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Hypothesis

The value of the maximal weight of a pendant drop formed at the end of a syringe needle is lower than the intensity of the corresponding capillary force. The balance of the external forces applied to the maximal pendant drop must be completed by the overpressure generated by the piston of the syringe. Inside the drop, the Laplace pressure corresponds to this overpressure.

Experiments

Pendant drops are made with three liquids and five different needle diameters. The influence of Laplace pressure on the maximal weight is experimentally highlighted by modulating the

Introduction

Pendant drops at the end of a syringe capillary, are easily made objects that have a regularity of size and shape, offering the possibility to use them in multiple applications. They can be used as micromanipulators to capture small objects by capillary interaction thanks to the formation of a liquid-bridge at their apex [START_REF] Obata | A scheme for micro-manipulation based on capillary force[END_REF][START_REF] Lambert | A study of capillary forces as a gripping principle[END_REF]. These same capillary interactions are also used to structure assemblies of colloidal or granular particles. Liquid marbles are other applications that implement these surface interactions with colloids [START_REF] Aussillous | Liquid marbles[END_REF][START_REF] Bormashenko | New insights into liquid marbles[END_REF][START_REF] Mchale | Liquid marbles: topical context within soft matter and recent progress[END_REF]. Drops are also used for agglomeration or granulation unit operations [START_REF] Emady | Granule formation mechanisms and morphology from single drop impact on powder beds[END_REF][START_REF] Rossetti | Rupture energy and wetting behavior of pendular liquid bridges in relation to the spherical agglomeration process[END_REF]. The drop properties (in particular their size and volume), which interact with powder to associate them into agglomerated structures [START_REF] Hapgood | Drop penetration into porous powder beds[END_REF][START_REF] Bellocq | Impact of fluidized bed granulation on structure and functional properties of the agglomerates based on the durum wheat semolina[END_REF], require a precise control in order to best master the associative processes [START_REF] Iveson | Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review[END_REF][START_REF] Mandato | Liquids' atomization with two different nozzles: Modelling of the effects of some processing and formulation conditions by dimensional analysis[END_REF]. Because the small drop volume is circumscribed by surface tension, it can also be directly used as a millireactor where various chemical reactions can be performed [START_REF] Abdelaziz | Green chemistry and nanofabrication in a levitated Leidenfrost drop[END_REF][START_REF] El-Nagar | Platinum nanostructure tailoring for fuel cell applications using levitated water droplets as green chemical reactors[END_REF].

The pendant drop of a colloidal suspension or a macromolecular solution constitutes a reactional volume in which a "stoichiometric forcing" can occur as the volume decreases by evaporation [START_REF] Boissiere | Aerosol Route to Functional Nanostructured Inorganic and Hybrid Porous Materials[END_REF]. In spray-drying, specific reactions are achievable and the control of the structural mechanisms to which they lead, requires the mastering of the evolution of the drop volume which can be studied in a pendant configuration [START_REF] Sadek | Shape, shell, and vacuole formation during the drying of a single concentrated whey protein droplet[END_REF]. Pendant drops are also employed to determine the surface tension of a liquid [START_REF] Gunde | Measurement of the surface and interfacial tension from maximum volume of a pendant drop[END_REF][START_REF] Morita | Influence of drop volume on surface tension evaluated using the pendant drop method[END_REF][START_REF] Berry | Measurement of surface and interfacial tension using pendant drop tensiometry[END_REF], from the analysis of the shape of a pendant drop in equilibrium and matching its contouring curve to a mathematical solution of the Young-Laplace equation. This inverse method allows to identify the surface tension value which represents the fitting factor.

There is a second method, called the drop weight method [START_REF] Yildirim | Analysis of the drop weight method[END_REF], which is based on the comparison between the weight of a falling drop (measured) and its theoretical value estimated from Tate's law [START_REF] Tate | On the magnitude of a drop of liquid formed under different circumstances[END_REF]. The surface tension is the adjustment parameter that allows to fit these two values. Tate's law relates the maximum weight of a pendant drop to the capillary force that holds the drop in equilibrium at the end of a syringe needle, just before it falls off.

Since only part of the pendant drop falls off, leaving a residual fraction on the needle, it is necessary to correct the weight of an "ideal drop" given by Tate's law by a correction factor.

