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 The role of grassland in field colonisation by insect pests is investigated in silico 15 

 Population dynamics of wireworms is modelled, accounting for life cycle and dispersion 16 

 Spatiotemporal effects of grassland in field history, field neighbourhood or their interaction, 17 

depend on the pest life cycle and its dispersal capacity 18 

 Grassy areas can act either as pseudo-sinks or as sources on neighbouring crops 19 

 Control strategies based on grassland arrangements appear trait-specific 20 

 21 

Abstract: 22 

Sustainable pest control strategies hinge on the knowledge of movement ecology within the agricultural 23 

landscape where contrasted habitat qualities intermingle, thereby influencing arthropod dispersal. 24 

Hence, habitat manipulation in space and time can be a lever for action to control pests with regard to 25 

landscape compositional constraints. In this study, we examined the role of grassland arrangements in 26 

field colonisation by soil-dwelling pests within a dynamic agricultural landscape, and discussed the 27 

implications for pest management with a focus on wireworms. For this purpose, we proposed a 28 

framework combining (i) a spatially explicit and mechanistic model describing the pest population 29 

dynamics in both aerial and soil compartments involved along its life cycle, and (ii) spatiotemporal 30 

representations of various landscape contexts. We addressed the role of grassland in plot history, in plot 31 

neighbourhood, or in both history and neighbourhood. Our results show that species with a short life 32 

cycle are more responsive to changes in land use, and that the neighbourhood effect strongly relies on 33 

dispersal mechanisms (random vs directed movements). We also highlight how the arrangement of 34 

grassy landscape elements in space and time can mitigate crop infestation by soil-dwelling pests, thereby 35 

emphasizing the relevance of managing grassland regimes. Once informed by critical pest life traits, our 36 

approach opens avenue for the exploration of the spatiotemporal land use manipulation meant for pest 37 



management. Future research consists in the exploration of suppressive patterns in simplified but 38 

realistic agricultural landscapes, generated under agronomic constraints at the farm or landscape scales. 39 

 40 

 41 

1. Introduction 42 

Targeting a sustainable crop protection, freed from its reliance on pesticides, requires a better 43 

understanding of field colonisation processes driving pest population dynamics. Looking for 44 

environmental-friendly strategies for pest control reemphasizes the importance of movement ecology. 45 

Indeed, insect pest habitats are fragmented rendering dispersal a key process determining pest population 46 

dynamics at the agricultural landscape scale. This suggests that agricultural landscape is a relevant scale 47 

for designing pest resilient agroecosystems that minimise the use of pesticides (Bourhis et al., 2017, 48 

2015; Tscharntke and Brandl, 2004). 49 

Such a pest control approach should account for processes operating at different spatial and temporal 50 

scales, thereby requiring an extensive knowledge about pest ecology. The survival of species hinge on 51 

their ability to detect and reach suitable resources when necessary in their life cycle (Dunning et al., 52 

1992; Vasseur et al., 2013). Interestingly, a few studies have suggested that some insects effectively 53 

move between asynchronous land uses depending on resource availability (Aviron et al., 2018; Bressan 54 

et al., 2010; Men et al., 2004). Habitat connectivity in space and time (Martensen et al., 2017; Moilanen 55 

and Hanski, 2001; Taylor et al., 1993) is thus a pivotal driver of pest dispersal success in dynamic 56 

agricultural landscapes. Consequently, the spatial and temporal arrangement of land uses can be a lever 57 

for action to control species abundances with regard to landscape compositional constraints (Fischer and 58 

Lindenmayer, 2007; Jonsson et al., 2010; Parisey et al., 2016; Polasky et al., 2008; Roques and Hamel, 59 

2007; With and King, 2001) 60 

In that, Elateridae can be considered as relevant model organisms (Blackshaw et al., 2017). Wireworms, 61 

the larvae of click beetles (Coleoptera: Elateridae) of which there are more than 10,000 species in about 62 

400 genera known worldwide, are among the most notorious soil-dwelling pests (Balachowsky and 63 

Mesnil, 1935; Miles, 1942; Traugott et al., 2015). Elaterid pest species are capable of exploiting both 64 

cultivated and uncultivated areas in the agricultural mosaic (Milosavljević et al., 2016). Consequently, 65 

understanding their movement from sources that sustain important populations, i.e. uncultivated areas, 66 

to vulnerable crops is central in the development of pest management strategies. The larvae undergo a 67 

number of instars and the complete elaterid life cycle varies between two to five years (Balachowsky 68 

and Mesnil, 1935; Furlan, 1998; Miles, 1942; Sufyan et al., 2013). In Europe, Agriotes spp. are the most 69 

harmful species. They attack the roots and tubers of a wide range of crops, thereby inflicting severe 70 

economic damage in potatoes, maize and vegetable production, and may even threaten perennial crops 71 

such as soft fruits or orchards (Traugott et al., 2015). 72 

Though scarce and fragmented, knowledge regarding the biology and the ecology of Agriotes spp. 73 

indicates that uncropped field margins and areas are the most favourable habitat for wireworms, and act 74 



as reservoirs from which they disperse into adjacent crops (Blackshaw et al., 2017). Based on correlative 75 

approaches, some studies have attempted to unravel relationships between larvae or adult abundances 76 

or densities and landscape features (Benefer et al., 2012; Blackshaw and Vernon, 2006; L. Furlan et al., 77 

2017; Hermann et al., 2013; Kozina et al., 2015; Poggi et al., 2018a; Saussure et al., 2015). Altogether, 78 

these studies shed light on the potential for a dynamic landscape to shape wireworm populations. 79 

However, while providing insights of the main factors responsible for wireworm or click beetle density 80 

levels, such approaches fail in describing the mechanisms driving pest colonisation, and subsequently 81 

in elucidating the source/sink ecological processes that operate at the landscape scale. 82 

