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11 ABSTRACT

12 Accurate assessment of plant symptoms plays a key role for measuring the impact of pathogens 

13 during plant-pathogen interaction. Common bacterial blight caused by Xanthomonas phaseoli pv. 

14 phaseoli and Xanthomonas citri pv. fuscans (Xpp-Xcf) is a major threat to common bean. The 

15 pathogenicity of these bacteria is variable among strains, and depends mainly on a type III secretion 

16 system and associated type III effectors such as transcription activator-like effectors (TALEs). 

17 Because the impact of a single gene is often small and difficult to detect, a discriminating 

18 methodology is required to distinguish the slight phenotype changes induced during the progression 

19 of the disease. Here, we compared two different inoculation and symptom assessment methods for 

20 their ability to distinguish two tal mutants from their corresponding wild-type strains. Interestingly, 

21 rub-inoculation of the first leaves combined with symptom assessment by machine learning-based 

22 imaging allowed significant distinction between wild-type and mutant strains. By contrast, dip-

23 inoculation of first trifoliate leaves combined with chlorophyll fluorescence imaging did not 

24 differentiate the strains. Furthermore, the new method developed here led to the miniaturization of 

25 pathogenicity tests and significant time savings.

26

27 INTRODUCTION

28 Monitoring the impact of pathogens on plants is essential for improving knowledge on plant-

29 pathogen interactions and developing effective management practices (Bock et al., 2010). 

30 Assessing plant symptoms is a key step in detecting plant resistance or evaluating the virulence of 

31 a pathogen. Pathogenicity tests must give homogeneous and reproducible results and use an 

32 objective method of symptom assessment to be interpretable (Nutter et al., 2006). Visual symptom 

33 assessment is a simple and easily accessible method used in many studies of plant-pathogens 

34 interactions. However, it lacks objectivity, accuracy and precision (Bock et al., 2008; Poland and 
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35 Nelson, 2010). The recent development of different optical techniques has allowed to automate the 

36 process of symptom assessment while ensuring a standardization of results (Mahlein, 2016). As 

37 such, computational image analysis provides a more objective, accurate, reproducible and 

38 quantitative measure of disease severity than visual assessment.

39 Common bacterial blight of bean (CBB) is a significant bacterial disease on common bean, with 

40 yield losses of more than 40% under favorable conditions (Belete and Bastas, 2017; Rodríguez De 

41 Luque and Creamer, 2014). Symptoms can occur on leaves, stems, pods and seeds (Zaumeyer and 

42 Thomas, 1957). Leaf symptoms initially appear as water-soaked spots, which enlarge and can 

43 coalesce with adjacent lesions (Goodwin and Sopher, 1994). Foliar lesions are often surrounded by 

44 a chlorotic halo and evolve in necrosis, possibly resulting in the death of the entire leaf and partial 

45 defoliation of the plant. Water-soaked spots and necrosis can also be observed on pods and seeds. 

46 These symptoms evolve in dark red-brown lesions that are generally circular and slightly sunken 

47 (Vidaver, 1993).

48 To phenotype CBB symptoms, different organs (seeds, pods, first leaves, trifoliate leaves, stems) 

49 can be inoculated in different ways. In particular, leaves can be inoculated by dipping, spraying, 

50 rubbing, multiple needles or infiltration (Aggour et al., 1989; Popovic et al., 2012). Traditionally, 

51 symptoms of CBB were assessed by visual evaluation using different rating scales based on a visual 

52 estimation of the percentage of infected leaf area (Aggour et al., 1989; Cafati and Saettler, 1980; 

53 Opio et al., 1993; Pastor-Corrales et al., 1981; Zapata, 2006). In 2012, it was shown that assessment 

54 of CBB symptoms by RGB image analysis was more reproducible and more objective than a rating 

55 scale, and presented a high differentiation power between plant genotypes (Xie et al., 2012). 

