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A B S T R A C T   

We developed a method to produce time-varying maps for dengue transmission risk, using the Ross-Macdonald 
framework and differential equations to estimate spatially the basic reproduction number (R0) of a vector-borne 
disease. The components of the R0 formula were derived partly from a mosquito population dynamics model 
integrating meteorological and environmental variables, and partly from temperature-dependent functions of 
vector competence and the extrinsic incubation period. The method was applied on Reunion Island, a tropical 
island located in the Indian Ocean, where the mosquito Aedes (Stegomyia) albopictus has been responsible for 
large and numerous outbreaks of dengue. As a validation, predicted maps and dynamic outputs were compared 
with the distribution of confirmed dengue cases registered during the year 2018 in Reunion Island. The results 
highlight strong agreements between the observed epidemiological patterns and predicted R0 distribution and 
temporal dynamics. This finding demonstrates the relevance and efficiency of the spatialised basic reproduction 
number (R0) to develop an operational dynamic mapping tool for dengue surveillance and control. The resulting 
method could be of great use in a health policy-making context, providing a time and space awareness to the 
dengue risk perception.   

Introduction 

Vector-borne diseases (VBD) are caused by pathogens – parasites, 
bacteria, or viruses, whose transmission between vertebrate hosts re
quires a hematophagous arthropod. According to the World Health Or
ganization, they account for more than 17% of infectious diseases, 
causing 700,000 deaths annually [1]. Among them, mosquito-borne 
diseases such as malaria and dengue place a high burden on the 
impacted countries and their health systems, mainly in tropical and sub- 
tropical areas. The high diversity of species involved in the transmission 
of mosquito-borne pathogens increases the occurrence of these diseases 
in both rural and environments [2–4]. In the absence of effective vac
cines and specific treatments, vector control is the only measure to 
interrupt the transmission of vector-borne pathogens. Therefore, the 
capacity to predict periods and locations at risk of disease transmission 

would help improve vector control measures, with better-measured 
impacts. Moreover, mapping the epidemic risks is an essential step to 
further orientate health policies for sensitization campaigns of human 
populations [5]. 

Modelling of vector-borne diseases, including process-based and 
empirical approaches, has a long and rich history [6–9,52]. Most 
mathematical models use the theoretical framework developed for ma
laria by Ross and Macdonald [10,11]. Indeed, such a framework allowed 
a simple formulation of the basic reproduction number (R0) of a vector- 
borne disease. This reproduction number can be understood in the 
following way: it is the expected number of hosts that would become 
infected from the introduction of a single infected host in a fully sus
ceptible population, as a function of entomological and epidemiological 
parameters (vector biting rate, mortality rate, competence and extrinsic 
incubation period, vector-to-host ratio, transmission probability, 
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duration of infectiousness in hosts) [10,12]. R0 has become a key notion 
in mathematical epidemiology as R0 = 1 is considered as the epidemic 
threshold that predicts whether a disease will spread at the onset of the 
epidemic [13]. 

As arthropods’ life cycle is very much driven by climatic and envi
ronmental determinants, this latter also strongly impacts the trans
mission of vector-borne diseases, which may vary in space and time. 
Thus, methods have been developed to map R0 for vector-borne diseases 
from environmental and meteorological variables as predictors [14]. For 
example, seasonal R0 maps accounting for meteorological variables 
were produced at a national level for bluetongue [14], and maps at 
continental scale were used to better understand and predict the impact 
of climate change on the risk of bluetongue in Europe [15]. Recently, R0 
maps of malaria were produced at a regional scale in Greece, integrating 
meteorological variables as well as entomological, environmental, and 
social data [16]. 

Yet, as far as we know this R0 mapping approach has not been used so 
far for arthropod-borne viruses (arboviruses) transmitted by Aedes 
mosquitoes. In particular, it was not applied to dengue fever, the most 
prevalent arboviral infection, endemic in more than 100 countries, 
including Reunion Island, and responsible for 390 million infections 
estimated annually [17]. A wide variety of predictors and modelling 
approaches have been used either to create dengue risk maps [18] or 
estimate R0 values [12,19–21] but to our knowledge, both approaches 
have never been combined. A recent study provided a framework for 
mapping dengue spatially time-varying reproductive numbers from re
ported cases locations [22], but such approach does not account for 
meteorological and environmental drivers (i.e. vegetation, urbanization 
type, etc.) that could impact spatial and temporal vector abundances, 
thus resulting in heterogeneities in virus transmission. 

