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Abstract

1. Calls for ecological principles in agriculture have gained momentum. Intercropping systems have
long been designed by growing two, or more, annual crop species in the same field, aiming for
a better resource use efficiency. However, assembly rules for their design are lacking. Notably,
it is still unknown whether species performances are maximized during both the vegetative and
reproductive phases given the sensitivity of reproductive allocation rules to resource limitation.
Interestingly, ecological theory provides expectations regarding putative invariance of plant
reproductive allometry (PRA) under non-limiting conditions for plant growth. Here we examined
whether and how PRA changes in response to plant-plant interactions in intercropping systems,
which can inform both ecological theory and the understanding of the functioning of intercropping
systems.

2. We analyzed a dataset of 28 field cereal-legume intercropping trials from various climatic
and management conditions across Western Europe. PRA was quantified in both mixing and
single-species situations.

3. PRA was positively impacted in specific management conditions, leading to a greater increase in
yield for a given increase in plant size. Variations in PRA were more beneficial for legumes grown in
unfertilized mixture, which explains their use as a key component in actual intercrop systems. The
response for cereals was similar but less pronounced in magnitude, and was greater under limiting
resource conditions. Focusing on intercropping conditions, hierarchical competition (indicated by
biomass difference between intercropped species) appears as a strong driver of the reproductive
output of a given species.

4. Synthesis and applications. Plant reproductive allometry behaves in crop species in the same way
as it does in wild species. However, contrary to theoretical expectations about an overall invariance
of PRA, we highlighted taxon-specific and context-dependent effects of plant-plant interactions on
PRA. This systematic deviation to PRA expectations could be leveraged to cultivate each species
up to its reproductive optimum while accounting for the performance of the other, whether farmer’s
objective is to favor one species or to reach an equilibrium in seed production. Sowing density and
cultivar choice could regulate the biomass of each component, with specific targets derived from
allometric relationships, aiming for an optimal reproductive allocation in mixtures.

Keywords

Biomass allocation; Intercropping; Metabolic scaling theory; Plant reproductive allometry
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Introduction

Intercropping, i.e. combining at least two annual crop species in the same field for most part of their
growing periods (Willey, 1979), is a promising way to move towards more sustainable agriculture (Lin,
2011; Li-li et al., 2015). Intercropped species are expected to use resources differently and more efficiently
(e.g. Malézieux et al., 2009; Beillouin et al., 2019; Jensen et al., 2020). Many intercrops mix a cereal and
a legume, with the underlying assumption that the cereal will benefit from the legume’s atmospheric
nitrogen (N) fixation, thus decreasing the need for exogenous N fertilization (Thorsted et al., 2006;
Malézieux, 2012; Gaba et al., 2018). The performance of intercropping systems has been studied from
an agronomic perspective, focusing mainly on yield and N use (Hauggaard-Nielsen et al., 2009a; e.g.
Bedoussac and Justes, 2010a; Naudin et al., 2010; Pelzer et al., 2012). While introducing species diversity
into cropping systems could appear promising under low-input conditions, specific recommendations for
the management of intercrops is in its infancy (Litrico and Violle, 2015). One reason for this is that
the underlying mechanisms of the positive effect of the intercropping remain elusive, which makes it
challenging to choose species and cultivars for these systems accurately. One key unsolved issue for
identifying these mechanisms is how vegetative biomass translates into reproductive biomass and how
reproductive allocation differs between sole cropping and intercropping situations. Bridging ecology and
agronomy could help resolve this issue.

In ecology, the plant allometry literature has extensively analyzed the change in many key plant features
as a function of size. Notably, a large body of theory indicates that plant reproductive output (grain
yield for annual cropping systems) is a function of plant size (Weiner et al., 2009). It is based on
metabolic optimization criteria, in which regulation processes and selection forces have similar influence on
size-related traits across taxa (Enquist et al., 1999). It forms the basis of metabolic scaling theory (MST),
which provides first principles of plant allometry laws (West et al., 1997, 1999). As a macroecological law,
MST explains trait variation across several orders of magnitude of taxa, scales and body size. This body
of theory attracts interest for the design and management of intercropping systems given the predictive
power of universal scaling equations of MST (Deng et al., 2012).

