genes,
hence playing a key role in the regulation of endogenous auxin
level with positive consequences on P acquisition and plant
physiological status [62-65]. In addition, positive effects on spatial
rhizosphere/root heterogeneity can occur due to increased soil
exploration leading to a more solubilization and root absorption
of P, which can be achieved by inoculating roots with auxin-
producing PSB isolates [66].

Phosphorus is a key nutrient fertilizer for a sustainable crop
production and food security

Enhancing agricultural productivity to ensure food security is a
matter of concern, which undoubtedly will require adequate
amount of essential nutrients, including P. Commercial fertilizers
are multiple and could be found as straight fertilizer when only a
single nutrient is presented like single super P (SSP) or triple super
P (TSP) or like urea or ammonium sulphate for nitrogenous straight
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fertilizer, whereas di-ammonium P (DAP), monoammonium P
(MAP), nitrophosphate (NP) and NPK, among other fertilizers, are
considered mixed or complex fertilizers containing more than
one essential nutrient [67]. For instance, application of urea P
and monopotassium P increased soil P availability and leaf P con-
tent of Solanum tuberosum [68]. This is in line with recent findings
by Otinga et al. [69] reporting that soil available P enhanced with
the application of P fertilizers (TSP) with positive impacts on soil
fertility. In addition, application of P fertilizers including mono-
calcium P (MCP) and DAP improved nutrients (P and N) uptake
of rice [70]. This fertilization could affect positively shoot and root
P content generating higher plant biomass (80%) compared to
unfertilized plants [71]. Similarly, under both greenhouse and the
field conditions, growth, nutrient uptake, and grain yield of soy-
bean increased under different P fertilization supplies including
TSP and RP [72]. Furthermore, yield of sugarcane and Solanum
tuberosum increased in response to different P fertilizers (e.g.,
DAP, SSP, TSP and RP) [68,73,74]. It is noted that application of P
fertilizers improves soil fertility and increase P availability in soils,
thereby plant P uptake will simultaneously increase leading to a
better plant growth and yield.

Although P is an essential nutrient, however only a small frac-
tion of it, estimated up to 25%, is taken up by plants [75]. Hence,
application of P fertilizers must consider soil physicochemical
properties (e.g., pH, redox potential) plausibly responsible for such
a reduced utilization such as in acidic soils where P is mostly fixed
by Al or Fe and in alkaline soils predominately by Ca [8]. Fertilizers
such as TSP, DAP and MCP are water soluble P concentrated fertil-
izers, but their rapid reactivity with soil nutrients and clay parti-
cles significantly impact the fate of P in the soil as well as plant
P uptake presumably will not synchronize with application of P
fertilizers over time. Alternatively, RP may strongly be recom-
mended to use as a low-reactive P fertilizer against fixation and
adsorption phenomena, particularly in high-P retention soils. It
was also demonstrated that RP remains a slowly dissolving P form
enabling a gradual P release likely through acidification due to rhi-
zosphere activities [15,76,77]. However, RP dissolution rate seems
to be low given the higher plant P requirements throughout
growth stages. To overcome RP low solubility, utilization of high
P-dissolving crops (exhibiting robust and active rooting system)
and PSM capable of solubilizing RP is highly recommended. Indeed,
application of RP combined with PSM remains a highly interesting
approach, which can offer opportunities to improve PUE.

Fertilizer best management practices improve PUE and meet
sustainable agriculture goals

Agronomic practices, in terms of plant nutrition and soil fertil-
ity, through application of the right mineral fertilizers, while con-
sidering the right amount and composition, the right time, and
the right place, ultimately improve use efficiency of nutrients
[77] with positive consequences on yield in particular and on the
demand for food and feed in general. A wiser ‘‘in field and in time”
agricultural application of P-based fertilizers is of importance to
make P nutrient use agronomically more efficient, environmentally
beneficial, and economically vital. For this purpose, the 4Rs Nutri-
ent Stewardship guidelines have been developed by the fertilizer
industry as a process to guide fertilizer best management practices
(FBMP) all around the world [78].

Bringing a single nutrient are usually used such as P containing
fertilizers whose application is needed to raise P availability in soils
[79]. For the right rate principle, it clearly links to soil nutrients status
and plant requirements. An effective soil analysis (such as Olsen test
[80], Bray test [81] and Kelowna and modified Kelowna tests [82])
should be available to determine the need for P fertilizer application
and to estimate P rate needed. Application of P should be synchro-
4

nized with the crop’s nutrient requirements ‘‘Right Time”, especially
at early growth stage of plant development, given that crops are often
sensitive to P deficiency at the earliest growth stage [83]. Moreover,
later P supply may be important for plant, which depends on the ini-
tial P status [84]. Optimization of P availability for crops can also be
achieved with the right placement of P fertilizers ‘‘Right place” [85].
Indeed, application of P fertilizers nearby the root zone can help
plants take up P efficiently and positively influence overall plant
growth performance and yields. In this regards, banding of P fertilizer
near to the root zone or it application with seeds have been reported
among the best placement option more than P broadcast on the soil
surface [86]. Placement of P fertilizers within the soil even at smaller
placed P doses was reported to enhance rice development, P uptake,
and yield under P deficiency [85]. Overall, fertilizers 4Rs practices
have proven efficient to ensure a better agronomic efficiency of P fer-
tilizers while considering the physical and chemical properties of
soils and crop needs (Fig. 2).