In this study, we aimed to produce time-varying dengue R0 maps in 
Reunion Island, a tropical island located in the Indian Ocean, where the 
mosquito Aedes (Stegomyia) albopictus is responsible for a current large 

outbreak of dengue [23]. As highly heterogeneous vector densities have 
been reported in the island [24], a rainfall- and temperature-driven 
model of Ae. albopictus populations (‘ALBORUN’) was recently devel
oped to predict vector abundance at a local scale, accounting for vari
ations in the availability of breeding sites [25]. We used the ‘ALBORUN’ 
model and the Ross-Macdonald framework to derive dynamic dengue R0 
maps from meteorological and environmental variables, and assessed 
the relevance of such an approach by comparing the predicted maps and 
dynamics with the number of confirmed dengue cases registered during 
the year 2018. 

Material and methods 

Study area. Reunion Island (2500 km2 and 865,826 inhabitants in 
2018) is a French overseas territory located in the south-western Indian 
Ocean (Fig. 1). Its subtropical climate with mild austral winters (May- 
October) and warm austral summers (November-April) is suitable for 
the development of Aedes albopictus mosquitoes throughout the year 
[24,25] local variations of climate are important due to a highly uneven 
relief and different wind expositions. 

Arboviruses are a recurring public health issue on Reunion Island, 
with a massive dengue epidemic in 1977 that affected up to 35% of the 
population [26]. In 2005, a chikungunya epidemic again reached 35% of 
the island residents [27]. After several years of moderate virus circula
tion, a large dengue outbreak started in 2018, with 28,141 cases re
ported between January 2018 and April 2020 [28]. 

Human population data. 2016 census data were obtained at IRIS 
(“Ilots regroupés pour l’information statistique”) level (https://www. 
insee.fr/fr/statistiques/4228434). Those sub-urban units correspond to 
the most detailed level of population census available in Reunion (n =
344) (Fig. 1). The population was then estimated at the scale of the 
operational zones mapping used by the local vector control services (n =
1203). To scale down from the IRIS level of the French census, built-up 

Fig. 1. Location of the study area, Reunion Island.  
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spatial data were downloaded from the French National Geographic 
Institute (https://data.geocatalogue.fr/id/dataset/a51dafeb-bd2a-4b8 
a-929b-ca539a44217e) and the population was reallocated at the pro- 
rata of the houses within the operational zones, as compared to the 
total number of houses in the intersected IRIS zones. Geographic In
formation System spatial analysis functions were used (QGIS 3.4). Only 
operational zones located in residential areas with an estimated popu
lation greater than 10 (i.e., excluding administrative, business, or sparse 
habitat) were selected for R0 computation (n = 1189). 

Epidemiological data. The weekly confirmed dengue cases recor
ded in 2018 were aggregated at the IRIS level. The incidence rate 
(number of confirmed cases in 2018 per 10,000 inhabitants) per IRIS 
was calculated using 2016 census data. 

Meteorological data. We obtained daily mean temperature and 
rainfall recorded from 2017 to 2018 at 32 weather stations (Fig. 1) from 
the national meteorological service ‘Meteo France’ (https://publitheque 
.meteo.fr). Indeed, the acquisition of meteorological data covering the 
year before the period of interest (2018) was necessary for the initiali
zation of the mosquito population dynamics model [25]. 

‘ALBORUN’ population dynamics model. This process-based 
model of Ae. albopictus population dynamics on Reunion Island is 
based on a system of ordinary differential equations (ODE) [53,54] that 
represents all steps of the mosquito life cycle, considering aquatic ju
venile and aerial female adult stages (Fig. 2) [25] (https://doi. 
org/10.18167/DVN1/XF2I3L). Transition functions from one stage to 
the next and mortality rates are driven by daily rainfall and temperature. 
The model inputs are i) the operational zones used by the vector control 
service, characterized by their standard fixed and variable environment 
carrying capacities, two values describing the availability and charac
teristics of the mosquito breeding sites in the zone (based on field ob
servations, see [25] for details), ii) the location of weather stations, and 
iii) the corresponding daily rainfall and temperature. As output, 
‘ALBORUN’ predicts the abundances of Ae. albopictus mosquitoes per 
stage at a weekly frequency, and for each operational zone for which the 
rainfall and temperature values from the closest weather station are 
simply attributed. 