56 Another method was developed based on leaf inoculation by dipping combined with chlorophyll 

57 fluorescence imaging (Rousseau et al., 2013). This assessment method was successfully used to 
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58 discriminate different degrees of resistance in common bean against Xpp-Xcf (Foucher et al., 2020; 

59 Rousseau et al., 2013).

60 CBB is caused by Xanthomonas phaseoli pv. phaseoli (Xpp) and Xanthomonas citri pv. fuscans 

61 (Xcf) (Chen et al., 2021; Constantin et al., 2016). Pathological convergence of these two pathovars 

62 is probably due to extensive horizontal gene transfers, which led to genomic regions sharing 100% 

63 nucleotide identity between Xpp and Xcf (Aritua et al., 2015; Chen et al., 2018). These homologies 

64 allowed the development of specific molecular tools for detecting both Xpp and Xcf on seed lots 

65 (Audy et al., 1994; de Paiva et al., 2020; Grimault et al., 2014). Different Xpp-Xcf strains may have 

66 different levels of pathogenicity regardless of whether they belong to one or the other pathovars 

67 (Mkandawire et al., 2004). In addition, common bean resistance to CBB is mediated by numerous 

68 quantitative trait loci (Monteiro et al., 2020; Singh and Miklas, 2015; Yu et al., 2012). Differences 

69 in aggressiveness combined with the presence of quantitative resistances lead to a wide range of 

70 possible disease intensities (Duncan et al., 2011). Thus, the interaction between common bean and 

71 Xpp-Xcf must be finely phenotyped, in order to detect these variations as accurately as possible. 

72 The pathogenicity of Xanthomonas is partly mediated by a type III secretion system (T3SS) and 

73 associated type III effectors (T3Es) (An et al., 2019; Büttner and Bonas, 2010). Among T3Es, 

74 Xanthomonas bacteria possess transcription activator-like effectors (TALEs). TALEs are injected 

75 inside the plant cell via the T3SS and migrate to the nucleus where they are able to induce targeted 

76 genes of the plant, often leading to disease enhancement (Boch and Bonas, 2010). Nine different 

77 TALE-encoding genes and alleles were discovered in Xpp-Xcf (Ruh et al., 2017). Xcf strain 6165R 

78 possesses only one tal gene named tal22B while Xpp strain 6546R bears two tal genes named tal19I 

79 and tal18H.

80 In this study, we generated tal mutant strains 6165RΔtal22B and 6546RΔtal18H. Then, the 

81 pathogenicity of strains 6165R and 6546R were compared to each other and to their corresponding 
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82 tal mutants. For this, we used two different tests to phenotype CBB symptoms in controlled 

83 conditions. The first method corresponded to the method developed by Rousseau et al. (2013), 

84 consisting of dipping the first trifoliate leaf in bacterial suspension followed by chlorophyll 

85 fluorescence imaging (CFI). The second method corresponded to a new pathogenicity test 

86 consisting of rub-inoculation of the first leaves and evaluation of symptoms by machine learning-

87 trained imaging (MLI). MLI was performed on RGB images using the ilastik software (Berg et al., 

88 2019), which was recently exploited in biomedical and environmental studies as well as plant 

89 symptoms assessment (Ilett et al., 2020; Ojeda-Martinez et al., 2020; Pike et al., 2020; Rashid et 

90 al., 2019).

91

92 MATERIALS AND METHODS 

93 Bacterial strains and growth conditions

94 Xanthomonas phaseoli pv. phaseoli strain 6546R and Xanthomonas citri pv. fuscans strain 6165R 

95 are rifamycin-resistant derivatives of strains CFBP6546 and CFBP6165 respectively. Strains were 

96 grown at 28 °C for 48 h on trypticase soy agar (TSA) medium (17.0 g.L− 1 pancreatic digest of 

97 casein; 3.0 g.L− 1 enzymatic digest of soy bean; 5.0 g.L− 1 NaCl; 2.5 g.L− 1 K2HPO4; 2.5 g.L− 1 

98 glucose; 15 g.L− 1 agar), then at 28 °C for 24 h on TSA10 (a 1/10 dilution of TSA, except for agar 

99 maintained at 15 g.L− 1) to obtain fresh bacterial cultures. Media were supplemented by rifamycin 

100 (50 mg. L− 1) for selection.

101

102 Mutagenesis of tal genes and validation of mutants

103 Plasmid pK18mob::sacB (Schäfer et al., 1994) was used to generate marker-free deletion mutants 

104 of tal22B in strain 6165R or tal18H in strain 6546R. First, specific primers (Table S1) were 

105 designed according to whole genome data (Ruh et al., 2017), to amplify the flanking regions of 
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106 each tal gene by PCR using the PHusion® High Fidelity DNA polymerase (Finnzymes,Waltham, 

107 MA, USA) following the manufacturer’s instructions. For each tal gene, PCR products were 

108 purified using the Wizard® SV Gel and PCR Clean-Up System (Promega), then cloned in tandem 

109 into the suicide plasmid pK18mob::sacB using digestion by BsaI enzyme and ligation by T4 DNA 

110 ligase. Recombinant plasmids were electrostransferred into competent 6165R or 6546R strains. 