In addition, ecological consideration should be taking as a starting
point to create innovative fertilization strategies where both ecolog-
ical and biological processes (e.g., nutrient-specific interactions in the
rhizosphere and plants, soil, and plant microbiomes, etc.) and tech-
nologies can be co-exploited via concerted research and development
efforts to achieve sustainable crop production goal. An example of
integrated approach adopted to increase P fertilizers agronomic effi-
ciency was proposed by Jayakumar et al. [87] suggesting a combina-
tion of both Pmineral fertilizers (RP and TSP) and biological resources
(PSB, egg shell and animal bone waste). This combination showed an
increased (14%) efficiency of TSP when combined with bacterial inoc-
ulation. This exemplifies positive synergies between both mineral
and microbial resources leading a better plant growth. Opportunities,
therefore, exist to systematically deploy microbial resources as part
of integrated crop fertilization systems [30].

Moreover, improvement of P use efficiency in agricultural
ecosystem could be achieved through minimizing nutrient loss
by developing smart fertilizers, which become a priority research
among many agricultural research institutions. One of the most
promising strategies is to develop controlled-release fertilizers
(CRFs) (Fig. 2) deliberately made to release the active nutrient in
a controlled manner while extending the duration of release and
manipulating the rate of release to meet plants needs [88]. There
are several CRFs marketed; for instance, application of coted poly-
mer (MAP, DAP and SSP) increased PUE in rice as well as P avail-
ability in soil [89]. In a recent study, Pizzeghello et al. [90]
reported an induced yields and P uptake of Hypericum moserianum
in response to polymer-coated MAP compared to MAP application.
Nevertheless, there is still a limited number of studies on the
development of controlled release P-fertilizers using low-grade
RP. In this regard, Sarkar et al. [3] used different coating agents
(polyvinyl alcohol and liquid paraffin) to produce a controlled
release RP formulation and suggested this as a strategy to enhance
P use efficiency. In other hands, being an integral component of soil
biogeochemical processes, exploitation of free or encapsulated
PSM in an environment friendly strategy can increase P availability
in soil–plant systems using several mechanisms [91,92]. Thus, the
development of fertilizers based on the combination of RP
nanocomposites and PSB along with best management practices
could improve PUE and meet sustainable agriculture goals.
Phosphate bio-solubilization boosts rock phosphate agronomic
efficiency

Increased agronomic efficiency of rock phosphate for a better PUE

Evidently, RP even in its natural form contributes to crop pro-
duction mainly in specific soil conditions, but adequate technolo-



Fig. 2. Simplified illustration of a bio-formulation process involving RP and PSM aiming to increase efficiency along with nutrient best management Practices (BMP) to
control P release and to increase fertilizer agronomic efficiency.
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gies are needed to generate additional agronomic efficiency of RP.
Across plant growth stages, it is essential to develop new strategies
applied to the rhizosphere interface to dissolve maximum amount
of available P from RP. One of the successful practices is the com-
bination of RP with organic amendments such as manure [93-95].
Co-application of RP and vermicompost (cow dung, grasses, aqua-
tic weeds and municipal solid wastes) was found to increase soil P
availability more than single application of RP [96]. A study by Nar-
ayanan [97] demonstrated an increased RP use efficiency when
combined with vermicompost or anaerobic digestate sludge con-
sidered to be excellent biofertilizers compared to mineral P fertil-
izers. Following the same approach, incorporation of different RP
rates with organic manure, including cow dung and waste paper,
increased soil soluble P by 39, 50 and 65% as compared to 2, 4
and 8% under a single RP application, respectively [98].

Another strategy consists of mixing RP with water soluble P fer-
tilizers assumed to be both agronomically and economically effec-
tive. In this context, mixing RP with TSP was successful with the
relative RP agronomic effectiveness (calculated relatively to a P
conventional fertilizer) increased from 12.5 to 45% [99]. This
improvement could be explained by the ability of TSP to provide
a readily available P fraction for plants even at the earliest stages
of their development with the assumption that RP use efficiency
increases while plant roots develop and spatially exploit the rhizo-
sphere soil [13]. Ndakidemi [99] also demonstrated the positive
impacts of the combined use of RP and TSP on common bean
whose seed yield significantly increased two fold (219%) compared
to single RP fertilization. Similarly, co-application of RP and TSP
(50/50%) was reported as effective as TSP (100%) in both field-
and pot experiments-grown sorghum [100]. Besides, partial acidu-
lation of RP can contribute to improve RP agronomic efficiency. The
reaction of RP with acid waste (metallurgical acid residue and
whether an acidic mine waste) was effective to produce more sol-
uble P, thus improving plant P uptake and yield [101-103]. From
the promising findings of these studies, it appears that practical
formulations of mixed P fertilizers combining RP and other mineral
P sources could be considered as a possible pathway enabling a
5

higher RP agronomic efficiency, however more applied research
are required to prove compatibility with both soil types and crops.