The following parameters, functions, and outputs are used for the R0 
model (see below): the daily transition rate from host-seeking to 
engorged adults (γAh), the mortality rate of adult mosquitoes (mA), the 
mortality rate related to seeking behaviour (μr), the number of host- 
seeking female mosquitoes (Ah) and the total number of Ae. albopictus 
female mosquitoes (Atot). 

R0 model. We used the classic computation of R0 from the vectorial 
capacity (V), which estimates the daily number of new vector infectious 
bites that arises from one infected host introduced into an entirely sus
ceptible host population [29,30]: 

V =
ma2pn

− ln(p)
(1)  

where m is the vector density per host, a the daily biting rate, p the daily 
survival rate, n the duration of the extrinsic incubation period (EIP). 

The basic reproduction number R0 is obtained by multiplying V by 
the vector competence (b) and the duration of host viremia (1/r, where r 
is the host recovery rate): 

R0 =
V
r
.b (2) 

With the exception of r, all components of this R0 formula (Eqs. (1) 
and (2)) were considered space- and time-dependent. Moreover, in 
absence of the genetic structure of Ae. albopictus populations in Reunion 
Island [31], meteorological and environmental factors were considered 
the main drivers of the vector competence and the vectorial capacity. 
Most components of the vectorial capacity (Eq. (1)), namely m, a, and p 
the daily survival rate, were derived from the ‘ALBORUN’ model for 
each operational zone and each time step (Table 1). The EIP (n) and the 
vector competence (b) were defined as functions of temperature varying 
over time. Polynomial regressions adjusted to experimental values [32] 
were used to express the relationship between the temperature and EIP 
and vector competence (Table 1), regarding the dengue virus serotype 2 
(DENV-2), the serotype circulating in Reunion Island in 2018 [23]. The 
impact of dengue infection on the mosquitoes’ life cycle, very uncertain 
[33], has been neglected, as well as an eventual variation between 
symptomatic and asymptomatic hosts regarding incubation period and 
viremia. 

Simulations. The R0 model was implemented in Ocelet language 

Fig. 2. Diagram of the Aedes albopictus population 
dynamics model (ALBORUN). The model predictions 
focus on the sole female mosquito population, being 
the one that bites. In blue, the aquatic stages (E: eggs; 
L: larvae; P: pupae); in yellow the female adult stages 
(Aem: emerging; A1: nulliparous, A2: parous, Atot: 
total, h: host-seeking; g: resting; o: ovipositing). Pa
rameters (greek letters) are constant, functions (latin 
letters) are weather-driven functions, varying over 
time. For stage X ,γX and fX are transition rates to the 
next stage; μX and mX mortality rates; βX is the egg 
laying rate; σ is the sex-ratio at the emergence; μr is 
an additional adult mortality rate related to seeking 
behavior; kX the environment carrying capacity. 
Stages, parameters and functions values used for R0 
computation are red highlighted. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   

Table 1 
Estimation of dengue R0 parameters, Reunion Island.  

Notation Definition* Expression* Reference 

m Vector density per 
host 

Atot

H  
[25,49] 

a Daily biting rate Ah

Atot
.γAh,withγAh = 0.2  [25] 

p Daily survival rate 1 − mA −
A2h + A2o

Atot
.μr, withμr =

0.08  

[25] 

n EIP 0.11T2 − 7.13T + 121.17  [32] 

b Vector competence − 0.0043T2 + 0.2593T − 3.2705  [32] 

r Host recovery rate 0.2 [50] 

*T temperature; H: human population; Atot: total number of Ae. albopictus female 
mosquitoes Ah: number of Ae. albopictus host-seeking females; γAh: daily transi
tion rate from host-seeking to engorged adults; mA: mortality rate of adult 
mosquitoes; μr: mortality rate related to seeking behavior. Atot, Ah, A2h, A2o and 
mA are estimated by ‘ALBORUN’ model (see [25] for details). 
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(www.ocelet.org), by adapting the ‘ALBORUN’ mosquito population 
model (https://doi.org/10.18167/DVN1/XF2I3L), extended by a mod
ule of R0 calculation. R0 values are then computed for each operational 
zone from dynamically updated values of the different components of 
the vectorial capacity at each time step (Eqs. (1) and (2)). Simulations 
were run over two years (2017–2018) because the first year was not 
retained for output computation. 