111 Primary transformants were immediately grown in liquid MOKA medium (yeast extract 4 g.L− 1; 

112 casamino acids 8 g.L− 1; KH2PO4 2 g.L− 1; MgSO4.7H2O 0.3 g.L− 1) for two hours at 28°C without 

113 selection, then plated on MOKA agar medium supplemented with kanamycin (50 µg.mL− 1). Kanr 

114 colonies were then plated on MOKA medium supplemented with kanamycin and sucrose at 10% 

115 for selecting secondary recombinants. Resulting colonies were tested for deletion of tal genes by 

116 DNA extraction followed by PCR and sequencing.

117 Two additional analyses were done to validate tal mutants. First, to confirm that TALE proteins 

118 corresponding to deleted genes were not produced, Western Blot assays were performed. Briefly, 

119 total proteins were extracted from 0.4 mL of overnight bacterial suspensions and migrated by 

120 Sodium Dodecyl Sulfate – Polyacrylamid Gel Electrophoresis (SDS-PAGE), then immunoblotted 

121 with a primary anti-TALE antibody. The anti-TALE antibody was raised in rabbit against an E. 

122 coli-produced designer TALE protein composed of the N-terminal domain of a TALE protein plus 

123 six repeats (I. Fuentes and L. Noël, unpublished). TALE backbone was derived from the hax3 tal 

124 gene sequence from X. campestris pv. campestris strain Xca5 as described (Streubel et al., 2012). 

125 Second, to check the influence of deletion on the growth capacity of the mutants, bacterial growth 

126 control was performed. For this, liquid cultures at initial concentration of 1 × 106 CFU.mL-1 were 

127 prepared in TS10 broth, and the absorbance (λ = 600nm) was monitored every 8 or 30 min using a 

128 Labsystem Bioscreen C system, over an incubation period of 35 h at 28°C under shaking at 200 

129 rpm. Each strain was controlled with technical triplicates and biological duplicates.
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130

131 Genome sequencing, assembly and annotation

132 Genomic DNA of strains 6546RΔtal18H and 6165RΔtal22B was extracted with the Wizard® 

133 Genomic DNA Purification Kit (Promega, Madison, USA) according to the manufacturer’s 

134 recommendations. PacBio Single Molecule Real Time (SMRT) sequencing was performed at the 

135 Icahn School of Medicine at Mount Sinai (New York, USA) using one SMRT cell per strain to 

136 achieve ~100× coverage. De novo assembling was performed using the following procedure. Reads 

137 were filtered using PreAssembler Filter v1 of the SMRT Portal version 2.3 (Pacific Biosciences of 

138 California, Inc.), with Minimum Subread Length 500, Minimum Polymerase Read Quality 0.80 

139 and Minimum Polymerase Read Length 100. Assembly was performed using Canu v1.5 (Koren et 

140 al., 2017). Circularisation was done using Berokka v0.2.3 (https://github.com/tseemann/berokka). 

141 Sequence start was fixed using the Fixstart command of Circlator v1.5.1 (Hunt et al., 2015). 

142 Polishing was performed using the variantCaller tool 

143 (https://github.com/PacificBiosciences/GenomicConsensus) with --algorithm best. Whole genome 

144 sequences of wild-type strains 6165R and 6546R (Briand et al., submitted) were used for 

145 comparative analyses. Annotation of whole genome assemblies was performed with Prokka 

146 v1.14.6 (Seemann, 2014). Average nucleotide identity analyses between genomes of wild-type and 

147 TALE-deleted strains were performed with pyANI (Pritchard et al., 2016). 

148

149 Plant materials and growing conditions

150 Seeds of the susceptible common bean cultivar JaloEEP558 were obtained from the Center for 

151 Tropical Agriculture (CIAT, Colombia), available under accession number G9603 

152 (http://genebank.ciat.cgiar.org/genebank/main.do). Plants were sown in plastic pots (7 × 7 × 8 cm) 

153 containing pre-wetted soil. The sowings were covered with a P17 veil for four days for 
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154 homogenized germination. Plants were grown in a growth chamber at 23°C/20°C (day/night) with 

155 a relative humidity of 80% and a photoperiod of 16 hours. Plants were watered every two days with 

156 water for the first seven days, then with a nutrient solution (7.5-5-15 N-P-K) for up to 15 days, and 

157 with a richer nutrient solution (15-10-30 N-P-K) until the end of the trial. The day before 

158 inoculation, relative humidity and temperature were increased at 95% and 28°C/25°C (day/night) 

159 to provide adequate conditions for infection. On the third day after inoculation, humidity was 

160 reduced to 80% until the end of the assay. 