Furthermore, exploitation of PSM is among promising microbial
technological applications used to increase RP agronomic efficiency.
In this context, P-mediating microorganisms are integral compo-
nents of the soil P dynamic as they strongly participate in the rhizo-
sphere nutrient dynamic processes [104]. Many microorganisms,
including fungi, bacteria, and yeast can solubilize different insoluble
forms of P [92,105,106]. Xu et al. [107] showed that Pantoea ananatis
and Bacillus thuringiensis could increase RP efficiency by producing
organic acids such as gluconic, citric, and a-Ketoglutaric. Addition-
ally, RP combined with PSB (Pantoea cypripedii and Pseudomonas
plecoglossicida) increased soil P availability resulting in a higher crop
yield of both maize and wheat [37]. Moreover, RP agronomic
efficiency can be enhanced by adopting a mechanical–biological
approach consisting of producing soluble P by growing Aspergillus
niger using RP with particle sizes in the nanometric range. The
mechanical treatment of RP (even for short periods of milling),
combined with the biological cultivation process could be highly
effective in increasing RP solubilization with gains ranged from 60
to 115% [108].

Phosphate solubilizing bacteria contribute to improve P use from rock
phosphate

Evidently, PSB efficiency for PUE and crop production has been
demonstrated through controlled and field studies, however RP
that stands as a natural P source primarily used in the production
of P fertilizers for the agriculture is still lacking technologies
enabling a higher P solubilization as compared to well-developed
technologies and processes that chemically transform RP into P
mineral fertilizers. Over the last ten years, the effects of PSB on
RP solubilization have been reported in more than 4640 research
publications (Fig. 3) related to specific research fields, mainly
sciences of the environment (494), soil (423), agronomy (308),
plant (301), and microbial biotechnology (157). In these studies
that have been trending up since 2000, attention has been paid



Fig. 3. Number of publications per year related to PSB (phosphate solubilizing bacteria) and their effect on rock phosphate solubilization in the las twenty years (2000–2020)
according toWeb of science database. The gray histogram represents the annual number of publications while the blue line illustrates the accumulate number of publications.
Database are collected from Web of science using the following key words: (‘‘phosphate solubilizing bacteria ”OR‘‘phosphorus solubilizing bacteria”OR‘‘phosphate
solubilizing rhizobacteria” AND‘‘ rock phosphate” or ‘‘phosphate rock”).
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to the important role of microorganisms to enhance RP solubiliza-
tion for a direct P application, and to develop appropriate technolo-
gies that enhance both RP solubilization and its agronomic
efficiency. This also included identification of obstacles associated
with the direct use of RP.

Phosphate solubilizing bacteria are capable to solubilize
unavailable P form to soluble forms, thereby improving subsequent
availability of P to plants [109-112]. Bacterial species belonging to
several genera such Pseudomonas spp., Agrobacterium spp., and
Bacillus spp., [113,114] are used as soil inoculants to increase P
availability. In addition to P solubilization ability, other studies
have reported Rhizobium tropici [115], Azotobacter chroococcum
[116], Enterobacter cloacae [117] to be both solubilizing and miner-
alizing P bacteria. Park et al. [118] demonstrated that Enterobacter
sp. can increase RP solubilization up to 17.5%, and this trait pre-
sumably increased soil P availability, showing that inoculation
with PSB and amendment with RP could be a promising alternative
option to use this potent source as P fertilizer and maintain higher
nutrient availability in soils [118]. Similarly, Rezakhani et al. [119]
reported a significant effect on RP solubilization indicated by
increased soil P availability through inoculation with Pseudomonas
sp. FA1. This PSB strain significantly promoted root and shoot bio-
mass and uptake of P under RP fertilization. Moreover, PSB
(MRS23) combined with RP resulted in a higher soil P availability
(27%) compared to that solubilized (4%) from RP alone [37]. These
results indicated that PSB increased the efficiency of RP by increas-
ing its solubilization and providing more P into mineral P pool. In
addition, inoculation of maize and wheat plants with PSB ‘‘Pantoea
cypripedii and P. plecoglossicida” under RP fertilization notably
improved P content of shoots (37 and 186%), roots (76 and 91%)
and yield (20 and 16%) of maize and wheat, respectively [33]. Sim-
ilar effects were observed in wheat fertilized with RP and inocu-
lated individually with five PSB Pseudomonas plecoglossicida, P.
reinekei, P. koreensis, P. japonica and P. frederiksbergensis showing
positive impacts on rhizosphere available P, shoot P content and
root acid phosphatase activities [7].