The hypothesis of invariance at the origin of allometric scaling laws has been challenged. Poorter et
al. (2015) highlighted that allometric scaling exponents differ among species. Vasseur et al. (2012) and
Vasseur et al. (2018) highlighted variability in these exponents within the model species Arabidopsis
thaliana, and demonstrated that this variability was genetically determined and environmentally regulated
due to natural selection. Further, the influence of artificial selection on allometric constraints is not well
understood due to the lack of comparisons of allometric relationships in crop species (Milla et al., 2015).
The initial MST framework was designed along with plant observations in optimal conditions, i.e. where
growth is not strongly limited by unfavorable abiotic or biotic conditions. Consequently, the influence
of plant-plant interactions and soil resource limitations on deviations from MST expectations remains
unknown (but see Coomes et al., 2011; Vasseur et al., 2018). Intercropping systems represent a unique
opportunity to challenge allometric laws, in order to fine-tune them and assess the validity of their most
basic assumptions. Understanding the influence of plant-plant interactions on reproductive strategies of
intercropped species would improve the understanding, modeling and ultimately management of intercrops
(Gaudio et al., 2019), particularly to drive each species to its potential reproductive output in relation to
the other species and the cropping conditions. In this study, we analyzed how plant allometry is related
to the performance of intercropped species and how this relationship is influenced by varying cropping
conditions. Crop scientists and stakeholders, including farmers, are primarily interested in yield, often
assessed in intercropping systems by the land equivalent ratio in order to calculate land-use efficiency
(e.g. Yu et al., 2016). Finer analysis of intercrop performance would improve our understanding of the
mechanisms underlying intercrop performance.

We examined the influence of plant-plant interactions on the allometric relationship between grain yield
production and plant biomass in annual cereal-legume intercrops grown under a variety of climatic
and cropping conditions in Western Europe, with the underlying objective to test the MST under
non-optimal conditions, characterized here by the plant-plant interactions and soil nutrient limitations.
Our analysis was based on 28 field experiments. The main objective of this study was to investigate how
the reproductive allometric relationships of both plant families (cereals and legumes) changed depending
on whether they were grown in a sole crop or with another crop. We also focused on the influence of N
fertilization within each plant family and crop type (sole crop vs. intercrop). The strength of allometric
relationships can indicate that the ratio of yield to plant size does not vary, as the relationship between
these two variables is supposed to be invariant (Nee et al., 2005). This ratio is called “reproductive effort”
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in ecology (Cheplick, 2005) and “harvest index” in agronomy (Vega et al., 2000; Echarte and Andrade,
2003). It is often used to focus on allocation of biomass to reproductive organs and to differentiate
performances of species and cultivars (Hay, 1995), which is a framework that is complementary to MST.
Thus, we also assessed the influence of crop management on reproductive efforts of the two plant families.

Materials and methods

Field experiments

We collected a set of experiments that compared different species and cultivars under intercropping and
sole-cropping conditions under a variety of management practices in 9 locations in five European countries
(France, Denmark, Italy, Germany, and the United Kingdom) (Fig. 1). The experiments covered 28
environments (location × year), of which 15 were managed as organic farming and 13 as conventional
farming, with a total of 34 intercropping situations (environment × species) and 62 sole-cropping situations.
Since the experiments were not completely factorial, i.e. not all factors (cultivars, N fertilization, sowing
density) were combined, we analyzed a total of 159 and 219 experimental units under intercropping and
sole-cropping situations, respectively. In the experiments, 53% and 47% of the intercropped species were
winter and spring crops, respectively. The mean temperature over the crop cycle (from sowing to harvest)
ranged from 6.8-11.3 °C for winter crops and 12.3-15.1 °C for spring crops. Cumulative rainfall ranged
from 278-713 mm for winter crops and 60-366 mm for spring crops.
Additional details on experimental designs and management practices are reported in Supplementary
Material S1 and in the reference publications for 22 of the 28 experiments (Knudsen et al., 2004; Corre-
Hellou et al., 2006; Hauggaard-Nielsen et al., 2008; Hauggaard-Nielsen et al., 2009a; b; Launay et al.,
2009; Bedoussac and Justes, 2010b; a; Naudin et al., 2010, 2014; Pelzer et al., 2016; Tang et al., 2016).