The main objective of our study was to examine the role of grasslands in field colonisation by soil-83 

dwelling pests within a dynamic agricultural landscape, and discuss its implications for pest 84 

management with a focus on wireworms. For this purpose, we first developed a spatially explicit and 85 

mechanistic model describing the pest population dynamics in both aerial and soil compartments 86 

involved along its life cycle. Larvae and adult mortality, larval development, oviposition, and adult 87 

movements (diffusion and advection) were the main processes considered. Model parameterisation 88 

stems from an extensive review of the literature dealing with the biology and ecology of wireworms. 89 

Then, landscape elements comprising grasslands and vulnerable habitats (cropped fields) were 90 

characterised by their carrying capacity. Combining these two framework components, we investigated 91 

the interplay of landscape spatiotemporal dynamics, considering grasslands as pest sources, and of 92 

species-specific traits (e.g. life cycle duration) on field infestation levels, as illustrated by the conceptual 93 

diagram (Fig. 1). We also highlighted how the balance between diffusion and advection movements 94 

drives the population flows on both sides of the boundaries between grassland and field crops. Finally, 95 

we demonstrated that spatiotemporal connectivity between grasslands significantly affects the pest 96 

infestation levels within crops. 97 

Providing new insights into the role of grasslands in pest infestation in a dynamic agricultural mosaic, 98 

our findings bring an original contribution to the search for innovative landscape-scale strategies for 99 

pest management. 100 

 101 

2. Material and methods 102 

 103 

2.1. Population dynamics model 104 

Insect pests considered in this study cause crop damage during larval development in soil but disperse 105 

as adults by walk and flight. Both the aboveground and the belowground compartments were explicitly 106 

considered. The population dynamics was derived along two spatial dimensions x=(x,y) through a set of 107 

reaction-advection-diffusion equations modelling the following biological and ecological mechanisms: 108 

 the emergence of adults from mature larvae, 109 

 the adult random and directed motions, 110 

 the oviposition, 111 



 the adult mortality, 112 

 the larval development, 113 

 and the larval density-dependent mortality. 114 

Briefly, adults oviposit at a constant rate π, thereby increasing the belowground population that ages at 115 

a constant velocity c, undergoing a density-dependent mortality. Wireworms reaching the critical age 116 

mc emerge as adults that disperse across the landscape to find resources and suitable habitat. The model 117 

can be formalised as a system of partial differential equations: for t > 0 and 0 < m < mc 118 

൞
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with the dynamical boundary conditions w.r.t the maturation variable 120 
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Here, 𝐵തሺ𝑥, 𝑡ሻ ൌ ׬ 𝐵ሺ𝑥, 𝑡, 𝑚ሻ𝑑𝑚
௠೎

଴  represents the total belowground population, ∆𝒙ൌ 𝜕௫
ଶ ൅ 𝜕௬

ଶ is the 122 

Laplace operator (diffusion over x), ∇𝒙ൌ ቀడೣ
డ೤

ቁ and ∂௠ are the advection operators over x and m (the 123 

maturity dimension), where 𝜕௫, 𝜕௬, 𝜕௠ denote the partial derivatives with respect to x, y and m. 124 

Model parameters and their meaning are described in Table 1. Model interpretation is fully presented in 125 

the following paragraphs. The state variables A and B respectively denote the density of click beetles 126 

aboveground, and the density of wireworms in soil. Actually, B encapsulates all belowground 127 

development stages (larval instars, pupae) and is referred to as wireworms thereafter for the sake of 128 

simplification. The dynamical condition at 𝑚 ൌ 0 (Eq. 3) reflects both the oviposition and the growth 129 

of individuals who did not start to mature, while the condition in 𝑚 ൌ 𝑚௖ (Eq. 4) takes into account the 130 

accumulation of individuals in the last class of maturation before emergence.. As initial conditions, the 131 

aboveground population was set to zero and the age distribution of larvae was obtained from a 132 

preliminary model simulation run over 15 years on a homogeneous landscape. The model was solved 133 

using operator splitting (Press et al., 2007, Chapter 20.3.3). Alternating-direction implicit method solves 134 

the diffusion (Press et al., 2007, Chapter 20.3.2), while a forward Euler scheme is used for the reaction 135 

terms, and an upwind scheme for the advection terms (Press et al., 2007, Chapter 20.1). We considered 136 

the spatial domain under study as a closed system (i.e. equal  inflowing  and  outflowing  pest 137 

populations), thereby applying Neumann (reflecting) boundary conditions at the edges of the spatial 138 

domain. All developments were made with the R programming language (R Core Team, 2018). 139 

 140 



Adult emergence and motions 141 

Click beetles emerge during spring. In accordance, we defined their emergence rate as a time-dependent 142 

function τ(t) (cf. §2.2 and Suppl. Material 1) in Equation 1. 143 

As recent findings suggested that wireworms do not move from field to field (Schallhart et al., 2011), 144 

we considered that only adults contribute to the spatial redistribution of populations. We assumed that 145 

adult motions included two components: a random component expressed through the diffusion term in 146 

Equation 1, involving D the homogeneous diffusion coefficient; and a directed component expressed 147 

through the advection term in Equation 1 and involving 𝑢ሬ⃗  the advection velocity. Regarding the latter 148 

component, we assumed that click beetles move across the landscape based on the habitat quality they 149 

perceive in their neighbourhood. We defined the local habitat quality ℎሺ𝒙, 𝑡ሻ as a function of local 150 

carrying capacities 𝐾ሺ𝒙, 𝑡ሻ: 151 

ℎሺ𝒙, 𝑡ሻ ൌ
𝐾ሺ𝒙, 𝑡ሻ െ 𝐾௠௜௡

𝐾௠௔௫ െ 𝐾௠௜௡
 (5)

where Kmax (resp. Kmin) refers to the most favourable (resp. unfavourable) habitat for wireworms. As did 152 

Bourhis et al. (2017), we derived the perception of the landscape habitat quality, noted ℎ௣ሺ𝒙, 𝑡ሻ, from a 153 

convolution of a perception kernel (linear inverse distance weighting filter) with the mapping of local 154 

habitat quality:  155 

ℎ௣ሺx, 𝑡ሻ ൌ න ቆ1 െ
|𝒙 െ 𝒙𝒊|
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𝛾
ቇ 𝑑𝒙𝒊