Evaluation of the R0 model. The capacity of the R0 model to predict 
the spatial distribution of dengue transmission risk was assessed by 
comparing the annual statistics (mean and maximum values) of simu
lated R0 with the number of confirmed dengue cases reported, at the IRIS 
level. On the other hand, the capacity of the R0 model to predict the 
seasonal variations of dengue transmission throughout the year was 
assessed by comparing for each week w, the weekly R0 median value, 
with the ratio nw/nw-1 between the numbers of confirmed dengue cases 
reported during week w and the precedent week (w-1), using Pearson 
correlation coefficient. 

Results 

Dengue R0 maps highlight spatial and seasonal variations of the risk 
of dengue transmission in Reunion Island. For each operational zone 
defined by the vector control services (mean surface of 33 ha), our model 

predicts dengue R0 value at a weekly frequency. The resulting maps 
highlight high spatial and seasonal variations on Reunion Island (Fig. 3, 
Video file 1). Higher R0 values are predicted during the austral summer 
(January-April), and in western and southern coastal areas (Fig. 3). 
When R0 peaks, almost all regions of the islands are at risk (R0 > 1), 
except the inner mountainous zones (e.g. April, Fig. 3). During the 
austral winter, R0 drops below the threshold value of one in all regions 
(e.g. August, Fig. 3). At the beginning of the hot and wet season 
(November) R0 values start increasing, mostly in the southern part of the 
island (Fig. 3). Spatio-temporal dynamics of the R0 components, vecto
rial capacity, extrinsic incubation period, and vector competence, are 
provided in Supplementary Fig. S1-3. 

The spatial distribution of predicted R0 is significantly correlated 
with dengue incidence. 

Significant correlations were found between annual maximum R0 
values computed at IRIS level (Fig. 4A) and dengue incidence (Fig. 4B) 
(Pearson r = 0.41, p < 10− 12). The correlation with the mean R0 values 
was also significant (Pearson r = 0.30, p 〈10− 6). The map of the annual 
maximum of R0 values computed at IRIS level highlights several areas 
with high predicted R0, mainly located on the western coast of the island 
(Fig. 4A). 

Fig. 3. Predicted dengue R0 values, Reunion Island, 2018.  
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Seasonal dynamics of predicted dengue R0 correlates with the tem
poral dynamics of dengue transmission. According to our model, the 
predicted median R0 value on Reunion Island was over the threshold of 
one from January to May 2018 (Fig. 5A). It started decreasing at the 
beginning of April. During this period, the number of confirmed dengue 
cases on the island steadily increased. It is important to look at the 
moment where the R0 crosses the 1 threshold, meaning a decrease in the 
transmission dynamic of the virus. In our model, it happens during the 
first week of May. Comparing this to the actual numbers of 2018 shows 
that a plateau is reached at this very same time. The number of recorded 
cases is stabilizing at its highest level for about a month (showing a 
comprehensible delay of a couple of weeks in the effect of this R0 
decrease, due to the incubation period of previously infected individuals 
for example). Then, the number of cases dropped at the beginning of the 
austral winter (end of June), when the median R0 reaches its minimum 
value (R0 = 0.03, week 25: June 17th). Very low R0 values were pre
dicted between July and November; R0 started increasing again at the 
end of October (Fig. 5A). The variation of weekly R0 median values 
could be compared with the ratio nw/nw-1 for the period with n greater 
than 10, i.e. between weeks 5 (January 28th) and 35 (August 28th) 
(Fig. 5B), depicting an even clearer adequation between the model 
outputs and the outbreak. The comparison between the two indices 
showed a strong and significant correlation (Pearson r = 0.77, p < 10− 6), 
and their respective drop below the value of 1 appears synchronized. 