Among the most widely used works for this purpose, that of Harkins and Brown [START_REF] Harkins | The determination of surface tension and the weight of falling drops: The surface tension of water and benzene by the capillary height method[END_REF] proposes values of the correction factor tabulated on a chart. But the exact calculation of the maximum weight just before its detachment would ensure even greater precision.

The aim of this work is to determine the maximal weight of a pendant drop at the end of a syringe needle by experimental investigations and theorical developments. We propose to define a consistent expression of the maximum weight of a pendant drop. No particular application of this result will be favored. Experimental results related to the measurement of the maximal weight of drops performed with three liquids of different known surface tensions and five different needle sizes, are presented. These experiments are carried out at small Bond numbers of the needle in order to achieve the same drop shape (piriform). We observe that the weight of the pendant drop is not equal to the capillary force which ensures the drop/needle connection. This gap is attributed to the lack of a force in the balance of external forces applied to the drop. In order to reveal the importance of this missing force, mechanical stress tests are performed by adding a calibrated glass bead at the apex of the drop, without changing the intensity of the capillary force. Beads of increasing mass induce a variation of the mean curvature directly associated with a variation of the maximal weight of the drops following a master curve. The repercussion of these variations on the Laplace pressure generates a force which completes the force balance. To demonstrate mathematically this important point, a physical reasoning, based on the fluid mechanics, is developed. These results allow us to introduce the Laplace pressure in the mathematical model which predicts the maximal weight of a pendant drop.

Experimental procedure

Prototype description

A prototype, presented in Figure 1, was designed to study the formation of a pendant drop at the end of a capillary until its maximal volume, just before its detachment. It consists of a PPT syringe composed of a body of an internal section Ω & = 61 mm 2 , a piston and a tapered tip allowing the adaptation of a straight cut steel needle (Doseurope) of section Ω ( . Five different needle sizes were used. Their external diameter is: 0.23, 0.5, 0.8, 1.26 and 1.80 mm and their internal diameter ( is respectively: 0.11, 0.26, 0.51, 0.84 and 1.37 mm. In order to ensure a constant flow rate of liquid ( ~ 0.097 to 0.387 mm 3 .s -1 ), a syringe pump driven by a stepper motor (MicroLYNX, M-1410-0.75D) is used to provide a vertical displacement according to . This flow rate gives a velocity intensity in the needle comprised between 0.26 and 5 mm.s -1 . For each test, the laminar flow inside the needle is achieved with a Reynolds number comprised between 18×10 -3 (Triacetin with the largest needle) and 5.6×10 -1 (water with the smallest needle). The evolution of the pendant drop formation until its maximal volume is filmed using a USB microscope (DinoLite®) placed in front of the needle with an acquisition rate of 25 images.sec -1 . A LED backlight system is also used to enhance the contrast.

The prototype is placed on an insulated support to avoid any vibration and is isolated in a plexiglass chamber to minimize any contamination. All the tests are performed in quintuples, at a controlled temperature of 25.0 ± 0.2 °C, and a relative humidity of 40 ± 16 %. The total duration of formation of a drop is between 1 and 2 minutes which allows to neglect the evaporation phenomena [START_REF] Portuguez | Evolution of a Water Pendant Droplet: Effect of Temperature and Relative Humidity[END_REF].

Characteristics of liquids

Pure water, Tween® 80 (Sigma-Aldrich) diluted at 2×10 Bond number of the drop: = -! " ⁄ . < 1 (Fig. 2) and the Bond number of the needle:

= - 2! " ⁄ . <
, ensure a piriform geometry of the drops.

Description of the mechanical test

This mechanical test, adapted from the works of Li et al. [START_REF] Li | Direct visualization of particle attachment to a pendant drop[END_REF] and Neeson et al. [START_REF] Neeson | Compound pendant drop tensiometry for interfacial tension measurement at zero bond number[END_REF], consists in loading with a calibrated particle of known mass a pendant drop obtained from a needle of a given diameter. Then the maximal weight of the loaded drop just before its detachment is measured. In order to highlight the role of Laplace pressure on the weight of a pendant drop, this test allows to modulate the main curvatures of the drop (see video).

