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Abstract. 13 

 14 

Hypothesis 15 

The value of the maximal weight of a pendant drop formed at the end of a syringe needle is 16 

lower than the intensity of the corresponding capillary force. The balance of the external 17 

forces applied to the maximal pendant drop must be completed by the overpressure generated 18 

by the piston of the syringe. Inside the drop, the Laplace pressure corresponds to this 19 

overpressure. 20 

 21 

Experiments 22 

Pendant drops are made with three liquids and five different needle diameters. The influence 23 

of Laplace pressure on the maximal weight is experimentally highlighted by modulating the 24 
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 2

drop curvatures thanks to glass beads placed at the apex of the pendant drop. Their maximal 25 

weight and curvatures are measured by image analysis. 26 

 27 

Findings 28 

Experiments confirm that the balance of external forces must be completed by the force acting 29 

on the syringe piston. The overpressure on the piston has an impact on the drops via the 30 

Laplace pressure. A master curve between the mean curvature and the maximal volume of the 31 

pendant drops is observed. This result allows to validate an expression of the maximal weight 32 

which integrates the Laplace pressure. This work contributes to a better understanding of the 33 

maximal pendant drop properties and beyond, of the capillary phenomenon. 34 

 35 

Keywords. Pendant drop; Maximal drop weight; Capillary force; Laplace pressure; 36 

Curvature; Image analysis. 37 

 38 

Nomenclature 39 

 40 

Abbreviations 41 

 42 

b (glass) bead 43 

d drop 44 

e external 45 

eq equilibrium 46 

i internal 47 

l liquid 48 

n needle 49 
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p piston 50 

* loaded drop 51 

 52 

Symbols 53 

 54 

�� Bond number [-] 55 

2� mean curvature [m-1] 56 

�� Diameter of the needle [m] 57 

��	 force increment applied by the piston on the pendant drop [N] 58 

��
 capillary force at the wetted perimeter [N] 59 

� gravity acceleration [m.s-2] 60 

�� height of liquid colum in the syringe [m] 61 


� needle length [m] 62 

�� mass of a glass bead [kg] 63 

�� maximal mass of a pendant drop [kg] 64 

��
∗  maximal mass of a loaded pendant drop [kg] 65 

��
∗ mass of the liquid in a loaded pendant drop [kg] 66 

�� pressure at the end of the needle [Pa] 67 

�	 pressures at the piston [Pa] 68 

� feeding volume flow rate [m3.s-1] 69 

�� Reynolds number [-] 70 

�� radial curvature radius [m] 71 

�� axial curvature radius [m] 72 

��� barycentric velocity of the drop [m.s-1] 73 

�� maximal volume of a single pendant drop [m3] 74 
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��
∗ maximal volume of a loaded pendant drop [m3] 75 

�� vertical position from the bottom of the needle [m] 76 

� surface tension of the liquid [N.m-1] 77 

Δ�� Laplace pressure [Pa] 78 

Δ�� overpressure within the fluid at the end of the needle [Pa] 79 

Δ�	 overpressure at the piston [Pa] 80 

Δ�	→� pressure drop in the syringe [Pa] 81 

Δ� incremental displacement of the piston lowering [Pa] 82 

� viscosity of the liquid [Pa.s] 83 

  wetting angle [rad] 84 

!"� capillary length [m] 85 

#� true density of the liquid [kg.m-3] 86 

#� true density of the glass [kg.m-3] 87 

Ω% internal section of the syringe [m2] 88 

 89 

1. Introduction 90 

 91 

Pendant drops at the end of a syringe capillary, are easily made objects that have a regularity 92 

of size and shape, offering the possibility to use them in multiple applications. They can be 93 

used as micromanipulators to capture small objects by capillary interaction thanks to the 94 

formation of a liquid-bridge at their apex [1,2]. These same capillary interactions are also 95 

used to structure assemblies of colloidal or granular particles. Liquid marbles are other 96 

applications that implement these surface interactions with colloids [3,4,5]. Drops are also 97 

used for agglomeration or granulation unit operations [6,7]. The drop properties (in particular 98 

their size and volume), which interact with powder to associate them into agglomerated 99 
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structures [8,9], require a precise control in order to best master the associative processes 100 