In this regard, the efficiency of ‘‘RP-PSB” can also be improved
by introducing a nutrient-rich organic component such as organic
amendments including poultry manure and composts. Such a mix-
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ture have been reported to positively impact maize responses
under RP and proposed to be a promising approach to enhance soil
P availability and plant growth in intensive cropping systems
[120]. Similarly, Alzoubi et al. [121] demonstrated that RP agro-
nomic efficiency significantly increased in response to inoculation
with PSB (Bacillus megaterium) and amendment with organic fertil-
izers (based on organic manure and olive residues). Moreover,
growth and yield of legume plants (chickpea and lentil) signifi-
cantly enhanced under application of RP enriched with organic
amendments and PSB (Bacillus thuringiensis and Bacillus sp.
Cp-h60). This improvement is attributed to the positive effect of
PSB on P availability and particularly on nodulation that improved
N nutrition of chickpea and lentil [36]. Likewise, combined use of
RP, poultry manure and PSB (Pseudomonas spp, Azospirillum spp,
and Agrobacterium spp strains) increased growth, P uptake and
yield of chili equivalently to DAP application [28]. In this direction,
it was demonstrated that PSB-RP utilization associated with appli-
cation of biochar, in order to optimize microbial growth and repro-
duction, can be considered as a sustainable strategy to enhance RP
solubilization and soil P availability [122,123].

A fine-tuned bacterial screening approach is needed for accurate
selection of PSB

Generally, the adopted methodology for PSB screening (in vitro
assays) is based mainly on soluble P quantification tests from
either RP or other sparingly available P forms. Most likely, only
PSB exhibiting high P solubilization rate are selected for additional
traits, while the isolates with a low P solubilizing are excluded
although they might be of importance in promoting plant growth
rather than P solubilization and uptake of P. In a recent compara-
tive study by Elhaissoufi et al. [7] using five contrasting PSB iso-
lates, demonstrated that Pseudomonas plecoglossicida exhibiting
the lowest P solubilization rate increased considerably shoot P con-
tent more than Pseudomonas koreensis and Pseudomonas japonica
characterized for the high P solubilizing ability. Therefore, it is
advisable to perform a thorough characterization that values the
lowest PSB instead of making an exclusion decision, particularly
both lowest and highest P solubilizing isolates might be of interest
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in constructing consortia exhibiting complementary traits. Indeed,
an additional test in liquid and soil medium to assess P solubiliza-
tion should simultaneously be performed. Liu et al. [124] showed
that PSB (Bacillus megaterium, Bacillus. Subtilis, Pseudomonas aerug-
inosa and Pseudomonas oryzihabitans) strains with the highest P
solubilization values in liquid medium or agar plates exhibited a
lowest P solubilization capacities once the PSB are inoculated in
soil. In addition, empirical reports show that tricalcium P is inap-
propriate, as a universal selection, for most PSB isolated because
P bio-solubilization is a very complex phenomenon affected by
many factors, each of which cannot be evaluated and tested sepa-
rately [125]

In this review, a rational screening approach is proposed based
on both in vitro and in vivo characterization of PSB (Fig. 4). Several
screening levels can be suggested with a starting level consisting of
a fundamental characterization of main P solubilization traits
in vitro conditions, particularly the qualitative (solubilization
index) and quantitative traits (P available). Direct and indirect
PGP traits (auxin production, N fixation, siderophore production
etc.) are also needed in the first level of PSB characterization. At
this first screening level, PSB either with or without halo of solubi-
lization are selected, regardless of P solubilization capacities they
exhibited. Halo production on solid agar medium should not be
considered the sole test method for PSB screening, as it has been
shown that bacterial strains exhibiting P solubilization in liquid
medium did not produce solubilization halos when tested on agar
plates [124]. The second level involves in-depth characterization of
PSB, which involves in-soil inoculation experiments. In this
approach, it is necessary to timely monitor the effect of PSB on P
solubilization in unplanted soils. Due to the complex factors of
soils, bacterial strains could solubilize insoluble P and release a sol-
uble P form in liquid medium and into the soil without developing
halo zones when tested on agar plates [124]. Thus, to avoid under-
estimating P solubilization bacterial capacity, P solubilization traits
should be estimated in various media, concurrently. In addition to
soil inoculation, the effect of PSB on plant growth at different
stages of development (seedlings, vegetative and flowering) is pro-
posed. The third level allows an efficient screening of PSB that
Fig. 4. Illustration of bacterial screening steps proposed as an integrative approach for
bacteria based on four screening levels.
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could efficiently solubilize P along with increasing plant growth.
The improvement of plant growth could be associated with multi-
ple plant growth-promoting traits that PSB could exhibit rather
than PSB solubilization traits[126,127]. In addition, it was demon-
strated that PSB with low and medium P solubilization capacity
induced a positive effect on root traits, wheat biomass and nutrient
acquisition compared to PSB exhibiting high P solubilizing capaci-
ties[7]. The 4th level leads to a precise selection of PSB not only
based on P solubilization under laboratory conditions, but also on
the basis of monitoring P availability in unplanted soil experiments
as well as the effect of PSB on plant development at different
growth stages. Thus, the lowest and highest PSB isolates could be
important candidates to select for consortia construction featuring
multiple and different traits responsible for enhancing P availabil-
ity and improving plant growth.