Fig. 1. (A) Number of field experiments (size of the circle) conducted at each location and (B) example
of a field experiment of winter wheat-pea intercrops (and their corresponding sole crops) conducted at the
ARVALIS experimental station, near Angers, France (Source: C. Naudin).

The set of experiments included annual cereal-grain legume intercrops and their corresponding sole crops,
with i) barley (Hordeum vulgare L.), durum wheat (Triticum turgidum L.) and soft wheat (Triticum
aestivum L.) as the cereals (only Poaceae), and ii) faba bean (Vicia faba L.) and pea (Pisum sativum
L.) as the legumes (Fabaceae). The cross between crop species and cropping seasons resulted in five
intercropping combinations: two spring intercrops (barley-faba bean and barley-pea) and three winter
intercrops (durum wheat-faba bean, durum wheat-pea and soft wheat-pea). In all experiments, the two
intercropped species were sown and harvested at the same time, with sowing dates ranging from March
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11 to May 03 for spring crops and October 25 to December 15 for winter crops. Within a given cropping
situation, variations were related mainly to i) the number of cultivars tested per crop species (ranging
from 1-5); ii) the relative sowing density of each species (actual:reference sowing density ratio, 1.0 and 0.5
for sole crops and 0.3 - 0.7 for each of the two intercropped species); and iii) the N fertilization, with
non-fertilized and N-fertilized situations, the latter ranging from 30-200 kg N.ha-1 (mean (± SD) = 95
± 44 kg N.ha-1) (Table 1). To assess reproductive effort and allometry, all experiments measured at
least three variables: grain yield (t.ha-1) at harvest, total aboveground biomass (t.ha-1, including grains,
flowers, pods and ears) at maturity, and actual plant density (plant.m-2). Plant density was used to
convert per-ha variables into per-capita variables (i.e. g.plant-1; Table 1).

Table 1. Cropping situations pooled in the database by plant family (Poaceae vs. Fabaceae), crop type (sole
crop vs. intercrop) and nitrogen (N) fertilization (non-fertilized N0 vs. N-fertilized). Several cultivars and
crop species densities (relative proportions) were represented for each factor combination (family x crop type x
N fertilization). Mean (± SD) total plant aboveground dry biomass and grain yield were calculated for each
factor combination.

Plant
family

Crop
type

N-
fertilization

No. cropping
situations

No. culi-
vars

No. densi-
ties

Biomass
(g.plant-1)

Yield
(g.plant-1)

Cereal Sole
crop

N0 57 12 2 3.8 ± 1.8 1.5 ± 0.6

(Poaceae) N 57 11 2 6.8 ± 3.0 2.7 ± 1.1
Intercrop N0 103 12 5 3.6 ± 1.7 1.5 ± 0.8

N 56 9 6 6.8 ± 2.1 2.8 ± 0.9
Legume Sole

crop
N0 87 18 2 20.9 ± 16.7 9.0 ± 5.9

(Fabaceae) N 18 8 2 35.3 ± 25.5 16.0 ± 12.5
Intercrop N0 103 18 5 15.2 ± 11.4 7.8 ± 5.8

N 56 8 6 16.0 ± 12.5 7.4 ± 5.7

Data processing and analysis

Reproductive effort was calculated as the ratio of grain yield to total aboveground biomass at maturity,
rather than final biomass, to avoid the influence of leaves that dropped before maturity (Unkovich et
al., 2010). Analysis of variance (ANOVA) was performed using the aov function of the stats package of
R software (R Core Team, 2019). When relevant (p < 0.05), means were separated using a Tukey or,
when ANOVA assumptions were not met, Kruskal-Wallis test. We performed one-way ANOVAs within
each plant family (Poaceae vs. Fabaceae) to test the influence of crop type (sole crop vs. intercrop)
and N fertilization (non-fertilized vs. N-fertilized) on reproductive effort and its components (i.e. plant
aboveground biomass and plant yield). The influence of N fertilization could not be assessed for legumes
in sole crops due to unequal sample sizes (18 situations fertilized, 87 non-fertilized) (Table 1). For the
same reason, differences between sole crops and intercrops for legumes could be assessed only under
non-fertilized conditions.