The aim of this test is to achieve conditions that ensure invariance of the capillary force at the drop/needle wetted perimeter while modulating Laplace pressure within the drop. When the drop reaches a stage of development corresponding to about 30% of its maximum volume, the glass bead is then approached to its apex. At its contact, the drop exerts a capillary traction that captures the bead and keeps it in suspension in a position that respects the global axisymmetry (Fig. 2). The hydrodynamic flow conditions in the syringe allow a quasistationary evolution of the growth of the loaded drop. The shape of the drop, and in particular its main curvatures, adapt to the resultant external forces applied to it [START_REF] Neeson | Compound pendant drop tensiometry for interfacial tension measurement at zero bond number[END_REF]. Six spherical glass beads (density of 2.501 g.cm -3 ) of different masses (0.62, 1.48, 2.55, 4.52, 8.38 and 12.03 mg) are used. The Bond numbers of the glass beads are less than 1, which ensures their capillary capture by the pendant drop.

The operating conditions are identical to those used during the formation of a single pendant drop and the evolution of the loaded drops is also captured by the USB microscope (Fig. 1).

Determination of drop characteristics

An image analysis method was developed to determine the maximum pendant drop volume and the two radii of curvature. Technical details are given in the Supplementary Materials file.

Maximal volume. Each drop is filmed (from 1 to 2 min at 25 fps) during its entire development and all the images are extracted (from 1500 to 3000) then analyzed to precisely determine the maximum volume of each pendant drop. The linear progression of the volume of the drop, due to the constant flow, makes it possible to locate the maximal volume reached with an error less than 0.01 %. The maximum weight is then calculated from the determination of the volume.

Radius of curvature, main curvature and Laplace pressure. The image, corresponding to the limit stage of drop development, is used to determine the curvature radii. The curvature radius

, is determined at the level of the maximum diameter in the horizontal plane. The curvature radius , is located in the vertical plane, and corresponds to the radius of the circle being superimposed with the drop curve [START_REF] Berry | Measurement of surface and interfacial tension using pendant drop tensiometry[END_REF]. The main curvature of the drop is then deduced from these measurements according to its standard definition in 3D space, 2 = 2 3 + 2 5 . The Laplace pressure in the drop is then calculated according to its definition [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF]:

∆ = 2 .
This procedure is used for single and loaded drops.

Results and discussion

Maximal weight of a pendant drop

Pendant drops are formed at the end of needle of a syringe using a stationary flow rate of the liquid, Q, ensured by a force applied on the piston. The maximal mass reached by the drop, , is calculated from the measurement of the volume. The laminar regime ensures the stability of the drop formation and we verify that neither the value of the flow nor the height of liquid ( ) between the surface of the piston and the lowest part of needle, does not change the maximal mass of the drop (see Supplementary Materials file). This point implies that the hydrostatic pressure does not affect the maximal weight of a pendant drop generated by a syringe.

In these conditions, the balance of the external forces applied to a pendant drop takes into account only three actions (the weight, the capillary force exerted at the triple line and inertia [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF]), and can be written as follow:

+ = 7 8 9 : ≈ 0 8 (1)
where the inertial force is negligible when a steady state is imposed (a constant flow rate implies that the barycentric velocity of the drop inertia center, , remains constant). The projection of this vectorial equation on the horizontal axis cancels out, while on the vertical axis we find that the weight must be compensated by the projection of the capillary force on . Assuming that the intensity of the capillary force is equal to [START_REF] De Gennes | Capillarity and wetting phenomena: drops, bubbles, pearls, waves[END_REF]: = = γcos -., for each tested condition, the wetting angle at the drop connection on the outer perimeter of the needle is checked. It is always close to 0° and does not impact the value of the capillary force, as already observed by Nazari et al. [START_REF] Nazari | Drop formation from a capillary tube: Comparison of different bulk fluid on Newtonian drops and formation of Newtonian and non-Newtonian drops in air using image processing[END_REF]. With this definition, the maximal weight of the pendant drop is given by:

= = (2) 
This expression is well known as the Tate's law [START_REF] Tate | On the magnitude of a drop of liquid formed under different circumstances[END_REF][START_REF] Wilkinson | Extended use of, and comments on, the drop-weight (drop-volume) technique for the determination of surface and interfacial tensions[END_REF], and the maximal weight defined by Equation ( 2) is classically called the weight of the "ideal drop". We remind that this maximum weight is the weight of a pendant drop still attached to its needle and not the weight of a detached drop. By plotting the measurements of the maximum drop weight as a function of the corresponding capillary force for each tested case, it can be clearly observed in Figure 3a that Equation ( 2) is not verified. The capillary force is systematically higher than the weight, and this gap is about 35.0% ±1.2% on average. Surprising as it may seem, we are not aware of any experimental data in the scientific literature on the weight of pendant drops. All the numerous works deal with detached drops with all the precautions on the validity of Tate's law. Lee et al. [START_REF] Lee | A critical review: Surface and interfacial tension measurement by the drop weight method[END_REF] pointed out that the force balance used to define the weight of the "ideal drop" does not include a compressive force in the upper plane of the drop. This balance needs to be redefined [START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF][START_REF] Kumar | On the validity of force balance models for predicting gravity-induced detachment of pendant drops and bubbles[END_REF]. Therefore, such a gap implies to consider again the balance of external efforts applied to a pendant drop [START_REF] Kumar | On the validity of force balance models for predicting gravity-induced detachment of pendant drops and bubbles[END_REF] taking into account the repercussion of the force increment applied on the piston, , called the Laplace force, on the pendant drop. A drop generated by a syringe is only developed by the action of a force increment on the piston. This force is oriented in the same direction as the weight and is transmitted until the top surface of the drop: = ( /4, via an overpressure throughout the liquid column. We can show that this overpressure corresponds to the Laplace pressure in the pendant drop. The expression of the external force balance becomes:

+ + ≈ 0 8 (3) 
Under all these hypotheses and by introducing the definition of the Laplace pressure in the external force balance exerted on the pendant drop, Equation (3) can be written as:

= = -Δ = ( /4 (4) 
This equation involves the internal ( , and external diameters of the needle. From

Laplace's pressure measurements, we verify in Figure 3b that the maximal weight of a pendant drop is then well described by Equation (3).

We propose in the following section an experiment at the drop level in order to highlight the role of the Laplace pressure and the trend with which it acts on the maximal weight drop. The implication of Laplace pressure in the balance of external forces applied to a pendant drop has already been suggested by Garandet et al. [START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF]. However, our approach highlights the noncontribution of hydrostatic pressure, contrary to the equation presented by Garandet et al. [START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF]. We also provide an explanation of the origin of this involved Laplace force and a justification by establishing a model under well-identified hypotheses.

Drop loading to highlight the Laplace pressure

The drop keeps held to the needle by the capillary force at its triple line which equilibrates the weight added to the force applied on the piston transmitted to the drop via the pressure in the liquid column. The test consists of keeping the capillary force constant (constant needle diameter and constant surface tension of the liquid) and varying the drop weight by distributing it between the liquid and a glass bead placed at the apex. Whatever its weight, the presence of a glass bead does not modify the intensity of the capillary force exerted on the pendant drop due to the fact that: (i) the wetted perimeter is unchanged, (ii) the contact angle value just before drop detachment has been systematically measured by image analysis (Fig. 4) and remains unchanged: ≈ 0°, and (iii) the liquid surface tension is not modified (the beads are carefully cleaned beforehand). Thus, the force balance (Eq. 4) is satisfied for the maximal total weight of the loaded drop: * = + * , where * is the liquid weight and is the glass bead weight. The weight of the bead has an impact on the shape of the drop (Fig. 4) and therefore on the Laplace pressure inside the drop. The drop loading with a glass bead constitutes therefore a reliable mechanical test with a fixed capillary force.

For each liquid, increasing loads with calibrated glass beads were realised for all pendant drops obtained with the five needles. Figures 5 presents an illustration of the maximal weight of the loaded pendant drops, as a function of the bead mass. Whatever the needle diameter and the liquid, the maximal weight of the loaded drops is not constant but decreases with the increase of the bead mass. In all cases, > * and so, the hypothesis of the capillary force, only opposed to the weight of the maximal pendant drop in the external force balance, is invalidated by the imposed conditions in these experiments.

This result indicates that at constant capillary force, if the maximum weight of a pendant drop decreases with increasing loads, then the Laplace pressure should increase to ensure the external force balance (Eq. 4).

In order to determine the Laplace pressure in the drop, the mean curvature is measured. For a given needle, as the particle mass increases, a loaded drop adopts an increasingly elongated shape (Fig. 4). The axisymmetry being satisfied, the quantitative analysis of the main curvatures (Fig. 2) shows that the increasing mechanical solicitation induces an elongation of the axial radius of curvature (vertical plane), , and simultaneously a narrowing of the radial radius of curvature (horizontal plane), (Fig. 6a). For each liquid and each needle, the radii of curvature of the loaded drops are resized by those of the unloaded drops made with the same needle: * / and * / . The antagonistic variation of the two radii of curvature systematically leads to an increase of the mean curvature defined by,: 2 * = 2 3 * + 2 5 * , for all loaded pendant drops.