Discussion 

In this study, we used the Ross and Macdonald framework [11] to 
propose a real-time mapping method of the basic reproduction number 
of dengue fever from the weather (rainfall and temperature) and envi
ronmental variables (availability and characteristics of the Ae. albopictus 
breeding sites). Predicted R0 values were compared with 2018 dengue 
outbreak data from Reunion Island at fine spatial and temporal scales 
[23]. It is important to reassert that the model was at no point calibrated 
to specifically fit this data; instead, parameters and functions were 
defined based on the results of previous experimental and observational 
studies thus combining all current knowledge on the ecological mech
anisms. Our results demonstrate the efficiency of such an approach to 
develop an operational dynamic mapping tool for dengue surveillance 
and control, potentially useful for decision-makers. The dengue R0 
module was implemented in the ‘ALBORUN’ tool, which is routinely 
used by the Health Regional Agency in Reunion Island [25]. 

Spatial patterns of dengue R0 in Reunion Island. According to our 
results, R0 values computed at the IRIS level ranged from 0 to 14.85 
(mean: 5.12) (Fig. 4A), which is consistent with dengue R0 estimations 
in other tropical countries [12]. Higher values of estimated dengue R0 
are predicted in the western and southern regions (Figs. 3 and 4A): in 
these leeward coastal areas, temperatures are warmer than in other parts 
of the island, favouring dengue transmission with shortened extrinsic 
incubation period and increased vector capacity (Supplementary 
Figs. S1 and S2). Moreover, although the rainfall is lower in these areas, 
densities of Ae. albopictus populations are higher as compared to other 

Fig. 4. Predicted R0 and observed incidence for dengue, Reunion Island, 2018. A) Predicted annual maximum R0 value computed at IRIS level. B) Dengue incidence 
on Reunion Island, 2018. 

Fig. 5. A) Predicted median R0 values dynamics (red line) and dengue confirmed cases (grey bars), Reunion Island, 2018. The red dotted line indicates the threshold 
of one. B) Predicted median R0 values dynamics (red line) and ratio nw/nw-1 (dashed black line) between the numbers of confirmed dengue cases reported during 
week w and during the precedent week w-1, Reunion Island, 2018, weeks 5 (January 28th) to 35 (August 28th). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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areas, due to human-made oviposition sites such as flower plates, pots, 
or barrels that remain available over time in urban and peri-urban 
neighbourhoods [25,34]. Interestingly, the differences in vector 
competence between Ae. albopictus populations from the eastern and 
western coasts (Supplementary Fig. S3) are less marked than those 
predicted with EIP (Supplementary Fig S2) and vectorial capacity 
(Supplementary Fig. S1), suggesting that in Reunion Island, the spatial 
heterogeneity of dengue predicted R0 is mostly driven by vector ecology 
rather than molecular interactions between Ae. albopictus populations 
and dengue viruses. This result corroborates the conclusions of previous 
modelling and experimental studies on Ae. albopictus competence for 
dengue virus transmission, and on the importance of the presence of 
breeding sites to support the transmission [32,35,36] and endemicity of 
dengue in tropical areas [37]. 

Predicted dengue R0 values computed at IRIS level were significantly 
correlated with dengue incidence, suggesting that the resulting R0 maps 
(Figs. 3 and 4A) could be used to identify areas at risk for virus trans
mission. Our results thus stress that most of those areas are located on 
the western and southern coasts (Fig. 4A). Of note, areas with high R0 
predicted values do not fully overlap those with high observed dengue 
incidence, and overall, the R0 index trends to overestimate the risk of 
dengue: it is the case for example in the southern and eastern coasts, 
where few dengue cases were reported in 2018 in areas with high pre
dicted R0 values (Fig. 4). Several non-exclusive assumptions may explain 
these discrepancies. Firstly, a large number of paucisymptomatic cases 
may remain undetected by the surveillance system [38]. Secondly, by 
definition R0 reveals the number of secondary cases arising from the 
introduction of a single case in a susceptible population, but it does not 
capture the risk of introduction, which is related to human mobility. 
Thus, a low number of cases may be reported in areas with high R0 
values but poorly connected to other regions of the island in terms of 
human population flows, for example, south-eastern areas (Supple
mentary Fig. S4). Thirdly, in R0 computation the human population was 
assumed fully susceptible to dengue serotype 2, which may not be the 
case. An estimation of the real reproduction number R, taking into ac
count the population immunity, would improve the model. Lastly, the 
vector control measures which are implemented when a dengue case is 
reported in a zone [23] can substantially reduce the virus transmission 
and the number of secondary cases, if promptly detected. This effect 
could be considered by the model in future investigations. 