We analyzed reproductive allometric relationships between plant grain yield and plant aboveground
biomass thanks to standardized major axis analysis [SMA; Warton et al. (2006); Poorter and Sack (2012)]
using the R smatr package (Warton et al., 2012), through the power relation y = axb, where y and x
are plant yield and aboveground biomass, respectively. This method enables geometrical interpretations
that lead to statistical testing procedures to compare slope, offset and shift along the allometric line
(Warton et al., 2012; Taskinen and Warton, 2013). More specifically, we assessed the effect of plant family
and, within each family, the effect of crop type and N fertilization, on the position of individual plants
along the main reproductive allometric line. Because of the unequal sample sizes, allometric lines for
legumes were compared only i) under non-fertilized conditions, to compare the effect of crop type, and ii)
in intercrops, to compare the effect of N fertilization.
When two groups had significantly different slopes of allometric lines, we determined the aboveground
biomass for which the two allometric lines intersect, thus defining the plant-size threshold above which
a plant had a proportionally higher yield. For example, this threshold equaled the abscissa X0 of
the intersection of the allometric relationships for an intercrop (IC) and sole crop (SC), calculated as
X0 = (aIC − aSC)/(bSC − bIC), where aIC and aSC are the estimated intercept, and bIC and bSC
are the least square estimate of the slope of the allometric relationship for an intercrop and sole crop,
respectively. We calculated 95% confidence intervals (CI0.95) of this threshold using the procedure
of Filliben and McKinney (1972). Moreover, to test the robustness of the differences in slopes, we
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performed a bootstrap procedure using 10 thousand bootstrap samples for each case study and identified
the percentage of cases where the p-value of the sma test was below 0.05 (i.e. indicating a significant
difference between the slopes).

To assess the dominance of the focal species in intercrop, we calculated a distance index based on biomass
difference (i.e. fitness distance, Mayfield and Levine, 2010; Cadotte, 2017) between the two intercropped
species within each of the 159 experimental units in intercropping situations. We first normalized plant
yield and biomass values within species x fertilization groups to account for major plant size differences
between intercropped species (unity-based normalization, x′ = (x − xmax)/x(xmax − xmin)). Then,
considering an intercrop mixing two species i and j, the biomass distance index for the focal species i was
defined as x′

j − x′
i, and respectively for species j. This index ranges from -1 (i.e. focal species is dominant)

to +1 (i.e. focal species is dominated). We used a linear model to analyze change in plant yield as a
function of the biomass distance index.

The allometric relationships led to centered residuals as the differences between the observed yield and
the predicted one from associated biomass. A natural question arose about the impact of the conditions
of each experiment on these results. Considering an ANOVA or a mixed model would be unsatisfying due
to the unbalanced sizes of each experimental group in the dataset. Thus, an alternative approach was
proposed to tackle such a question. The residual values were plotted separately for each subset of data
obtained in the same conditions. Moreover, the p-th quantiles for p=2.5% and p=97.5% were drawn to
bounds 95% of residual values to visualize possible outliers (Supplementary Material S2). The results
indicated that no extreme value appeared as remarkable. Some variability is revealed but its order of
magnitude remains below the dispersal of the residuals. The role of the experimental factors appears
then as neglectable with respect to the residual variations of the allometric relationships.

Data were analyzed with R software version 3.6.0 with the packages dplyr [data processing; Wickham et
al. (2019)], ggplot2 [visualization; Wickham (2016)] and knitr [reporting; Xie (2015)].

Results

Reproductive allometry in cereals and legumes

The reproductive allometric relationship between plant yield and biomass was significant and robust (R2
= 0.94) across all experimental units, indicating that size is a predominant driver of crop yield. Allometric
relationships of legumes and cereals displayed a similar slope close to 1 (1.03 ± 0.02), indicating an overall
isometric relationship between plant yield and biomass. However, legumes generally had larger biomass
and grain yield than cereals (significant shift along the main relationship, Fig. 2A). Moreover, legumes
generally had higher yield than cereals for a given biomass (significant offset along the y-axis). The
relationships between reproductive effort and plant biomass were weak for both cereals and legumes (R2
= 0.104 and 0.049, respectively), with reproductive effort decreasing slightly as plant biomass increased
(p < 0.0001, Fig. 2B). Legumes had slightly but significantly higher reproductive effort (0.48 ± 0.10,
ranging from 0.19-0.73) than cereals (0.43 ± 0.08, ranging from 0.22-0.67), although it varied greatly.
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b=0.95, R²=0.87
b=1.00, R²=0.91