Physiological mechanisms implemented by PSB for P solubilization /
mineralization

Phosphate solubilizing bacteria can be efficient in making P
more available to plants from both organic and inorganic sources
by solubilizing and mineralizing insoluble P compounds [128]. As
mentioned in different studies in Table 1, the principal mechanism
of P solubilization is the secretion of P-mineral dissolving com-
pounds such as organic acids, protons, and siderophores [128-
135]. Organic acids produced increased plant-available P into the
rhizosphere by forming complexes with cations (Al- or Fr-P) or
by block P absorption sites on soil particles [136]. These organic
acids are the products of the microbial metabolism, mostly by
oxidative respiration or fermentation of organic sources such as
glucose [137]. For example, organic acids such as lactic, malic,
acetic, oxalic, and gluconic are produced by different bacterial spe-
cies such as Serratia sp., Bacillus sp., Enterobacter sp. and Azospiril-
lum sp. [135,138,139]. In this regard, gluconic acid has been
reported to be the most involved in P solubilization by chelating
the cations bound to insoluble P [129]. In addition, many Gram-
negative bacteria employ periplasmic glucose oxidation through
pyrroloquinoline quinone-dependent glucose dehydrogenase
a qualitative and quantitative assessment and selection of phosphate-solubilizing



Table 1
Examples of organic acids produced by PSB and involved in P solubilization.

References PSB strains Organic acids Concentration pH

[128] Pseudomonas fluorescens gluconic acid-format acid - propanedioic acids 11.1 mM 4
[129] Pseudomonas prosekii 2,3-dimethylfumaric acid 45 mg/l 5–9
[130] Erwinia rhapontici, Bacillus subtilis,

Pseudomonas chlororaphis
acetic acid-propionic acid- 2-keto-gluconic
acid- gluconic acid.

10 mM–4.7 mM–35 mM 2.7–
4.10;

[131] Firmicutes SP, Proteobacteria sp, oxalic, lactic, citric, succinic, acetic and formic
acids

45.7 mg/g to 82.7 mg/g 0.5

[132] Citrobacter, Pseudomonas, Staphylococcus,
Bacillus

–
–

1.4
2.6
2

3.81–
5.31

[133] Bacillus strain
Enterobacter

acetic acid, citric acid – Oxalic acid (56.7 mg/ml)
(36.2 mg/ml) (5.93 mg/ml

–
–

[134] A. defluvii,
S. prasinopilosus B. megaterium

Malic and lactic anions 80.48 ± 10.28 lg mL�64.03 ± 5.94 lg mL� 6.5–
6.96

[135] Serratia sp. malic acid- lactic acid- acetic acid (237 mg/l) (599.5 mg/l) (5.0 mg/l) 7.0 to
3.15
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enzyme to produce gluconic acids that is encoded by gcd gene
[140]. Pyrroloquinoline quinone acts as a redox cofactor in glucose
dehydrogenase enzyme resulting in P solubilization [140]. Other
mechanisms of P solubilizing bacteria include the release of pro-
tons with less or even no production of organic acids [141]. More-
over, an alternative mechanism to organic acid production is the
production of inorganic acids (e.g., sulphuric, carbonic, and nitric
acids) and chelating substances such as siderophores [22]. How-
ever, the efficiency of inorganic acids to solubilize P remains less
important than organic acids [142].

In addition to P solubilization, PSB can be able to mineralize
organic P. Different groups of P hydrolyzing enzymes are involved
in the organic P mineralization processes. The first group produced
by PSB has been characterized as phosphomonoesterases also
referred to as phosphatases (encoded by olpA) [143-145]. These
enzymes can either be acid or alkaline phosphomonoesterases
[146,147]. Alkaline phosphatase catalyzes the hydrolysis of P
esters, namely Glucose-6 phosphate and ATP, releasing Pi [148].
Alkaline phosphatase optimal pH is above 7, most often between
9 and 10 while acid phosphatase has a pH optimum between 4
and 6 [149]. Another type of P hydrolyzing enzymes produced by
PSB is phytase (encoded by appA) [150,151]. This enzyme is
responsible for the mineralization of P from soil organic matter
where P is stored in phytate, which hydrolyses bioavailable P. Pre-
vious findings have revealed that microbial phytases are the most
suitable for application in commercial biotechnology enzyme pro-
duction due to their catalytic properties [152].Furthermore, phos-
phonatase (encoded by phnX) and C-P lyase (encoded by phnJ),
are able to release free P from recalcitrant organic P forms [153].
Bioformulation of P-solubilizing bacteria to improve P use
efficiency