161

162 Pathogenicity assays

163 For both methods, bacterial suspensions were calibrated at 1×107 CFU.mL− 1 in sterile distilled 

164 water, and symptoms were monitored two weeks after inoculation. Each pathogenicity test was 

165 performed twice independently.

166 For phenotyping by chlorophyll fluorescence imaging (CFI), inoculations were performed at stage 

167 V1 (first trifoliolate leaf unfolded) by dipping the first trifoliate leaf for 30 s into bacterial 

168 suspensions or water as control. Symptom development was monitored by CFI at the PHENOTIC 

169 Seeds and Plants platform of the IRHS in Angers (France) as described in Rousseau et al. (2013). 

170 Briefly, inoculated leaflets were collected and set in the dark for 30 min. Then, for each leaflet, a 

171 first picture was taken under a modulated flash of light to measure basal fluorescence (F0) of the 

172 tissues, followed by another picture taken under a high flash of saturating light to measure the 

173 maximum fluorescence emission level (Fm). For each pixel, the maximum quantum yield of 

174 photosystem II photochemistry (Fv/Fm = (Fm-F0)/Fm) was calculated using Phenoplant 

175 (http://www.phenoplant.org) to discriminate diseased and healthy leaflet areas (Rousseau et al., 

176 2015). For each plant, results correspond to the mean disease area percentage of the three leaflets 

177 coming from the same inoculated leaf.
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178 For phenotyping by machine learning-trained imaging (MLI), inoculations were performed by rub-

179 inoculation on the two first leaves of eight-day-old plants. Rub-inoculation consisted of one 

180 passage of a gloved finger dipped in bacterial suspension or water as control. For each leaf, two 

181 inoculations were done on the limb on each side of the central vein. To evaluate the symptoms, 

182 detached leaves were put on a LED light table of 1,600 lumen and images were taken with a fixed-

183 height digital camera (Canon EOS 700D, Canon Inc., Taiwan) and saved as JPEG files. Each image 

184 comprised the two first leaves of a same plant, each rubbed twice, thus representing four technical 

185 replicates. Machine learning-based pixel segmentation was performed using the Pixel 

186 Classification workflow from ilastik v1.3.3 (Berg et al., 2019). Training was performed using 14 

187 features including color/intensity, edge and texture, on 37 images representative of the whole 

188 dataset in terms of leaf colour and intensity of symptoms (training file available upon request). 

189 Three labels were used for discriminating the background, leaf tissues and symptoms. Symptoms 

190 corresponded to both chlorosis and necrotic tissues, as assessed by expert eye analysis. After the 

191 training, batch processing of all images was performed. Pixel quantification was done using FiJi 

192 (Schindelin et al., 2012). Briefly, labels were retrieved using the “Image threshold” option. Then, 

193 the “Analyse particle” command was used to quantify pixels corresponding to either the 

194 background or the symptoms. Total leaf areas were retrieved by subtracting background pixels 

195 from the total image pixels.

196

197 RESULTS 

198 Phenotyping of strains with different degrees of pathogenicity

199 For both inoculation methods, more severe symptoms appeared after inoculation of strain 6546R 

200 than strain 6165R (Fig. 1). However, statistical distinction between strains was superior using rub-

201 inoculation with MLI (p < 0.01) than dip-inoculation with CFI (p > 0.05). The differences observed 
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202 between both methods could be explained by the inoculation method itself, which appeared as 

203 playing a major role in the homogeneity of the symptoms. Indeed, dip inoculation of trifoliates led 

204 to symptoms developing mainly from the margins, being unevenly distributed over the leaflets and 

205 evolving into more or less extended patches hardly distinguishable between leaves inoculated by 

206 one strain or the other (Fig. 1b and c). Moreover, the occurrence of symptoms was stochastic as 

207 symptoms did not appear evenly on all leaflets of the same leaf, meaning that the variability 

208 between leaflets was even higher than between individuals in some cases (not shown). In contrast, 

209 symptoms were clearly distinguishable between both strains after rub inoculation (Fig. 1e and f). 