௫೔ఢஐ
|௫ି௫೔|ழఊ

൙  
(6)

with   the whole spatial domain, and   the distance beyond which habitat quality is no longer perceived 156 

by click beetles. Finally, the advection velocity 157 

𝑢ሬ⃗ ሺ𝒙, 𝑡ሻ ൌ 𝑉௠௔௫
∇𝒙ℎ௣ሺ𝒙, 𝑡ሻ

𝑚𝑎𝑥ห∇𝒙ℎ௣ሺ𝒙, 𝑡ሻห
 (7)

reaches its maximum speed Vmax where the gradient of the potential function ℎ௣ሺ𝒙, 𝑡ሻ is maximum. 158 

 159 

Oviposition 160 

Although the oviposition rate may vary among habitats (Brian, 1947), it was assumed here independent 161 

of space (i.e. land use and associated carrying capacity) and constant over the whole duration of the 162 

adult life. New-borns fall within the belowground population with age 0 (Eq. 3). 163 

 164 

Adult mortality 165 

A constant mortality rate 𝜇஺ was applied to the aboveground compartment of the model. 166 

 167 

Larval development 168 

The belowground population distributes along an ageing axis. The population ages according to a 169 

constant coefficient 𝑐. When reaching the critical maturity 𝑚௖, larvae can emerge as click beetles. 170 



 171 

Larval mortality 172 

Uncultivated areas, such as grasslands or grassy strips, are acknowledged as favourable habitats for both 173 

adults and larvae of click beetles (Brian, 1947; Miles, 1942), providing sufficient food and humid 174 

conditions (Roebuck et al., 1947), therefore wireworm populations thrive in these areas. On the contrary, 175 

wireworm populations reach much lower infestation levels in cropped fields, where they nevertheless 176 

damage vulnerable crops (Miles, 1942). In our model, we assumed that the carrying capacity K(x,t) is a 177 

proxy for habitat quality, and that larval mortality relies on a constant component 𝜇஻ weighted by a 178 

density-dependent factor. While the constant component provides a stationary annual dynamics within 179 

the landscape, the density-dependent term ensures that the population dynamics is centred on the 180 

carrying capacity. The exponent 𝛽 controls the dynamics inertia, i.e. the speed at which the local 181 

population converges towards the local carrying capacity. For the sake of simplicity, larval mortality 182 

was independent of the age. Note that the reaction term departs from the canonical logistic growth model 183 

as the density dependence applies on larval mortality only rather than on larval population growth rate 184 

(which also depends on adult oviposition rate), emphasising that population is limited by larval 185 

competition for food rather than by adult competition for oviposition sites. 186 

 187 

2.2. Model parameterisation 188 

 189 

Land-use dependent carrying capacities (𝐾ீ  and 𝐾஼) 190 

We considered two types of land use: grasslands, known as favourable habitats (Furlan, 2004; Parker 191 

and Howard, 2001), and cropped fields.  192 

Regarding grasslands, we set the carrying capacity 𝐾ீ  to 2000 individuals per square meter (thereafter 193 

ind/m²) based on field studies carried out before the common access to chemical pesticides (Roebuck et 194 

al., 1947; Ross et al., 1947; Salt and Hollick, 1944). Based on a thorough study of two pastures at least 195 

10-year old and regularly cut for hay, Salt and Hollick (1944) estimated densities about 850 and 2000 196 

ind/m². Locally, they even observed densities reaching 6000 ind/m² in both pastures. Within other 197 

pastures less intensively sampled, they found about 2500 ind/m² on average. Roebuck et al. (1947) 198 

studied intensively the infestation level of an old meadow, and determined a density of about 300 ind/m² 199 

by the hand-sorting method. Following Salt and Hollick (1944) who consider that this method 200 

underestimates densities by two thirds, the actual infestation could be of about 1000 ind/m². Ross et al. 201 

(1947) studied six permanent pastures grazed and regularly hayed, and assessed a density of about 1000 202 

ind/m². 203 

In cropped fields, we set the carrying capacity 𝐾஼  to 120 ind/m², i.e. about one order of magnitude 204 

smaller than 𝐾ீ , and fairly close to values indicated by Roebuck (1924). Indeed, Roebuck (1924) studied 205 

the decline of wireworm populations in newly set up crop fields with repeated ploughing, and found 206 



average population density of 102, 80, 56 and 32 ind/m² the 1rst, 2nd, 3rd and 4rth year after ploughing 207 

from grass, respectively. 208 

 209 

Belowground population maturation (c) 210 

Wireworm species differ greatly from one another in their biology and ecology (Furlan, 2005; Ritter and 211 

Richter, 2013), in particular as regards the duration of their biological cycle. In France, four species 212 

from the genus Agriotes are responsible for most economical crop damage. Among them, A. lineatus, 213 

A. obscurus and A. sputator, predominantly present in the northern regions, exhibit a long life cycle 214 

(duration of larval stage of about 4 years), whereas A. sordidus, mainly found in south-western regions, 215 

exhibits a short life cycle (duration of larval stage of about 2 years). In our study, we set the duration of 216 

the larval stage (c-1) at 2 years for short life-cycle species and at 4 years for long life-cycle species. 217 

  218 

Emergence rate 219 

Studies relative to the date of emergence of Agriotes click beetles are fairly consistent. For instance, in 220 

Austria, Landl et al. (2010) observed that the emergence of A. lineatus began at the end of April, which 221 

is concordant with the observations of other authors from Eastern Europe and from western Canada 222 

(Vernon et al., 2001). Regarding A. ustulatus, A. lineatus and A. obscurus, Parker and Howard (2001) 223 

in United Kingdom reported emergences starting at mid-April and adults being captured until mid-July 224 

(hence, they probably emerged until mid-June), while in Germany, Sufyan et al. (2007) observed that 225 

the swarming period lasted from late April to the end of August (for A. lineatus and A. obscurus). 226 