Design and market of PGPR bioformulations

Formulation of microorganisms as biofertilizers is one of the
environmentally friendly practices employed to improve perfor-
mance of microorganisms used in crop production. According to
a definition proposed by Malusà et al. [154], formulation contains
one or more beneficial microbial strains prepared with an easy-to-
use and economical carrier material. The bioformulation, as a
process, is a crucial multistep consisting of providing a safe envi-
ronment that protects microbial cells once they are introduced
through a suitable carrier into the soil. The selection of an adequate
carrier, and a design of correct delivery methods are paramount
components to consider. Different microbial formulations have
been developed, either liquid or solid, using various carrier materi-
8

als. The carrier materials play a key role in the efficiency of the bac-
terial formulation. The main properties of a good carrier are: (i)
non-toxicity to microbes, (ii) good exchange surface, (iii) ease of
both sterilization and processing, (iv) available in high quantity,
renewable and inexpensive, and (v) non-toxic to plant, human
health and environment (Fig. 5). Data in Fig. 5 represents an inno-
vative approach of bacterial formulation. A liquid formulation of
microbial cells is prepared with water, oil or water-soluble poly-
mer that improves stability and dispersion of microorganism
[155,156]. Both liquid and solid state-fermentation have also been
developed for microbial formulation using various biomasses riche
in nitrogen and carbon [157,158]. Solid bioformulations are often
based on either inorganic or organic carriers, prepared in solid
include granules, microgranules, wettable powders and dusts
[159-162] and classified according to application mode and carrier
design.

Solid and liquid formulations (Table 2), including encapsula-
tions, are available in the market [163,164]. Granule formulations
contain active ingredients, binder, and carrier materials. Most com-
monly carrier materials used are wheat meal [165], gluten [166],
gelatin or acacia gum [167], semolina (durum), cottonseed flour
and sugars [168] and sodium alginate [161]. For instance, commer-
cial biofertilizers containing M. anisopliae var anisopliae strain F52
(MET52) [169] and Serratia entomophila [170] are considered to
be effective granular biofertilizers. Moreover, wettable powders
are of much interest because they are applied as a suspension in
water and can be easily added to a liquid carrier just before its
application. Commercial biofertilizers containing Trichoderma har-
zianum, Pseudozyma flocculosa and Pseudomonas fluorescens A506
are examples of wettable powders bioformulation[171,172]. Starch
has been well studied with a dried beads or liquid core capsules
[173,174]. It has successfully been used as a carrier in PGPR formu-
lations [175]. The addition of mineral clay to alginate-based formu-
lations was found to increase the physical properties of alginate
polymer used as a carrier of Raoultella planticola [176], improve cell
survival, and serve as a protective micro-habitat accessible to bac-
teria due to its layer structure [177,178]. Dusts are also one of the
oldest formulation types and contain a finely ground mixture of
the active ingredients with particle size ranging from 50 to
100 lm [179]. For example, bioformulation of Beauveria. bassiana
conidia based on skimmed milk powder and glucose was reported
to achieve 100% of conidial germination and retained 78% conidial
viability even after 12 months of storage at 30 �C [180]. Protein
hydrolysates from animal and plant biomass were also used as a
carrier for rhizospheric microbial formulations [181]. In this
regard, Vejan et al. [182] reported that the bioformulation of Bacil-
lus salmalayawith chitosan-alginate-protein capsules, achieving an
encapsulation index of 99.7.



Fig. 5. Proposed design approach of liquid and solid microbial formulations using various carrier materials with several properties ((i) non-toxic to bacterial strain, (ii) good
exchange surface, easy to sterilize and easy to process (iii), (iv) available in high quantity, renewable and inexpensive, and (iv) non-toxic to plant, human health and
environment) in order to ensure cells viability.
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Establishment of liquid bioformulations has shown multiple
advantages compared to solid bioformulations, including longer
shelf life, high microbial viability, no contamination and high per-
formance in field [183]. Liquid bioformulations consist in general
of specific broth 10–40%, of dispersant 1–5%, ingredient for suspen-
sion 1–3%, surfactant at 3–8% and carrier liquid either oil or water,
or a combination of both at 35–65% by weight [184]. Suspension
concentrates, oil-miscible flowable concentrate, ultralow volume
suspensions and oil dispersion are all types of liquid bioformula-
tions [180]. Companies around the world are getting more and
more interested in this new generation of biofertilizers. For
instance, Japan and the United States companies produce and use
Table 2
Examples of studies reporting benefical effects of solid and liquid bio-formulations on var

Formulation
types

References Strains used

SOLIDE FORMULATION
Lentil Biocontrol activity against Fusarium promoting

their growth and increased the dry weight of lentil
plants.

[204] Trichoderma parareesei, Pseudomonas fluorescens,
Bacillus subtilis Azotobacter chroococcum

[205] Bacillus Subtilis
Pseudomonas corrugata

[206] Enterobacter cloacae (PSB)

[207] Bacillus megatherium

[208] Pseudomonas fluorescens
Bacillus subtilis Trichoderma viride
tomato brinjal chill

[209] Bacillus endophyticus Bacillus sphaericus Enterobacter
aerogenes Bacillus safensis Bacillus megaterium(PSB)

LIQUIDE FORMULATION
– Increase crop protection and enhance production
[211] Bacillus subtilis
[212] Trichoderma spp.