210 For strain 6165R, symptoms appeared as tiny spots evenly distributed across the whole inoculated 

211 area, likely caused by bacteria entering through openings corresponding to trichomes damaged by 

212 the rubbing. For strain 6546R, most of the spots coalesced, leading to large symptomatic areas. In 

213 all, rub-inoculation produced more homogeneous and reproducible symptoms than dip-inoculation.

214 To test if CFI could be used for assessing symptoms on rub-inoculated leaves, we compared CFI 

215 and MLI after rub-inoculation of first leaves with strain 6165R (Supp. Fig. 1). While chlorotic areas 

216 were accurately retrieved with both image acquisition methods, CFI failed to detect the tiny spots 

217 corresponding to early symptoms. Moreover, CFI tended to take into account pixels outside the 

218 inoculated area, thus not corresponding to symptoms caused by the bacteria (e.g. the petiole), which 

219 was not the case for MLI. Therefore, MLI was more suited than CFI to detect symptoms on rub-

220 inoculated plants.

221

222 Description of tal mutants

223 To further evaluate the discriminating power of each symptom assessment method, we constructed 

224 two deletion mutants of tal genes named 6546RΔtal18H and 6165RΔtal22B. Both 6546RΔtal18H 

225 and 6165RΔtal22B were unable to produce TAL18H or TAL22B proteins, respectively (Fig. 2a 
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226 and b). PacBio SMRT sequencing allowed us to compare the complete genome sequences of the 

227 mutants to their corresponding wild-type strains. In both cases, an average nucleotide identity of 

228 more than 99.99% was found between the wild-type strains and their mutants, indicating that no 

229 major modification occurred in the mutant strains. 

230 As described before, both tal22B and tal18H are located on plasmids (Ruh et al., 2017). In strain 

231 6165RΔtal22B, the deletion of tal22B was restricted to a clean gap of 3,915 bp in plasmid A 

232 corresponding to tal22B from start to stop (Fig. 2d). In strain 6546R, plasmid C comprised a gap 

233 encompassing tal18H plus 2137 bp (Fig. 2c) including three genes encoding short (60 to 107 

234 aminoacid-long) hypothetical proteins (not shown). For this strain, directed mutagenesis failed 

235 until we tested more than 350 clones for tal18H deletion. The deletion was flanked by identical 

236 ISXac2 insertion sequences (IS) suggesting that it occurred through recombination between IS (Fig. 

237 2c). Therefore, 6546RΔtal18H corresponded to a variant of strain 6546R presenting a spontaneous 

238 deletion of tal18H on plasmid C. For both strains, the deletion had no major effect on the bacterial 

239 growth of the mutants compared to the wild-type strains in TS10 medium (Fig. 2e and f).

240

241 Virulence evaluation of wild-type and mutant strains

242 With both methods, the mutant strains led to less symptoms than the corresponding wild-type 

243 strains, suggesting that tal18H and tal22B were involved in the pathogenicity of strains 6546R and 

244 6165R, respectively (Fig. 3 and 4). However, rub-inoculation with MLI significantly discriminated 

245 the two mutants from corresponding wild-type strains (p < 0.05), while dip-inoculation with CFI 

246 did not (p > 0.1). Interestingly, the accuracy of rub-inoculation followed by MLI was high enough 

247 to discriminate between strains presenting very low aggressiveness. Indeed, only 2% or 1% of the 

248 total leaf pixels corresponded to symptoms after inoculation with 6165R or 6165RΔtal22B, 

249 respectively, which further demonstrated the discriminative power of this method.
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250

251 Phenotyping of symptoms after leaf dipping

252 Although training was done on images of rub-inoculated primary leaves, we tested if MLI could 

253 discriminate symptoms on trifoliate leaves after inoculation by dipping. For this, we performed 

254 both CFI and MLI on images taken from the same dip-inoculated plants (one image per leaflet). 

255 We compared the CFI and MLI results to expert symptom assessment by eye using the reference 

256 scale of Opio et al. (1993). Globally, MLI was able to detect most of the CBB symptoms retrieved 

257 by eye, while CFI detected comparatively less visible symptoms than the two other methods (Supp. 