Although most authors reported two periods of adult activity, one main in May and one weaker in June-227 

July (Landl et al., 2010; Sufyan et al., 2007), we simply modelled adult emergence as a continuous 228 

process spanning over a period governed by the cumulative degree days (see Supplementary Material 229 

1). In our study, the emergence of click beetles spans from late April to the beginning of June, with a 230 

peak of emergence located towards the middle of the period of emergence (i.e. mid-May). Over this 231 

period, all wireworms at the critical age have emerged (see Supplementary Material 1, Fig. A1B). 232 

 233 

Belowground mortality (𝜇஻,) 234 

Two main model parameters govern the larval mortality, namely the mortality rate B and the inertia 235 

exponent . The mortality rate was determined by means of a preliminary optimisation procedure before 236 

each simulation, given all other parameter values, such that larval density oscillated yearly around the 237 

carrying capacity in any homogeneous landscape.  was estimated empirically to 0.2 from infestation 238 

data collected in arable lands by Roebuck (1924) over 8 years. As shown in a sensitivity analysis (see 239 

Supplementary Material 2), despite scarce knowledge on this parameter , it has a significant effect on 240 

the model output and its estimation would probably deserve further attention. 241 

 242 



Adult dispersion (D, Vmax) 243 

Literature provides a limited amount of information regarding click-beetle dispersal. In particular, 244 

diffusion and advection processes can seldom be disentangled. Brian (1947) observed that A. obscurus 245 

and A. lineatus (but not A. sputator) frequently flew in a glass cage experiment. Crozier et al. (2003) 246 

reported that these species can be strong fliers, able to perform mass flights, travelling approximately 5 247 

to 10 km/h for distances ranging from less than 1 m to 100 m on one occasion and with an average flight 248 

covering 2 to 3 m. More recently, Blackshaw and Hicks (2013) concluded that Agriotes spp. disperse 249 

widely and may originate from adjacent fields. Many studies have attempted to provide quantitative 250 

estimates of click-beetle dispersal capacity, generally using mark-recapture experiments with 251 

pheromone traps. Blackshaw et al. (2017) recaptured individuals (A. lineatus, A. obscurus, A. sputator) 252 

at 1m from release point after 1h, and at 30m after 19h. Schallhart et al. (2009) studied the isotopic 253 

signature of A. obscurus beetles captured in pheromone traps located in a grassland adjacent to a maize 254 

field: 13% of individuals captured 80m inside the grassland plot had a signature characteristic of their 255 

maize field origin. Based on this knowledge, we set the diffusion coefficient to 72 m²/day, hence 256 

producing a mean dispersion radius of 15m in one day, 21m in two days, etc. (Shigesada and Kawasaki 257 

(1997), page 38). The advection speed was set to 10 m/day. 258 

 259 

Perceptual range () 260 

We assumed that adult click beetles could perform directed motions as responses to distant stimuli (e.g. 261 

olfactory stimuli). Advection processes may result from foraging for food or laying sites, from searching 262 

for a sexual partner, etc. In our model, we described advection at the population level as a tendency to 263 

move along a gradient of increasing habitat quality expressed in terms of carrying capacities. In 264 

particular, as wireworms thrive in grasslands, we expect adult click beetles to disperse preferentially 265 

towards nearby grassy areas. We set the perceptual range (i.e. the distance beyond which habitat quality 266 

is no longer perceived by click beetles) to 10 m. This estimated value mainly stems from studies dealing 267 

with pheromone attractiveness for click beetles, since it is the only advection process for which literature 268 

provides some guidance. Sufyan et al. (2007) assessed the range of attractiveness of pheromone traps 269 

(for both species A. lineatus and A. obscurus) through a mark – recapture experiment. They recaptured 270 

> 60% and < 10% of beetles in pheromone traps placed at 2 and 60 m from their release point, 271 

respectively. In a later experiment, Sufyan et al. (2011) estimated the maximum distance of perception 272 

of a pheromone trap to be around 15-20 m. Blackshaw et al. (2018) studied the attractive range of traps 273 

baited with A. obscurus pheromone to male beetles in both still air and wind conditions. They found that 274 

the attraction distance was less than 5m in still air but increased with airflow. 275 

 276 

Aboveground population mortality (A) 277 

Adult life expectancy varies among studies. Brian (1947) observed that longevity of A. obscurus on 278 

various crops ranged from 69 to 84 days for females and from 45 to 75 days for males. Regarding A. 279 



ustulatus, Hinkin (1983) reported an average longevity of 28 days for females and 19 days for males, 280 

while Furlan (1996) measured an adult lifespan of 24 (SD=5) days for females. More recently, Hicks 281 

and Blackshaw (2008) as well as Blackshaw et al. (2017) performed mark–release experiments on click 282 

beetles ; they showed respectively that adults (males and females combined) can survive for at least 45 283 

and 25 days. Accordingly, in our model, based on these elements and in accordance with our own field 284 

observations, we set the adult average lifespan to 25 days for both sexes. 285 

 286 

Oviposition rate () 287 

Most authors have studied oviposition under laboratory conditions. Brian (1947) found an average 288 

fecundity ranging from 30 to 150 (A. obscurus) depending on the crop (flax, potato and wheat were 289 

associated with low fecundity while grasslands of Lolium, Festuca and Agrostis were associated with 290 

high fecundity). Miles and Cohen (1941), Cohen (1942), and Furlan (1996), reported an average number 291 

of eggs laid per female of 109 in A. obscurus (min=78, max=186), 103 in A. obscurus and 78 in A. 292 

ustulatus (SD=27.9, min=52, max=140). Accordingly, we considered fecundity to be of 80 eggs per 293 

female over its lifespan (25 days as mentioned in the previous paragraph). Considering that sex ratio 294 

tends towards 1:1 (Blackshaw et al., 2017; Furlan, 1996), the oviposition rate was set to (80/2)/25=1.6 295 

eggs per capita per day. 296 

 297 

2.3. Landscape contexts 298 

We defined four landscape contexts (Fig. 2 and Fig. 3) to investigate the processes driving the 299 

colonisation of vulnerable habitats (arable crops) characterised by a habitat quality lower than the one 300 

associated with grasslands (favourable habitats). The first three contexts are shown in Fig.2: a 301 

homogeneous cropped field cultivated over 2 years (Fig. 2A), a grassland in the field history (Fig. 2B) 302 

or in the neighbourhood of the cropped field (Fig. 2C). Finally, Fig. 3 describes the fourth context where 303 

we compared two dynamic landscapes 1 and 2 exhibiting the same duration of land use over time 304 