R²=0.102
R²=0.049

Fig. 2. (A) Reproductive allometric relationship (log-log scale) between plant yield (g.plant-1) and plant
biomass (g.plant-1) and (B) relationship between reproductive effort (=yield:biomass) and plant biomass
(g.plant-1) for cereals (orange) and legumes (red) for all experimental units in intercropping and sole-cropping
situations.

Crop management impacted the plant reproductive allometry, especially for legumes

The slopes of allometric relationships were steeper under intercropping than sole-cropping conditions (Fig.
3A-C). The intercropping effect was stronger in non-fertilized conditions (legumes, p < 10-6; then cereals,
p = 0.004) than in fertilized conditions (cereals, p = 0.03). However, data points were relatively dispersed
but the bootstrap procedure based on 10 thousand bootstrap samples for each modality corroborated
these results, i.e. p-value of the sma slope test was below 0.05 in 99%, 82% and 61% of the cases among
the 10 thousand bootstrap samples, respectively for the legumes in non-fertilized conditions, cereals in
non-fertilized conditions and cereals in fertilized conditions. For legumes under non-fertilized conditions,
intercrops had significantly higher reproductive effort than sole crops. Although allometric differences
were observed for cereals, ANOVAs indicated that intercropping had no significant effect on reproductive
effort or its components (plant yield and biomass) whether in fertilized or non-fertilized conditions (Table
2).
We calculated the plant size threshold corresponding to the intersection of allometric lines in intercrop
and sole crop conditions to identify the minimum plant size corresponding to a positive intercropping
effect on biomass allocation (increased yield for a same plant size). The plant size threshold above which
a legume under non-fertilized conditions (Fig. 3A) benefited from intercropping was 10.3 g.plant-1 (CI0.95
= [6.7-13.5 g.plant-1]), with biomass ranging from 1.9-83.2 g.plant-1. For a cereal under non-fertilized
conditions (Fig. 3B), the threshold was 3.5 g.plant-1 (CI0.95 = [2.0-5.9 g.plant-1]), with biomass ranging
from 0.7-9.9 g.plant-1. For a cereal under N-fertilized conditions (Fig. 3C), the threshold was 6.3 g.plant-1,
with biomass ranging from 2.6-13.2 g.plant-1. We could not derive CI0.95 for this situation because the
allometric relationships of the two datasets had high collinearity and widely scattered points.
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b=0.89, R²=0.89
b=1.08, R²=0.94

b=0.82, R²=0.83
b=1.00, R²=0.84

b=0.89, R²=0.84
b=1.09, R²=0.71

b=1.03, R²=0.83
b=1.08, R²=0.94

b=0.89, R²=0.89
b=0.82, R²=0.82

b=1.09, R²=0.70
b=1.00, R²=0.82

Fig. 3. Reproductive allometric relationship (log-log scale) between plant yield (g.plant-1) and plant biomass
(g.plant-1) by i) crop type (i.e. sole crop (SC) vs. intercrop (IC)), for (A) legumes (Fabaceae) under non-
fertilized conditions (N0), (B) cereals (Poaceae) under N0 and (C) cereals under N-fertilized conditions (N),
and by ii) N fertilization, for (D) legumes grown under IC, (E) cereals under SC and (F) cereals under IC. b
represents the allometric scaling exponent of the studied relationships.