258 Fig. 2). In accordance with this, correlation of visual assessment with MLI was stronger than with 

259 CFI (Fig. 5). The high linear correlation found between visual assessment and MLI (R2 > 0.96) 

260 demonstrates that the MLI training developed in this study is a good estimator for symptom 

261 quantification on dip-inoculated leaves.

262

263 DISCUSSION

264 Our study highlights that rub-inoculation on first leaves combined with MLI represents a fast, 

265 simple and efficient way to quantify the fine symptom differences existing between strains 

266 differing by only one or few genes. The two tal mutants constructed here induced less symptoms 

267 than the wild-type strains, suggesting that TAL18H and TAL22B participate in the pathogenicity 

268 of strains 6546R and 6165R, respectively. However, cloning of tal genes and complementation of 

269 these strains is needed to confirm the role of these TALEs, especially because genes other than tal 

270 were missing in strain 6546RΔtal18H. 

271 In addition to the gain of discriminating power, the rub-inoculation method presented several other 

272 advantageous characteristics compared to dip-inoculation. First, the time required to carry out a 

273 trial was reduced (Table 1). Indeed, the use of first leaves instead of first trifoliates saved one week 
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274 of plant growing time, leading to a 22-day trial instead of a month. Moreover, the growth of first 

275 leaves was often more homogeneous than that of first trifoliate leaves. Consequently, for a same 

276 number of plants sown, more can be used for a pathogenicity test on first leaves than first trifoliates. 

277 This can be an important factor for trials under controlled greenhouse conditions, where the space 

278 available is often limited. In addition, the average inoculation time per plant (including all time 

279 spent in the growth chamber) was three times longer for dip-inoculation than rub-inoculation 

280 (Table 1), as it required more handling time and a 30-second immersion of the leaf in the bacterial 

281 suspension. Furthermore, the volume of inoculum required was 20 times less for rub-inoculation 

282 than dip-inoculation. Therefore, less material was needed for rub-inoculation and the waste was 

283 easier to process. Finally, MLI requires simple materials such as a digital camera, a tripod and a 

284 LED table, which can be afforded quite easily. On the other hand, CFI requires a complete 

285 fluorescence imaging system that is much more expensive to purchase and maintain. The shooting 

286 of plants (including handling time) was also more than three time longer for chlorophyll 

287 fluorescence than RGB picture taking. This was mainly due to CFI requiring the leaves to be kept 

288 in the dark for 30 minutes prior shooting, then perform the shootings leaflet by leaflet in a dark 

289 room, while RGB pictures were done with both first leaves together.

290 Although the method developed here presents many advantages for symptom quantification, it is 

291 important to note that chlorophyll fluorescence imaging is able to detect non-visible symptoms 

292 resulting from a disruption of photosynthesis during the early stages of infection and has a potential 

293 to discriminate between strains differing by a single gene (Méline et al., 2020). The future 

294 development of pipelines combining different phenotyping methods will undoubtedly contribute 

295 to analyze more in-depth the complex contributions of single or multiple genes to the virulence of 

296 plant pathogens.

297
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477 SUPPORTING INFORMATION LEGENDS

478 Table S1. List of primers used for tal mutagenesis

479 Supplemental Figure 1: Comparison between MLI and CFI after rub-inoculation of first leaves. 

480 First leaves of bean plants were inoculated by rubbing with strain CFBP6165R. Images were taken 

481 14 days after inoculation. Each line shows the two first leaves of a same plant. Pixels corresponding 

482 to estimated symptoms are in red. MLI: machine learning-based imagery; CFI: chlorophyll 

483 fluorescence imagery.

484 Supplemental Figure 2: Comparison between MLI and CFI after dip-inoculation of trifoliate 

485 leaves. First trifoliate leaves were inoculated with strains CFBP6165R, 6165RDtal22B, 

486 CFBP6546R, 6546RDtal18H or distilled water as control. Images were taken 12 days after 

487 inoculation. For each condition, 15 leaflets coming from five different plants were analysed. (a) 

488 Symptomatic areas measured using chlorophyll fluorescence imagery (CFI) or machine learning-

489 based imagery (MLI). (b) Images corresponding to the leaflets with symptoms closest to the mean 
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490 disease area as estimated by MLI in (a). Pixels corresponding to estimated symptoms are in red. 