(landscape composition) but through contrasted spatial configurations. 305 

 306 

3. Results 307 

 308 

3.1. Population dynamics in a homogeneous landscape context 309 

Fig. 4 shows the dynamics of above- and belowground populations in the simple case of a homogeneous 310 

landscape (Fig. 2A) comprising vulnerable cropped fields only. Simulation starts in winter with a null 311 

aboveground population and a larval density at equilibrium, hence 120 individuals per square meter. 312 

Until the emergence of adults, the only process at stake is larval mortality, which reduces the 313 

belowground population to about 90 individuals per square meter. Adults emerge in early spring 314 

producing an increase in the aboveground population density with a peak value determined by (i) the 315 



density of mature larvae at the onset of the emergence period, (ii) climate and (iii) adult life expectancy. 316 

It is followed by a decrease resulting from the constant mortality rate A. About 65 days after the last 317 

emergence, the aboveground population becomes extinct. This pattern repeats over the years. 318 

After adults have emerged, they disperse and lay eggs, thus refilling the belowground population 319 

compartment that increases, reaches a maximum at the end of the oviposition period, and then decreases 320 

due to larval mortality. After a few years a stationary pattern occurs. 321 

 322 

3.2. Wireworm dynamics with grassland in field history 323 

The effect of a grassland in field history (Fig. 2B) on the wireworm population density is illustrated on 324 

Fig. 5 for two pest life cycle durations: 2 years (short life cycle) and 4 years (long life cycle). Both 325 

dynamics exhibit the periodic behaviour described in the previous section (§3.1). At time 0, the field is 326 

converted to grassland, which translates into an important rise in habitat quality resulting in a subsequent 327 

wireworm population increase. 328 

In Fig. 5, we compare the dynamics of a short life cycle population and a long life cycle population. The 329 

amplitudes of intra-annual oscillations are more important for the former. On one hand, the proportion 330 

of the belowground population that emerges as adults is larger in the case of a short life cycle (about 331 

half the population emerges each year) than in that of a long life cycle (about a quarter emerges each 332 

year). Given that oviposition rate is independent from life-cycle duration in our model, the increase in 333 

wireworm density is greater for short cycle species. On the other hand, once the aboveground population 334 

has vanished, high larval density results in a strong mortality until the next laying period. 335 

In summary, short life cycle wireworms react more promptly to changes in habitat quality, thereby 336 

leading to higher infestation levels in temporary grasslands. Conversely, after grassland conversion into 337 

crop, wireworm density reaches more quickly the new current carrying capacity KC in the case of short 338 

cycle species. Note that these conclusions stem from our model hypotheses, where a difference in life 339 

cycle duration results in different mortality rates (land-use carrying capacities and oviposition rates 340 

being unchanged). 341 

 342 

3.3. Wireworm dynamics in a field with a newly set-up grassland in its neighbourhood 343 

We simulated the effect of the conversion of half of a crop field into permanent grassland (Fig. 2C). Fig. 344 

6 shows the wireworm density along a direction orthogonal to the grassland/crop field border (40 meters 345 

on both sides), over a period of 10 years, and for a range of values of the diffusion coefficient D, the 346 

maximal advection speed Vmax and the perceptual range . Diffusion tends to homogenise wireworm 347 

densities in space, while advection entails population movements from low towards high carrying 348 

capacity places.   349 

In Fig. 6A, only diffusion applies. Wireworm densities increase from KC (120 ind/m²) towards KG (2000 350 

ind/m²) along the 10 years on the side covered with grassland. Adult click beetle diffusion results in an 351 



increase in wireworm density in the adjacent cropped field with an intensity that vanishes away from 352 

the ecotone. 353 

In the next six panels (Figs. 6B-G), diffusion and advection have antagonistic effects. Advection fosters 354 

population displacements from low towards high quality habitat, whereas diffusion promotes a 355 

homogenisation of the densities. 356 

During the transient period before reaching equilibrium density in the grassland, the set-up of a grassland 357 

can have opposite effects on wireworm density in crop, depending on the advection strength (Figs. 6B-358 

D). Indeed, a high maximal advection speed Vmax results in a reduction of wireworm density inside the 359 

cropped field due to advection effect exceeding diffusion effect. For low maximal advection speed, the 360 

opposite occurs. Thus, 5 years after grassland set-up, wireworm density can be greater (Fig. 6B), similar 361 

(Fig. 6C) or lower (Fig. 6D) than the initial density in the crop. Changes in perceptual range have similar 362 

effects than changes in maximal advection speed (Figs. 6B-G). 363 

A mechanistic effect of the population redistribution must be noted here. Unlike advection, diffusion is 364 

an inherently density-dependent process. As population increases within the grassland, so does the 365 

diffusion intensity, mechanically. The neighbourhood effect of grassland is therefore changing 366 

throughout the season, as diffusion takes more control over the redistribution. 367 