Dynamics of dengue R0 in Reunion Island. Our analysis high
lighted R0 variations over time in relation to temperature and rainfall: 
predicted R0 values were over the threshold of one during the hot and 
rainy season, and below the threshold during the austral winter, mainly 
due to colder and potentially lethal temperatures for mosquito pop
ulations. R0 starts increasing again in November, at the beginning of the 
austral summer (Fig. 5A). This result is in keeping with the seasonal 
pattern described in other tropical areas from observational and 
modelling studies [39–42]. The predicted variations of R0 are also 
consistent with the dynamics of dengue epidemics observed on Reunion 
Island (Fig. 5A): the number of cases increases steadily from January to 
May, when R0 is greater than one, and strongly decreases at the end of 
June when R0 reaches its minimum. The strong and significant corre
lation of R0 with the ratio nw/nw-1, an index depicting the variation of the 
number of cases on a weekly basis (Fig. 5B), suggests that predicted R0 
could be used to identify periods at risk for virus transmission. 

Limitations and perspectives. The method proposed in this study 
has the advantage of simplicity and parsimony (Eqs (1) and (2)). The 
mechanist model behind those results has also been applied to other 
territories [51] and gave similarly consistent outputs regarding the 
vector ecology, which tends to drive away the eventuality of an over-fit. 
The comparison with the dengue cases reported in Reunion Island in 
2018 proves its efficiency as a dynamic mapping tool for dengue sur
veillance and control, which would be relevant to orientate further 
health policies. However, different weather-driven processes were not 
taken into account in our model, such as the impact of diurnal thermal 

range on vector competence [30] or a temperature-dependent host- 
vector transmission rate [43]. The inclusion of such processes could 
improve this first R0 model. Moreover, as above-mentioned, by con
struction R0 does not capture the risk of the introduction of an index case 
in an area. A model including both importation risk estimates, from 
human mobility (Supplementary Fig. S4), and onward transmission [44] 
could be used to improve the predictions. 

DENV2-serotype was the only serotype circulating on Reunion Island 
in 2018 [23], thus in this study R0 functions (Table 1) were defined for 
this particular serotype. To assess the risk of transmission of the three 
other dengue serotypes in Reunion Island, the functions would need to 
be modified as vector competence and the extrinsic incubation period 
can change according to the dengue virus serotype involved in the 
transmission [45]. Indeed, DENV-1, DENV-3, and DENV-4 serotypes 
have been reported on the island in recent years and an autochthonous 
circulation of these three serotypes has been reported in 2020. More
over, with time the immunity will increase and therefore the population 
could not be considered as fully susceptible: the cartography of the 
dengue reproduction rate (R), with a formula taking into account the 
immunity of the human population, would be more appropriate in the 
future. Another perspective would be to account for the vector control 
actions (fumigation of mosquito adults, cleaning the water-holding 
containers that serve as breeding sites for Ae. albopictus) in order to 
simulate in silico different scenarios of control strategies, and study their 
impact on the reduction of R0. Finally, the approach developed in this 
work could be applied to other pathogens transmitted by Ae. albopictus, 
such as the Chikungunya virus, which caused a very severe outbreak in 
Reunion Island in 2006, and the Zika virus, which recently spread 
worldwide and constitutes a threat for Reunion Island. Moreover, as the 
mosquito population dynamics model framework has already been used 
for other geographical contexts [46] and/or mosquito species [47,48], 
our model also offers some broad transposition possibilities by adapting 
the parameters from the existing scientific literature. 

Conclusion 

In this paper, we presented an original method coupling a mecha
nistic mosquito population dynamics model with the Ross-Macdonald R0 
formula to evaluate risks with regard to mosquito-borne diseases. This 
model operates at a very fine spatial scale, adapted to vector surveillance 
and control interventions, and on a weekly frequency. This strong 
reactivity to spatial and temporal trends makes the model a reliable tool 
for health policymakers to implement effective public health policies 
against dengue. The proposed framework could be deployed in other 
and various geographical and epidemiological contexts. 
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