491

492 FIGURE LEGENDS

493 Figure 1. Strain 6546R is more aggressive than strain 6165R. Images were taken at 14 days post 

494 inoculation, and evaluation of symptoms was done by chlorophyll fluorescence imaging on 

495 trifoliate leaves inoculated by dipping (a, b, c), or by machine learning-based imaging on first 

496 leaves inoculated by rubbing (d, e, f). Experiments were repeated twice independently, with five 

497 plants per assay, and concatenated (n=10 plants). Box-plots represent the percentage of 

498 symptomatic area per plant and p-values were calculated by Mann-Whitney test. The images 

499 correspond to leaves or leaflets presenting the closest symptom percentages to the median values. 

500 The symptoms detected appear in red on the surface of the leaf in white. White bars correspond to 

501 1 centimeter.

502 Figure 2. Description of tal mutant strains 6546RΔtal18H (a, c, e) and 6165RΔtal22B (b, d, f). 

503 Western blot analysis of TALEs (a, b). Graphical map of plasmids from tal mutant strains using 

504 GView (Petkau et al., 2010) with corresponding wild-type strains as references (c, d). The deletion 

505 observed in plasmid C from 6546RΔtal18H corresponds to tal18H while the deletion in plasmid A 

506 from 6165RΔtal22B corresponds to tal22B (d). Bacterial growth dynamics of wild-type and mutant 

507 strains (e, f). Growth assays were done as biological duplicates with technical triplicates. Bars 

508 represent standard deviation.

509 Figure 3. Pathogenicity of 6546RΔtal18H compared to wild-type strain 6546R. Images were taken 

510 at 14 days post inoculation. Evaluation of symptoms was done by chlorophyll fluorescence imaging 

511 on trifoliate leaves inoculated by dipping (a, b, c), or by machine learning-based imaging on first 

512 leaves inoculated by rubbing (d, e, f). Experiments were repeated twice independently, with eight 

513 plants per assay, and concatenated (n=16 plants). Box-plots represent the percentage of 
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514 symptomatic area per plant and p-values were calculated by Mann-Whitney test. The images 

515 correspond to leaves or leaflets presenting the closest symptom percentages to the median values. 

516 The symptoms detected appear in red on the surface of the leaf in white. White bars correspond to 

517 1 centimeter.

518 Figure 4. Pathogenicity of 6165RΔtal22B compared to wild-type strain 6165R. Images were taken 

519 at 14 days post inoculation. Evaluation of symptoms was done by chlorophyll fluorescence imaging 

520 on trifoliate leaves inoculated by dipping (a, b, c), or by machine learning-based imaging on first 

521 leaves inoculated by rubbing (d, e, f). Experiments were repeated twice independently, with five 

522 plants per assay, and concatenated (n=10 plants). Box-plots represent the percentage of 

523 symptomatic area per plant and p-values were calculated by Mann-Whitney test. The images 

524 correspond to leaves or leaflets presenting the closest symptom percentages to the median values. 

525 The symptoms detected appear in red on the surface of the leaf in white. White bars correspond to 

526 1 centimeter.

527 Figure 5. Correlation between different symptom quantification methods. Trifoliate leaves were 

528 inoculated by dipping with either H2O or strains 6165R, 6165RΔtal22B, 6546R and 

529 6546RΔtal18H. For each leaflet, both chlorophyll fluorescence and RGB images were taken at 14 

530 days post inoculation. Expert visual assessment of symptom percentage was performed on RGB 

531 images using the scale by Opio et al. (1993) and results were compared to chlorophyll fluorescence 

532 imaging (CFI, a) or machine learning-based imaging (MLI, b). The regression line formula and 

533 correlation coefficient (R2) were calculated with Excel, using 15 leaflets per condition (75 in total).
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Table 1. Characteristics of pathogenicity tests.