[213] Burkholderia sp.
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different types of biofertilizers that contain Rhizobium sp. as inoc-
ulant on various crops including lentils, soybeans, corn, sorghum,
sugar beets, wheat and canola [179,185].

Efficient ‘‘PGPR-RP” bioformulations are needed for direct application
in agriculture

Biofertilizers have been widely applied in agriculture to help
improve crop productivity and soil fertility. Biofertilizers are an
essential component of sustainable agriculture and play a key role
in supporting soil productivity while increasing the availability of
various nutrients and inducing PGP traits (auxin, P solubilization,
ious crops.

plants Effects of formulation on plants

[203] Bacillus subtilis

Tomato Biocontrol activity against Solanum esculentum Mill
increase yield of tomato
Increase maize growth parameters

– Increase growth and yield crop in sodic/saline
soil.sodic/saline soil.

Vicia faba Enhanced plant biomass, increased the yield and
accelerate the rhizosphere colonization
Biocontrol activity against Ralstonia solanacearum

Wheat Increased root and shoot dry weights and lengths of
wheat in field conditions

[210] Pseudomonas fluorescens

Wheat Biocontrol activity against Fusarium
variety of horticultural
fruits trees ornamental
crops

Protect plants, enhance vegetative growth and
contain pathogen populations

Pigeonpea Increase in plant biomass, nodule number and
weight, and number of pods



W. Elhaissoufi, C. Ghoulam, A. Barakat et al. Journal of Advanced Research xxx (xxxx) xxx
N fixation, etc.). For instance, bioformulated PSB strains (Pantoea
sp. and Pseudomonas sp.) proved a great potential to enhance Pisum
sativum growth [186]. Bioformulations, either individually or in
consortium, containing Bacillus licheniformis and Pseudomonas
aeruginosa significantly increased growth parameters and yield of
Brassica campestri [187]. Indeed, bioformulated Pseudomonas sp.
is a patented biofertilizer that increase plant growth with high
market competitiveness [188]. This increase could be explained
by directly providing plant with essential nutrients or indirectly
by protecting plant against pathogens. Moreover, the application
of biofertilizer based on PSB formulations showed an increase of
12.45, 78.11, and 34.4% in plant height, green fodder yield and
grain yield of sorghum, respectively [189]. Furthermore, applica-
tion of bioformulated Rhizobium enhanced nodulation by 42%
along with increased germination and seed yield of Lens culinaris
[190].

It is obvious that bacterial formulation is a green approach used
to boost soil fertility and improve crop productivity. Over the past
ten years numerous patents are invented for this purpose (Table 3).
Reddy and Janarthanam [191] invented microbial formulations
that includes bacterial strains belonging to N fixing bacteria, PSB,
other rhizobacteria, and biocontrol microbe isolates, and fungal
strains (Trichoderma viride, T. vixens, T. harzianum, T. harzianum
LK, T. harzianum G, and T. longibrachiatum). These polymicrobial
formulations conferred for pea plant resistance against pathogens
and increased nutrients (N, P, K) availability under reduced agro-
chemical applications [191]. Indeed, the invention of liquid biofor-
mulation of the PSB ‘‘Pseuodomonas fluorescens” improved P,
potash, boron and iron content of corn plants [192]. In addition,
various capsule bioformulations have been invented to meet a
specific plant need. For example, ‘‘Nitroset” is a consortium of sym-
biotic or non-symbiotic N2 fixing bacteria with a capacity to affect
positively N fixation, ‘‘Phossol” is defined as a combination of PSB
that increase P availability, ‘‘Potmob” include potash mobilizing
microbe that effect potash mobilization, ‘‘Encounter”,
‘‘Encounter- 100”, ‘‘Rottucider” and ‘‘Nemuccider” are capsulated
consortia of microbes acting as biopesticides and bionematicides
[193]. In addition, to increase P availability and crop yield, biofor-
mulation of PSB such as Bacillus megathrium and Pseudomonas
putida improve plant P uptake as well as fertilizers efficiency
[194]. Indeed, Nadeem et al. [195] invented an efficient bioformu-
lation with no synthetic process that allows P solubilization and
mobilization from RP using either PSM (alone), or the combination
of PSM and PGPM. Moreover, one or numerous PSM (such as
Penicillium spp) with one or more plant growth promoting traits
(N fixation, P solubilization, seed germination, plant growth etc.)
were used to formulate efficient biofertilizers containing RP, MAP,
Table 3
Description of bio-formulation technology patents related to PSM application from 1991 t

References Patent title De

[214] Methods and compositions for increasing the amounts of
phosphorus and/or micronutrients available for plant uptake from
soil

Th
am
fro

[215] Microbial solubilization of phosphate For

[191] Polymicrobial Formulations For Enhancing Plant Productivity Po
str

[216] Synergistic bacterial consortia for mobilizing soil phosphorus Co
ph
mi

[217] A kind of preparation of new biological organic fertilizer
fermentation maturity agent

Bio
con
gro
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DAP, MCP, TSP and ammonium polyphosphate to increase soil P
availability, plant P uptake and fertilizers use efficiency [196].