In intercropping conditions, for a given species, we analyzed how variation in its yields depends on biomass
distance between the two intercropped species. This distance index significantly explained yield variation
in all studied species x management cases (R2 0.39 - 0.48, p < 1e-3, Fig. 4).
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Fig. 4. Grain yield (g.plant-1) of intercropped components as a function of biomass distance index for (A)
legumes (Fabaceae) under non-fertilized conditions (N0), (B) cereals (Poaceae) under N0, and (C) cereals under
N-fertilized conditions (N). The distance index was calculated as the biomass difference between the focal
species and its associated species. Inset graphs represent reproductive allometric relationships, with vertical
dotted lines marking the biomass threshold corresponding to the intersection of allometric lines between sole
crops (blue) and intercrops (red). This threshold is used to split the field population where the focal species
biomass was above (filled symbols) or below it (open symbols).
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N fertilization also influenced allometric relationships (Fig 3D-F). For a given plant biomass, intercropped
legumes had higher yield without N fertilization than with it (significant offset, Fig. 3D). The analysis
of the reproductive effort confirmed this result, with significantly higher biomass allocation for legumes
under non-fertilized (0.51 ± 0.09) than N-fertilized (0.47 ± 0.11) conditions. However, we could not
determine whether biomass or yield caused this difference. For cereals, N fertilization did not influence
the allometric relationship: N-fertilized plants had proportionally larger biomass and yield, regardless of
the crop type (significant shift, Fig. 3E-F). This result was confirmed by both crop types having a similar
reproductive effort: both ratio components (plant yield and biomass) were higher under N-fertilized
conditions than non-fertilized conditions, regardless of the crop type.

Table 2. Effect of crop type (sole crop SC vs. intercrop IC) and nitrogen (N) fertilization (non-fertilized N0
vs. fertilized N) by plant family (Poaceae vs. Fabaceae) on i) reproductive effort, plant biomass (g.plant-1)
and plant yield (g.plant-1) using analysis of variance and ii) allometric relationships (slope, offset and shift
along the relationship) using standardized major axis (SMA) analysis (*** <0.0001, ** <0.001, * <0.05, ns
non-significant).

Discussion

Intercrop design aims to improve resource-use efficiency, especially crop N use (yield per unit of N absorbed)
in cereal-legume intercrops (Jensen et al., 2020). In the experiments examined, plant-plant interactions
in intercropping conditions influenced reproductive allometry, especially for legumes intercropped with
cereals in non-fertilized conditions with an increase of biomass allocation to their reproductive parts.
These results increase knowledge about the factors that influence plant allometry while the allometric
rules are usually considered invariant across species and ecological situations, notably as expected from
the metabolic scaling theory [MST; Niklas and Enquist (2001)]. Moreover MST appears as a new and
promising conceptual framework to improve intercrop management. The allometric approach improves
our understanding of which intercropping situation favors one species or the other, and provides some
guidelines to identify putative trade-offs depending on the agronomic objective assigned to the intercrop
(e.g. focus on the legume, or having both intercropped species reaching a suitable yield without one
species strongly dominating the other).
In addition to the strong size-dependence of grain yield production, which was predicted by allometric
relationships and highlighted in other studies (Sugiyama and Bazzaz, 1998; Vega et al., 2000; Weiner,
2004; Liu et al., 2008; Qin et al., 2013), we observed that species grown in intercrops had a greater
increase in yield for a given increase in plant size than species grown in sole crops through the threshold
analysis (x-coordinate of the intersection of allometric lines between sole cropping and intercropping
conditions). This highlights a better spatial and temporal resource use efficiency in a field situation,
which is a pillar of ecological intensification (Li-li et al., 2015).
This effect depends on plant family and the relative dominance of the two intercropped species. When
ranking this effect among cropping conditions, intercropping benefited legumes under non-fertilized
conditions the most, followed by cereals under non-fertilized conditions and then cereals under N-fertilized
conditions. For example, a cereal plant in a sole crop is surrounded by other cereal plants. Since cereal
plants generally compete strongly for soil resources, they experience strong intra-specific competition
under non-fertilized conditions. If this cereal plant is intercropped with legume plants, however, some of
its close neighbors are legumes, which compete less for soil N than cereals (Satorre and Snaydon, 1992;
Mariotti et al., 2009) and can fix atmospheric N. This decreases the competition experienced by the
cereal plant due to functional complementarity in N acquisition strategy (Hinsinger et al., 2011; Duchene
et al., 2017). However, when the intercrop is fertilized with N, cereals have a competitive advantage
over legumes and complementarity for resource use is replaced with strong interspecific competition
from the cereal over the legume. Thus, intercrop design should focus on two key points: i) plant family,
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characterized by their competitive ability (Goldberg, 1990); and ii) characteristics of the two intercropped
species and their capacity to compete for limiting resources depending on the plant neighborhood (Stoll
and Weiner, 2000; Gaudio et al., 2019).
The relaxation of competitive interaction in intercropping situations is highlighted by the strong effect of
biomass differences between the two intercropped species in grain yield production [also called fitness
distance in the ecological literature; Cadotte (2017)]. This reflects the difference in dominance between the
two intercropped species (Mayfield and Levine, 2010), which is one key driver for competitive exclusion.
Then, in intercrops, yield of cereals in N-fertilized conditions is hardly influenced by the biomass of the
associated legume, whereas yield of cereals and legumes in non-fertilized conditions were much more
influenced by the biomass of the associated species. When the biomass difference between the two
intercropped species is high, there is an obvious imbalance between the two species, leading to strong
differences in competitive ability of the two components of the mixture: the greater the biomass difference,
the more intense hierarchical competition (Kunstler et al., 2016). Therefore, around the size threshold
corresponding to the intersection between allometric lines in sole- and intercropping conditions identified
for each cropping situation, the two intercropped species do not reach their maximal size and associated
yield but an equilibrium exists between them. When we move away from this threshold, one intercrop
component becomes highly dominant or conversely dominated due to hierarchical competition.
For legumes, we showed that fertilization decreases the reproductive effort (i.e. lower yield for a given
biomass) compared to that under non-fertilized intercropping situations, as highlighted in other studies (e.g.
Corre-Hellou et al., 2007 for spring barley-pea). This is probably because when strong competition limits
a resource, plants tend to allocate more biomass to structures associated with acquiring it, potentially to
the detriment of reproductive organs (Poorter and Nagel, 2000; Bonser, 2013). In contrast, cereals in
intercrops had similar reproductive effort whatever the fertilization condition, but a given reproductive
effort was reached with proportionally higher biomass and yield in fertilized plots. In these cropping
conditions, cereals are larger and compete more for aboveground and soil resources. Understanding the
causal processes for such a modified allocation would require targeted experiments that measure key
functional traits of legumes that reflect plant behavior for light (e.g. specific leaf area) and N availability
(e.g. leaf N content) (Freschet et al., 2018).