Trifoliate dipping + CFIa First leaf rubbing + MLIb

Discriminating power Poor Good 
Detection of non-visible symptoms Yes No 
Plant growing time 15 days 8 days
Symptom assessment date 14 days post inoculation 14 days post inoculation
Duration of a trial 29 days 22 days
Plants with homogeneous leaves 84% 93%
Average time of inoculation per plant 150 seconds 43 seconds
Volume per inoculum 500 mL 25 mL
Equipment PSI Open FluorCam FC 800-O 

or equivalent
Light table and camera

Average image taking time per plant 327 seconds 45 seconds
Image analysis software Phenoplant Ilastik
aCFI: chlorophyll fluorescence imaging
bMLI: machine learning-based imaging
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Figure 1. Strain 6546R is more aggressive than strain 6165R. Images were taken at 14 days post 
inoculation, and Evaluation of symptoms was done by chlorophyll fluorescence imaging on trifoliate leaves 
inoculated by dipping (a, b, c), or by machine learning-based imaging on first leaves inoculated by rubbing 

(d, e, f). Experiments were repeated twice independently, with five plants per assay, and concatenated 
(n=10 plants). Box-plots represent the percentage of symptomatic area per plant and p-values were 
calculated by Mann-Whitney test. The images correspond to leaves or leaflets presenting the closest 

symptom percentages to the median values. The symptoms detected appear in red on the surface of the leaf 
in white. White bars correspond to 1 centimeter. 
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Figure 2. Description of tal mutant strains 6546RΔtal18H (a, c, e) and 6165RΔtal22B (b, d, f). Western blot 
analysis of TALEs (a, b). Graphical map of plasmids from tal mutant strains using GView (Petkau et al., 

2010) with corresponding wild-type strains as references (c, d). The deletion observed in plasmid C from 
6546RΔtal18H corresponds to tal18H while the deletion in plasmid A from 6165RΔtal22B corresponds to 

tal22B (d). Bacterial growth dynamics of wild-type and mutant strains (e, f). Growth assays were done as 
biological duplicates with technical triplicates. Bars represent standard deviation. 
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Figure 3. Pathogenicity of 6546RΔtal18H compared to wild-type strain 6546R. Images were taken at 14 days 
post inoculation. Evaluation of symptoms was done by chlorophyll fluorescence imaging on trifoliate leaves 
inoculated by dipping (a, b, c), or by machine learning-based imaging on first leaves inoculated by rubbing 
(d, e, f). Experiments were repeated twice independently, with eight plants per assay, and concatenated 

(n=16 plants). Box-plots represent the percentage of symptomatic area per plant and p-values were 
calculated by Mann-Whitney test. The images correspond to leaves or leaflets presenting the closest 

symptom percentages to the median values. The symptoms detected appear in red on the surface of the leaf 
in white. White bars correspond to 1 centimeter. 
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Figure 4. Pathogenicity of 6165RΔtal22B compared to wild-type strain 6165R. Images were taken at 14 days 
post inoculation. Evaluation of symptoms was done by chlorophyll fluorescence imaging on trifoliate leaves 
inoculated by dipping (a, b, c), or by machine learning-based imaging on first leaves inoculated by rubbing 

(d, e, f). Experiments were repeated twice independently, with five plants per assay, and concatenated 
(n=10 plants). Box-plots represent the percentage of symptomatic area per plant and p-values were 
calculated by Mann-Whitney test. The images correspond to leaves or leaflets presenting the closest 

symptom percentages to the median values. The symptoms detected appear in red on the surface of the leaf 
in white. White bars correspond to 1 centimeter. 
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Figure 5. Correlation between different symptom quantification methods. Trifoliate leaves were inoculated by 
dipping with either H2O or strains 6165R, 6165RΔtal22B, 6546R and 6546RΔtal18H. For each leaflet, both 
chlorophyll fluorescence and RGB images were taken at 14 days post inoculation. Expert visual assessment 

of symptom percentage was performed on RGB images using the scale by Opio et al. (1993) and results 
were compared to chlorophyll fluorescence imaging (CFI, a) or machine learning-based imaging (MLI, b). 

The regression line formula and correlation coefficient (R2) were calculated with Excel, using 15 leaflets per 
condition (75 in total). 
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Supplemental Figure 2: Comparison between MLI and CFI after dip-inoculation of first

trifoliate leaves. First trifoliate leaves were inoculated with strains CFBP6165R,

6165RDtal22B, CFBP6546R, 6546RDtal18H or distilled water as control. Images were taken

12 days after inoculation. For each condition, 15 leaflets coming from five different plants

were analysed. (a) Symptomatic areas measured using chlorophyll fluorescence imagery

(CFI) or machine learning-based imagery (MLI). (b) Images corresponding to the leaflets

with symptoms closest to the mean disease area as estimated by MLI in (a). Pixels

corresponding to estimated symptoms are in red.
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