Figure 6b shows that 2 * /2 ratio increases linearly with the solid mass fraction and is superimposed on a single curve for all experiments.

For each tested liquid and needle, experiments show that loading induces a decrease of the maximal weight of the pendant drops (Fig. 5) and an increase of the Laplace pressure (Fig. 7).

This point represents an experimental validation of the influence of the Laplace pressure in the weight of a pendant drop. The expression of the external force balance given by Equation

(3) seems more correct than Equation (1).

Because of the glass and liquid incompressibility, the volumes of unloaded drops and loaded drops are respectively given by: = /# , and * = * /# + /# . For all maximal drops (loaded and unloaded), a well-defined relationship is shown between the mean curvature and the volume of a maximal pendant drop (Fig. 8). This power law dependence between these geometrical quantities constitutes a master curve for the maximal pendant drops. When unloaded maximal pendant drops are quasi-spherical, which is the case for very small drops, ≈ ≈ , the curvature follows a power law with the volume:

2 ~ " 3 G .
Such a trend is experimentally obtained as shown in Figure 8a.

Regardless of the mechanical loading, for each liquid and according to the variation of the mean curvature, Laplace pressure decreases with the maximal weight of the pendant drops (Fig. 8b). The surface tension value discriminates Laplace pressure levels within drops made of different liquids. At equal density, the mixture of water and Tween 80 has a lower surface tension than water, so the Laplace pressure is lower.

Demonstration of maximal pendant drop weight expression

For a pendant drop generated at the end of a syringe needle, the external force balance (Eq. 3)

includes (Fig. 9): (i) the weight of the drop: , (ii) the force increment applied on the piston that propagates until the drop via the internal section of the needle (= ( /4): , and (iii) the capillary force at the wetted perimeter (here the outer perimeter of the needle): . The rigorous demonstration that the intensity of the force is related to the Laplace pressure is not so obvious. The intensity exerted on a pendant drop can be written as a function of the overpressure at the piston (Δ ) within the fluid at the end of the needle: = Δ = ( /4

(the force exerted on the piston equals: Δ Ω % ). The overpressure Δ can be calculated from the momentum balance of the flowing fluid between the piston and the end of the needle.

Assuming that the liquid is incompressible and the flow in a steady-state, Bernouilli's equation gives:

+ # --Δ . + # H 5 I J 5 = + # H 5 I KL 5 + Δ → (5)
with Δ , the displacement corresponding to the piston lowering, and respectively the pressures in the liquid at the piston interface and at the end of the needle, and Δ → the drop pressure between the piston and the end of the needle. During all the pendant drop formation, the ratio Δ / remains below 1 %. The term contributions related to the kinetic energy:

# /Ω % and: and ~10 Pa for all other conditions. Therefore, the viscous dissipation can be neglected compared to the other pressure values (~10 5 Pa). Under these considerations, the balance (Eq. 5) can be reduced to the hydrostatic part:

≈ + # (6) 
As the liquid was initially drawn into the syringe by the application of a vacuum, the condition of hydrostatic equilibrium that precedes the application of the overpressure to the piston can be written as: T = T + # , where T and T are the pressures at equilibrium after the entrance of the liquid. When the pendant drop is generated, the overpressure applied to the piston is given by: Δ = -T , and is transmitted to the end of the needle by: Δ = -T . The momentum balance (Eq. 6) leads to the conclusion that Δ ≈ Δ . In quasi-static conditions, the overpressure applied to the piston is transmitted to the drop. We find that hydrostatic pressure no longer plays a role on the drop weight, as experimentally verified (see Supplementary materials file).

For the studied configuration and the implemented process conditions, we verified that the stationary kinetics of the drop growth can be assimilated to a succession of equilibrium states (1.8×10 -2 ≤ ≤ 5.6×10 -1 ). Under this hypothesis of local quasi-static state, we consider that the expression of the overpressure within the drop can be given by the Laplace-Young relation. Consequently, Δ = Δ and so the "Laplace force" is given by: = Δ = ( /4.