However, formulation of an effective biofertilizer requires a
particular supporting carrier to protect the bacterial cells during
storage and transport [197]. As mentioned earlier, there are differ-
ent types of bioformulations used in agriculture, yet the applica-
tion of this biofertilizers could be unprofitable because of a lack
of adequate formulations and the low inoculant quality [198]. For
the reason to achieve a successful bioformulation, numerous chal-
lenges should be tackled, among which, selection of a microbial
strain exhibiting a better survival and colonization capacity, which
in turn will ensure efficiency of bioformulations [199]. Under both
natural and agricultural systems conditions, it is necessary to
understand the bacterial community structure and functions in
relation to environmental factors in order to avoid the multitrophic
competition phenomena in the plant-soil-microbe continuum
[200]. The second concern is to maintain the viability and func-
tional properties of inoculant that could be enhanced using some
additives such as of phytohormones (gibberellin acid and cytoki-
nin), glycerol, a trihydroxyalcohol, poly-lactic acid and strigolac-
tones [201].

Free or encapsulate PSB are applied in soil to increase RP solu-
bilization. However, up to date encapsulation techniques were not
used to simultaneously formulate RP and PSM [92,202] as opposed
to regular solid formulations. To our knowledge, only a few studies
have developed materials integrating both RP particles dispersion
and encapsulation of microorganisms in the same structure
[106]. The production of a biofertilizer containing RP and PSM (in-
dividual or consortium) could be a potential approach to increase
RP solubilization whose agronomic efficiency could be enhanced
by PSM organic acids production. Formulation of PSB also requires
integration of carrier materials, human health and environment
risk, storage and transport. Selection of carrier materials suitable
for liquid or solid formulations, while considering risks, costs and
efficiency at each development step, is crucial for the development
of eco-friendly biofertilizers (Fig. 5). Research efforts should also be
oriented towards development of micro-environmental (using
specific carrier martials) conditions to facilitate the growth and
to harness functions of microbial bioformulations.

Conclusions

Thanks to the high potential of beneficial PGPM in crop produc-
tivity and resource use efficiency, multiple PSB inoculants or bio-
formulations have been used in agriculture. On another hand,
many bacterial inoculants show insufficient performance due to
many constraints, which could directly link to the bacterial
o 2017.

scription of the invention Date

e invention relates to a method and composition for increasing the
ounts of phosphorus and micronutrients available for uptake by plants
m the soil by introducing an inoculum of the fungus Penicillium bilaji.

25/
06/
1991

mulation of liquide biofertilizer comprise phosphate source and PSM, 27/
01/
1992

lymicrobial formulations comprise numerous bacterial and fungal
ains to increase nutrients availability and plant growth

17/
12/
2009

mbinaition of synergitic bacteria strains (consortia) to tronsform organic
osphate to enhance soil P availability and other macronutrients and/or
cronutrients to plants, and thereby enhancing their growth and yield.

06/
11/
2010

logical organic fertilizers comprise Bacillus spp to improves soil moisture
tent, and drought-relief and protection of the harvest promote plant
wth, and improving the yield and quality

25/
07/
2017
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formulation itself or indirectly to the environment, notably the low
adaptive capacity in field. In general, most of knowledge reported
in this review shows that bacterial solubilization could be unrepro-
ducible due to many experimental constraints, which reduce
chances to provide efficacious bacterial formulations even though
knowledge in this field has reached significant achievements in
applied agricultural microbiology. In addition, recent findings
pointed out inconsistencies in using bioformulations as a replace-
ment to nutrient fertilizers such as P fertilizers, rather than explor-
ing opportunities to a joint use of both resources. In this context,
we outline three key research priorities for harnessing P bacterial
solubilization in sustainable crop production:

� Implement new bacterial culture-dependent screening
approaches that simulate both controlled and field conditions,
which should offer an accurate evaluation of crop response to
PSB in vitro and vivo conditions. This should consider varia-
tions, not only at the bacterial species level for P solubilization,
but also to overall plant-PSB responses at both temporal and
spatial levels likely enabling tight relationships between poten-
tially efficient PSB and the surrounding rhizosphere
environment.

� Construct microbial consortia uniting all desired characteristics,
but mainly PUE, is an emerging research area that requires more
attention on identifying synergistic microbial combinations that
enhance both above- and below-ground crop performance.
Although a microbial consortium is likely hard to engineer
due to a dynamic state of species within the microbial mixture
consisting of at least two different microorganisms, identifica-
tion of the best isolates is inextricably dependent on a
consortium-oriented isolation/construction approach enabling
the use of compatible microbial strains with different modes
of action. This should consider how much diversity is needed
while ensuring complementarity in functions to generate major
impacts on both P uptake and plant growth performance.

� Adopt multi-disciplinary approaches to design innovative
microbial formulations in concert with rationalized use of agro-
chemicals, including P fertilizers with positive impacts on both
crops and environment. This will require understanding the
impact of fertilization on soil PSB abundance and function,
which also reflects the need for fine-tuning fertilization levels,
notably P and N.
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