 368 

3.4. Effect of spatiotemporal distribution of grasslands on wireworm densities  369 

We considered two dynamic landscape contexts 1 and 2 spanning over four years (Fig. 3). Landscape 370 

composition over time (i.e. the proportions of cropped field and grassland over the duration of the virtual 371 

experiment) remains unchanged, while spatial configurations differ. The land cover within plot A is 372 

identical over the years in 1 and 2, however the mean wireworm densities differ all along the four-373 

year period. Final densities deviate by 10%. Indeed, in 1, wireworm density increases in plot B the first 374 

two years due to a favourable habitat (grassland). Subsequently, when plot A turns into grassland 375 

whereas plot B switches to cropped field, both advection and diffusion induce aboveground population 376 

movements from plot B to plot A, resulting in a meaningful wireworm increase once oviposition has 377 

been completed, that combines with the expansion of wireworm density due to the high carrying capacity 378 

associated with grassland. In 2, simultaneous evolution of densities in plots A and B do not favour any 379 

population flows.   380 

 381 

4. Discussion 382 

 383 

4.1. Model relevance and novelty 384 

Insect pests inflict severe damage to agricultural crops, in spite of the intense use of agrochemical inputs. 385 

In fragmented and changing environment, as most agricultural landscapes are, the movement of insect 386 

pests has a strong influence on their abundance and spatiotemporal distribution, hence the extent of the 387 



inflicted crop damage (Mazzi and Dorn, 2012). Thus, understanding dispersal mechanisms may help 388 

design effective pest management strategies. Here, we developed a spatially explicit mechanistic model 389 

to describe the population dynamics of insect pests inflicting crop damage while developing in soil, and 390 

spreading across the landscape as adults. We accounted for both aboveground and belowground 391 

population dynamics. To date, few studies have considered the link between both compartments though 392 

many species of ecological and economic importance have both above- and belowground life cycle 393 

stages (Benefer et al., 2012). Therefore, our developments could serve in investigations dealing with a 394 

wide variety of soil-dwelling insect pests. 395 

Combined with spatial representations of dynamic landscape contexts, our population dynamics model 396 

enables the investigation of the spatial redistribution of populations over time given the spatial 397 

distribution of habitat quality and species life-history traits (dispersal ability, life cycle duration, etc.). 398 

We thus provide an appropriate framework to study how the arrangement of grassy landscape elements 399 

in space and time can mitigate crop infestation by soil-dwelling pests. 400 

 401 

4.2. The dynamics of grassland as reservoirs or sources of pests 402 

In our results, we highlight (§3.2) the influence of the legacy of previous land uses on the current 403 

wireworm infestation level. This is well documented in plant sciences, e.g. regarding soil 404 

suppressiveness (Bailey et al., 2009; Postma et al., 2010), effects of biofumigation (Matthiessen and 405 

Kirkegaard, 2006), etc. Here we show that given its habitat favourability, the presence of a grassland in 406 

plot history entails the build-up of wireworm populations, and acts as a reservoir (Fig. 5). Interestingly, 407 

species life-history traits mitigate the changes in population density in response to land use change. 408 

Indeed, short life cycle species may be more responsive to land use change (Fig. 5). 409 

At a broader spatial scale (landscape context, §3.3), the wireworm population response to the presence 410 

of a grassland in an adjacent field relies on the pest life-traits (dispersal ability, life cycle duration), 411 

habitat quality, and habitat patch dynamics. Local habitat quality governs the wireworm density in the 412 

field core, whereas density in borders results from the diffusion and advection of click beetles between 413 

habitats over time (Fig. 6). When advection is high, the inner edge of a low-quality habitat is temporary 414 

depleted at the expense of the adjacent higher quality habitat. However, diffusion (which tends to 415 

homogenise density) usually plays the opposite effect. Hence, wireworm density is ruled by the trade-416 

off between these two antagonistic dispersal mechanisms. In a grassland where wireworm density has 417 

reached the local carrying capacity, diffusion at the ecotones will be high and sustain the colonisation 418 

of neighbouring crops. Therefore, the presence of a temporary versus permanent grassland in the 419 

neighbourhood may significantly change the outcome in terms of spatial distribution of wireworm 420 

populations. If advection is strong and grasslands highly favourable, temporary grasslands may act as 421 

pseudo-sinks, while permanent grasslands act as sources for click beetle populations. This clearly 422 

emphasizes the relevance of managing grassland regimes. 423 

 424 



4.3. Implications in terms of pest management strategies 425 

Our study outlines the complex link between pest colonisation patterns within the agricultural mosaic 426 

and the entanglement of habitats. The results presented in §3.4 (also Fig. 3 and Fig. 7) clearly support 427 

that the spatiotemporal arrangement of grasslands opens avenues for the management of soil-dwelling 428 

insect pests. As stated in previous studies, habitat manipulation can be successfully implemented to 429 

enhance the effectiveness of natural enemies (Landis et al., 2000), and mitigate the impacts of invasive 430 

arthropod pests (Jonsson et al., 2010). Yet here we emphasize the importance of the dynamics of land 431 

use spatial configurations. For example, click beetle spillover between a grassland and a neighbouring 432 

cropped field depends on the population replenishment in the favourable habitat: a recently installed 433 

grassland may act as a pseudo-sink, whereas a permanent grassland may act as a source. This finding 434 

evidences that depending on the spatiotemporal dynamics of habitat distribution, the role of a particular 435 

landscape element can switch from favourable to detrimental to pest population in fields. Consequently, 436 

pest management strategies relying on habitat spatial connectivity also call for the consideration of 437 

spatiotemporal continuity (or discontinuity). 438 

Our modelling framework helps apprehending the effects of agroecological infrastructures (green veins, 439 

grassy strips, etc.) on pest communities. Grassy landscape elements are well known reservoirs for 440 

beneficial organisms (Blackshaw et al., 2017) but can also increase wireworm pressure. Our modelling 441 

approach is precious to identify the appropriate grassland management regime that provides the best 442 

trade-off to balance wireworm damage and a bundle of ecosystem services such as sustaining natural 443 

pest control, prevention against soil erosion, etc. (Hermann et al., 2013). Regarding the broad spatial 444 

and temporal scales related to the functioning of agroecosystems, frameworks enabling virtual 445 

experiments provide a relevant, if not unique, way to anticipate the complex trade-off between beneficial 446 

and detrimental effects associated with the adoption of agri-environmental schemes.  447 