Under all these hypotheses, the expression of the maximal weight of a pendant drop at the end of a syringe needle is consistent with Equation (4). By noting the "ideal drop" weight: V = = , equation (Eq. 7) provides a correction to Tate's law in the case of a pendant drop generated by a syringe, that is expressed as follows:

= V -Δ = ( /4 (7) 
Figure 3b shows the set of experimental results that validates Eq. 7. Figure 9 illustrates more intuitively the meaning of Eq. 7: the maximum weight of the pendant drop is equal to the capillary force exerted at the end of the needle, from which must be subtracted the force coming from the pressure increment applied to the piston and which imposes the value of the Laplace pressure within the drop. We provide a justification of Eq. 7 by establishing this model under well-identified hypotheses and mathematical developments and it differs from that one suggested by Garandet et al. [START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF].

Conclusion

This work contributes to the characterization of the weight of pendant drops. It experimentally and mathematically demonstrates the influence of the Laplace pressure on the maximum weight of a pendant drop. The involved physical phenomena in the equilibrium of a pendant drop are well known. However, the writing of the balance of the applied external forces to the pendant drop associated with the rigorous demonstrations of (i) the non-influence of the hydrostatic pressure (which appears in the equation of Garandet et al. [START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF]) and (ii) the equality of the overpressure exerted on the piston with the Laplace pressure, lead to an original equation (Eq. 7) providing a correction to the well-known Tate's law. Tate's law [START_REF] Tate | On the magnitude of a drop of liquid formed under different circumstances[END_REF],

based on the theoretical balance of applied external forces to a drop, is usually used to theoretically calculate this weight. Despite numerous criticisms [START_REF] Lee | A critical review: Surface and interfacial tension measurement by the drop weight method[END_REF][START_REF] Garandet | Considerations on the pendant drop method: a new look at Tate's law and Harkins' correction factor[END_REF][START_REF] Kumar | On the validity of force balance models for predicting gravity-induced detachment of pendant drops and bubbles[END_REF], to the best of our knowledge, no experimental measurements relating to the validation of Tate's law are reported in the scientific literature. Our work thus constitutes a new basis of reflection associated with experimental data in order to elucidate the factors that determine the weight of a pendant drop.

We have carried out the weight measurement of maximal pendant drops at the end of a syringe needle of different sizes for three liquids of contrasting capillary lengths. The results show a gap with the capillary force alone. These experimental results invalidate Tate's law under the employed conditions. This difference, highlighted with three liquids, is corrected by taking into account the exerted force on the piston in the applied external force balance to a pendant drop. This force can be related to the Laplace pressure within the drop. A mechanical loading experiment, with imposed capillary force adapted from the works of Li et al. [START_REF] Li | Direct visualization of particle attachment to a pendant drop[END_REF] and Neeson et al. [START_REF] Neeson | Compound pendant drop tensiometry for interfacial tension measurement at zero bond number[END_REF], is proposed in order to highlight the role of Laplace pressure in the mathematical expression of the maximal weight.

The principle of the mechanical loading with a bead attached to the drop apex, allows to modulate its main curvature and therefore the Laplace pressure. The results show that the mean curvature increases with the mechanical loading according to a master curve which is independent of the liquid characteristics and the needle size. If they are extended to a larger number of liquids, they would provide the basis for a remarkable universality. For each unloaded pendant drop, the curvature is a decreasing function of the drop volume. The relationship between Laplace pressure and the applied force on the piston is mathematically

established. An analytical expression of the maximal weight of a pendant drop is deduced.

The model, which considers the weight equal to the capillary force, is then revisited and replaced by a new model that explicitly incorporates the Laplace pressure. It is experimentally validated for each tested case.