Pathway to applications

Weiner et al. (2009) described the reproductive-vegetative allometric relationship as a relatively fixed-
boundary condition, meaning that a plant cannot increase its reproductive output without growing more
first. Our findings highlight that, in a crop mixture, the interaction between the two intercropped species
makes this boundary more complex given that the reproductive output of one component also depends
on the performance of the other. From a practical viewpoint, the analysis of the intersection of allometric
relationships enables the identification of plant biomass thresholds for each component of the mixture.
We propose to use these thresholds as management criteria to cultivate each species up to its reproductive
output maximum while accounting for the performance of the other.
We found that plant-plant interactions were a strong driver of yield variation in crop mixtures. In this
case, an agronomic action on one species can readily influence the other even under relatively variable
climate conditions, which is an important observation for designing and managing intercrops. For instance,
if the goal of the farmer is to promote legume yield, using the cereal mainly to limit legume disease and
lodging (e.g. Viguier et al., 2018 for spring wheat-lentil intercrops), then we should identify plant size
level of the target legume above which higher growth means higher yield, accounting for the interaction
with the cereal. Conversely, if the goal is to promote both intercropped species (Hauggaard-Nielsen et al.,
2008; Pelzer et al., 2014), then trade-offs should be managed to be close to the threshold in order to avoid
a strong dominance of one of the two species. However, while such ecological knowledge is important for
informing a sustainable transition, we argue that many other factors influence decision-making beyond
scientific evidence alone (Hazard et al., 2020).
Our results indicated that legumes would better benefit from intercropping, which is aligned with the
need to increase legumes acreage, a stake with both environmental and food aspects. On one hand,
greenhouse gas emissions can be reduced through a decreased use of synthetic N fertilizer (Zander et
al., 2016) and a shift to plant-based protein diets. On the other hand, increasing plant-based protein
production to sustain a nutritional transition is limited by legumes productivity in sole crop (Magrini et
al., 2018). In any case, intercropping appears as an additional lever in the agro-ecological transition.
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