 448 

4.4. Limitations and perspectives 449 

The reaction-diffusion-advection model we conceived to explore the main mechanisms at stake in the 450 

colonisation of vulnerable crops at the landscape scale is parsimonious. Model parameters were set 451 

based on a comprehensive review of literature dealing with the biology and the ecology of click beetles 452 

and their larvae. Nevertheless, knowledge gaps complicated the parameterisation step. For instance, 453 

knowledge on click beetle dispersal is still rudimentary, and though it has been evidenced that they can 454 

move across adjacent plots (Schallhart et al., 2009), some unpublished research suggest they may 455 

disperse on a much wider scale than currently mentioned (Lorenzo Furlan, personal communication). 456 

Dispersal patterns between uncultivated areas (grasslands) and cropped fields remain insufficiently 457 

documented. Moreover, in our approach we used the carrying capacity as a proxy for habitat quality. 458 

However, most experimental data we found date back to the first half of the twentieth century (Roebuck, 459 

1924; Roebuck et al., 1947; Ross et al., 1947; Salt and Hollick, 1949, 1944) and limit to grasslands. 460 

Their current accuracy can be questioned given changes in habitat properties and possibly in pest life-461 



history traits that have occurred since then. Further experiments to assess the carrying capacities 462 

associated with the main land uses occurring in the current agricultural landscapes are definitely 463 

required. 464 

Furthermore, we did not explicitly consider crop management practices within our modelling 465 

framework, but rather treated them as an implicit component of the habitat quality associated with each 466 

land use. However, there is clear evidence that farming practices influence insect abundance (see for 467 

example Puech et al., 2014 and Kladivko, 2001). Soil cultivation directly affects the number and size of 468 

wireworms (Salt and Hollick, 1949). Interestingly, Furlan et al. (2020) demonstrated that an accurate 469 

ploughing timing of meadows, when rotation includes meadows, provides an efficient management 470 

tactic to prevent soil-pest damage to maize crops. Thus, combining virtuous cropping practices and a 471 

relevant strategy for the spatiotemporal arrangement of grasslands derived from our modelling 472 

framework may provide a holistic integrated pest management approach, as well as a credible alternative 473 

to chemical pesticides, in accordance with the principles of the European Directive 2009/128/EC on the 474 

sustainable use of pesticides (Barzman et al., 2015; Lorenzo Furlan et al., 2017). 475 

Finally, in our study we examined various situations dealing with the presence of grassland in plot 476 

history (legacy effect) or neighbourhood (neighbourhood effect), as well as in dynamic landscape 477 

contexts (spatiotemporal effect). Such analytic landscape contexts allowed to address the role of 478 

grassland as sources of soil-dwelling pests, yet clearly do not reflect the real complexity of the 479 

agricultural mosaic, that stems from stakeholder decisions under agronomical, economical, socio-480 

technical constraints. The representation of agroecosystems is still a research issue (Poggi et al., 2018b), 481 

and some model representations encompass more or less explicitly these constraints (Bareille et al., 482 

2020; Martel et al., 2017; Ricci et al., 2018). Hence, a next research avenue consists in the exploration 483 

of suppressive patterns in simplified but realistic agricultural landscapes, generated under agronomic 484 

constraints at the farm or landscape scales. 485 

 486 

5. Conclusion 487 

 488 

Using mechanistic modelling, we illustrated how species life-history traits interact with spatiotemporal 489 

arrangement of habitats in agricultural landscape to shape pest abundances in vulnerable crops. Through 490 

neighbouring effect, legacy effect or their interaction, the distribution of grassy elements across the 491 

landscape has discernible effects on wireworm abundance in crops. We showed here that such endeavour 492 

is knowledge-hungry as it must be informed by some critical pest traits, but also a measurable alternative 493 

to a chemically driven crop protection. Our modelling framework allowed us to explore the ecosystem 494 

service of crop pest reduction that grasslands could provide through their ecological role on legacy effect 495 

and movements of pest populations (pseudo-sink vs source). Obviously, other ecosystem services 496 

provided by grasslands, such as biological control conservation, could be integrated in a common 497 



framework offering exciting perspectives for the management of the trade-offs in a bundle of services 498 

and to identify situations or practices that allow switching from antagonism to synergy. 499 
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Table 1: List of variables and parameters. 723 

Name Description  Unit Nominal 

value 

Range (see Suppl. Mat. 2) 

 Emergence rate of adults d-1 † - 

D Diffusion coefficient m²/d 72 - 

 Oviposition rate d-1 1.6 [1.2, 3.5] 

c Advection coefficient along the maturity 

dimension 

y-1 0.25 [1/6, 1/2] 

A Aboveground mortality rate d-1 0.04 [1/35, 1/15] 

B Belowground mortality rate d-1  *  

KG Grassland carrying capacity m-2 2000 [800, 3000] 

KC Crop carrying capacity m-2 120  

 Exponent associated with belowground 

density-dependent mortality  

- 0.2 [0.05, 0.4] 

 Perception radius m 10 - 

Vmax Maximum advection speed m/d 10 - 

d: day and y: year. 724 

† See Supplementary Material 1.  725 

* Assessed using an optimisation procedure (see §2.2). 726 

   727 



 728 

 729 

Fig. 1: Conceptual diagram of the modelling framework.   730 



 731 

 732 

Fig. 2: Three landscape contexts investigated along the study. Initial conditions correspond to stationary 733 

populations within a long-term homogeneous cropped field; initial wireworm densities correspond to 734 

the crop carrying capacity. (A) Homogeneous area studied over 2 years. (B) Five-year unmanaged area 735 

(grassland) followed by a five-year cultivated area (cropped field). (C) Heterogeneous area resulting 736 

from the conversion of a cropped field into two neighbouring plots, one cultivated and the other 737 

unmanaged. 738 

   739 



 740 

 741 

 742 

Fig. 3: Dynamic landscapes 1 and 2 exhibiting the same composition in terms of landscape features 743 

over the period under study but contrasted spatial configurations.  744 

 745 

   746 



 747 

 748 

Fig. 4: Above- and belowground population dynamics in a homogeneous landscape context (as depicted 749 

in Fig. 2A). Simulations obtained by setting model parameters to their nominal values reported in Table 750 