Our approach can be extended to determine the liquid-solid adhesion work using centrifugal adhesion balance [START_REF] Tadmor | Solid-Liquid Work of Adhesion[END_REF][START_REF] Yadav | A Novel Technique Enables Quantifying the Molecular Interaction of Solvents with Biological Tissues[END_REF]. For this, one needs to replace the piston motion with the increase of the effective gravity performed with centrifugal device. It could be also used to define with high precision the volume that constitutes a pendant drop, especially in the context of downsizing technologies [START_REF] Basaran | Small-scale free surface flows with breakup: drop formation and emerging applications[END_REF]. The better knowledge of the maximum weight of a pendant drop could participate to the improvement of particle coating techniques as used for marbles [START_REF] Bormashenko | New insights into liquid marbles[END_REF][START_REF] Mchale | Liquid marbles: topical context within soft matter and recent progress[END_REF]. In the pharmaceutical field, this work could have repercussions on the precision of active drugs formulation distributed as drop (eye drops, perfusion, oral solution in drops…). 
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 5 take values of the order of magnitude of 10 -4 Pa at most and are therefore negligible. Due to the large gap between the internal sections of the syringe and the needle (Ω ( /Ω % ≈ 0.025 at most), the pressure drop in the body of the syringe is negligible compared to the one in the needle. The flow occurs in laminar regime so, we assume that the pressure drop is given by Hagen-Poiseuille formula:Δ → = OP K H QR KL S, with the viscosity of the liquid and the length of the needle. With these value ranges of the parameters, this pressure drop does not exceed ~10 2 Pa in the worst case (Triacetin with the smallest needle)
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 1 Figure 1. Scheme of the experimental prototype for pendant drop generation and contouring acquisition of the maximal pendant drop.
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 2 Figure 2. Illustration of the curvature radii measurement for a single pendant drop (left) and a loaded pendant drop with a glass bead (right).
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 3 Figure 3. (a) Capillary force as a function of the maximal drop weight (Eq. 2) for all experiments, (b) capillary force minored by the "Laplace force" versus maximal drop weight (Eq. 4) for all experiments. The order of the error magnitude is about 10 -4 mN. The dashed line is a guideline.

Figure 4 .

 4 Figure 4. Illustration of the drop loading with a glass bead at constant capillary force. The images correspond to pendant water drops just before their detachment and formed with a same needle of diameter ( = 1.80 mm) and an increasing load.
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 5 Figure 5. Maximal mass of loaded pendant drops as a function of bead mass for Water (circle), Tween 80 (square) and Triacetin (triangle). For each liquid only results, obtained for needles of external diameters equal to 1.26 (empty symbols) and 1.80 mm (blanck symbols), are shown. The dashed lines are a guideline. Full results are available in the Supplementary Materials file.
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 6 Figure 6. Variation of the loaded pendant drop curvatures as a function of the solid mass fraction for all experiments: (a) dimensionless curvature radii, (b) dimensionless mean curvature. The dashed lines are a guideline.
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 7 Figure 7. Laplace pressure within the maximal pendant drops as a function of the particle mass for (a) Water, (b) Tween 80, (c) Triacetin and different external diameters of the needle ( = 0.23, 0.50, 0.80, 1.26 and 1.80 mm). The order of the diameters is respected for each figure. The dashed lines are a guideline.
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 8 Figure 8. (a) Variation of the mean curvature as a function of the maximum pendant drop volume (R² = 0.9736) for all liquids and needles used (Log-Log representation), (b) Laplace pressure within the maximal pendant drops as a function of its weight.
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 9 Figure 9. Scheme of the external forces applied to a maximal pendant drop generated by a syringe.
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 1 Figure 1. Scheme of the experimental prototype for pendant drop generation and contouring acquisition of the maximal pendant drop.
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 2 Figure 2. Illustration of the curvature radii measurement for a single pendant drop (left) and a loaded pendant drop with a glass bead (right).
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 3 Figure 3. (a) Capillary force as a function of the maximal drop weight (Eq. 2) for all experiments, (b) capillary force minored by the "Laplace force" versus maximal drop weight (Eq. 4) for all experiments. The order of the error magnitude is about 10 -4 mN. The dashed line is a guideline.
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 45 Figure 4. Illustration of the drop loading with a glass bead at constant capillary force. The images correspond to pendant water drops just before their detachment and formed with a same needle of diameter ( = 1.80 mm) and an increasing load.
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 678 Figure 6. Variation of the loaded pendant drop curvatures as a function of the solid mass fraction for all experiments: (a) dimensionless curvature radii, (b) dimensionless mean curvature. The dashed lines are a guideline.

Figure 9 .

 9 Figure 9. Scheme of the external forces applied to a maximal pendant drop generated by a syringe.
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the volume predicted by Tate's law, varies according to a unique characteristic curve as a function of the capillary radius scaled by the cube root of the detached drop volume. What happens to this relationship if we now consider the real maximum weight of a pendant drop and not the one given by Tate's law? This last point, which constitutes our future work, will bring a new representation of the weight of the drops that fall from a capillary. 
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