1.  751 

 752 

 753 

 754 

 755 

 756 

Fig. 5: Wireworm population dynamics in a landscape with grassland in the plot history (as depicted in 757 

Fig. 2B). The orange and blue lines are associated with two different values of the life cycle duration (2 758 

and 4 years respectively); other model parameters set to their nominal values. The dashed step curve 759 

indicates current values of the carrying capacity (KG=2000 ind/m² and KC=120 ind/m²). 760 

 761 

 762 

 763 



 764 

 765 

Fig. 6: Wireworm density along the spatial dimension orthogonal to the boundary between the cropped 766 

field (right side) and the newly set up grassland (left side) (40 meters on both sides of the ecotone, as 767 

depicted in Fig. 2C), over a period of 10 years, and for different values of the diffusion coefficient D, 768 

the maximal advection speed Vmax and the perception radius . Values assigned to carrying capacities 769 

are KG=2000 ind/m² and KC=120 ind/m² for the grassland and the cropped field respectively. 770 

  771 



 772 

 773 

Fig. 7: Mean wireworm densities in plot A of dynamic landscape contexts 1 and 2 (as depicted in 774 

Fig. 3) over four years. Simulations obtained by setting model parameters to their nominal values 775 

reported in Table 1.    776 



Appendix 1: Emergence rate of click beetles 777 

 778 

In our study, we modelled adult emergence as a continuous process spanning over a period governed by 779 

the cumulative degree-days. We formalised the emergence rate as a temperature-dependent functional 780 

response. Let’s note 781 

𝜃௖௨௠ሺ𝑡ሻ ൌ ෍ ሺ𝜃ሺ𝑗ሻ െ 𝜃௕௔௦௘ሻ
௧

௝ୀ଴
ఏሺ௝ሻவఏ್ೌೞ೐

                                   ሺ𝐴1.1ሻ 782 

where cum stands for the cumulated number of degree-days starting arbitrarily in January, base is the 783 

temperature below which degree-days are not accounted for, set to 10°C in accordance with findings 784 

from Furlan (2004, 1998) who showed that no larval development happened below this threshold value. 785 

Denoting start (resp. end) the minimal (resp. maximal) number of cumulated degree-days above (resp. 786 

below) which emergence starts (resp. ends with the entire pool of mature larvae having emerged), the 787 

emergence rate writes 788 

𝜏ሺ𝑡ሻ ൌ

⎩
⎪
⎨

⎪
⎧     0                          𝑖𝑓 𝜃௖௨௠ሺ𝑡ሻ ൏ 𝜃௦௧௔௥௧                              

ቆ
𝜃௖௨௠ሺ𝑡ሻ െ 𝜃௦௧௔௥௧

𝜃௘௡ௗ െ 𝜃௦௧௔௥௧
ቇ

ఈ

     𝑖𝑓 𝜃௦௧௔௥௧ ൑ 𝜃௖௨௠ሺ𝑡ሻ ൑ 𝜃௘௡ௗ       ሺ𝐴1.2ሻ          

0                          𝑖𝑓 𝜃௖௨௠ሺ𝑡ሻ ൐ 𝜃௘௡ௗ                              

 789 

with  set empirically to 2.5 to ensure that the peak of emergence occurs in the middle of the emergence 790 

window. As the effect of temperature was not in the scope of this study, we averaged the daily 791 

temperatures in Le Rheu (Brittany, France) over a 10-year period (2008 to 2017), and we chose the 792 

values of start and end that corresponded to late April and beginning of June (April 23rd and June 8th), 793 

in accordance with published studies (Landl, 2010; Parker & Howard, 2001; Sufyan, 2007; Villeneuve 794 

& Latour, 2011). The functional response for the emergence rate and the proportion of emerged adults 795 

along time (applied to our temperature dataset) are illustrated on Fig. A1. 796 

 797 

 798 



Fig. A1: (A) Functional response for the emergence rate: emergence rate vs cumulative degree-days. 799 

(B) Proportion of emerged adults along time. 800 

 801 
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Appendix 2: Sensitivity analysis 813 

 814 

We carried out a Morris sensitivity analysis (Morris, 1991) to study the effect of model parameters on 815 

the speed at which the wireworm population density converges toward the carrying capacity of a given 816 

land cover. For this purpose, we considered the situation where a cultivated crop (with carrying capacity 817 

KC) is converted to grassland (with carrying capacity KG). Initially, the wireworm density equals the 818 

crop carrying capacity KC. We applied our population dynamics model (§2.1) and defined as an output 819 

metric the time required for the wireworm density to reach the mean density between KC and KG. 820 

Among the model parameters, five were suspected of influencing the process of interest: the oviposition 821 

rate (), the advection coefficient along the maturity dimension (c), the aboveground mortality rate (A), 822 

the grassland carrying capacity (KG), and the exponent associated with the belowground density-823 

dependent mortality (). Ranges of value assigned to these parameters are reported in Table 1 (last 824 

column). Other parameters were set to their nominal value (Table 1), except B that was assessed using 825 

a preliminary optimisation procedure as mentioned in §2.2.  826 

Figure A2 shows the standard deviation () versus the absolute mean (*) of the elementary effects 827 

associated with each of the five parameters investigated. Parameters KG and A have a very low overall 828 

influence on the output metric. On the contrary, the parameter c has a significant linear influence, while 829 

parameters  and  exhibit a non-linear influence, possibly with interactions, on the output metric. 830 

Thus, despite scarce knowledge on this parameter  (driving the strength of the legacy effect), it has a 831 

significant effect on the output metric we investigated, and its estimation would probably deserve further 832 

attention. 833 

 834 

 835 

Fig. A2: Standard deviation () vs. absolute means (*) of elementary effects obtained from the Morris 836 

method. Elementary effects of five parameters on the time required to reach the mean density between 837 

KC and KG. The oblique grey line corresponds to *= 2SEM (Standard Error of the Mean SEM = /√r, 838 

number of trajectories r = 200). 839 
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