[10,11]. Because the small drop volume is circumscribed by surface tension, it can also be 101 

directly used as a millireactor where various chemical reactions can be performed [12,13]. 102 

The pendant drop of a colloidal suspension or a macromolecular solution constitutes a 103 

reactional volume in which a "stoichiometric forcing" can occur as the volume decreases by 104 

evaporation [14]. In spray-drying, specific reactions are achievable and the control of the 105 

structural mechanisms to which they lead, requires the mastering of the evolution of the drop 106 

volume which can be studied in a pendant configuration [15]. Pendant drops are also 107 

employed to determine the surface tension of a liquid [16,17,18], from the analysis of the 108 

shape of a pendant drop in equilibrium and matching its contouring curve to a mathematical 109 

solution of the Young-Laplace equation. This inverse method allows to identify the surface 110 

tension value which represents the fitting factor.  111 

There is a second method, called the drop weight method [19], which is based on the 112 

comparison between the weight of a falling drop (measured) and its theoretical value 113 

estimated from Tate's law [20]. The surface tension is the adjustment parameter that allows to 114 

fit these two values. Tate's law relates the maximum weight of a pendant drop to the capillary 115 

force that holds the drop in equilibrium at the end of a syringe needle, just before it falls off. 116 

Since only part of the pendant drop falls off, leaving a residual fraction on the needle, it is 117 

necessary to correct the weight of an "ideal drop" given by Tate's law by a correction factor. 118 

Among the most widely used works for this purpose, that of Harkins and Brown [21] 119 

proposes values of the correction factor tabulated on a chart. But the exact calculation of the 120 

maximum weight just before its detachment would ensure even greater precision. 121 

 122 

The aim of this work is to determine the maximal weight of a pendant drop at the end of a 123 

syringe needle by experimental investigations and theorical developments. We propose to 124 
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define a consistent expression of the maximum weight of a pendant drop. No particular 125 

application of this result will be favored. Experimental results related to the measurement of 126 

the maximal weight of drops performed with three liquids of different known surface tensions 127 

and five different needle sizes, are presented. These experiments are carried out at small Bond 128 

numbers of the needle in order to achieve the same drop shape (piriform). We observe that the 129 

weight of the pendant drop is not equal to the capillary force which ensures the drop/needle 130 

connection. This gap is attributed to the lack of a force in the balance of external forces 131 

applied to the drop. In order to reveal the importance of this missing force, mechanical stress 132 

tests are performed by adding a calibrated glass bead at the apex of the drop, without 133 

changing the intensity of the capillary force. Beads of increasing mass induce a variation of 134 

the mean curvature directly associated with a variation of the maximal weight of the drops 135 

following a master curve. The repercussion of these variations on the Laplace pressure 136 

generates a force which completes the force balance. To demonstrate mathematically this 137 

important point, a physical reasoning, based on the fluid mechanics, is developed. These 138 

results allow us to introduce the Laplace pressure in the mathematical model which predicts 139 

the maximal weight of a pendant drop.  140 

 141 

2. Experimental procedure 142 

 143 

2.1. Prototype description  144 

 145 

A prototype, presented in Figure 1, was designed to study the formation of a pendant drop at 146 

the end of a capillary until its maximal volume, just before its detachment. It consists of a PPT 147 

syringe composed of a body of an internal section Ω& = 61 mm2, a piston and a tapered tip 148 

allowing the adaptation of a straight cut steel needle (Doseurope) of section Ω�( . Five 149 
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different needle sizes were used. Their external diameter ��� is: 0.23, 0.5, 0.8, 1.26 and 1.80 150 

mm and their internal diameter ��(  is respectively: 0.11, 0.26, 0.51, 0.84 and 1.37 mm. In 151 

order to ensure a constant flow rate of liquid (� ~ 0.097 to 0.387 mm3.s-1), a syringe pump 152 

driven by a stepper motor (MicroLYNX, M-1410-0.75D) is used to provide a vertical 153 

displacement according to ��. This flow rate gives a velocity intensity in the needle comprised 154 

between 0.26 and 5 mm.s-1. For each test, the laminar flow inside the needle is achieved with 155 

a Reynolds number comprised between 18×10-3 (Triacetin with the largest needle) and 156 

5.6×10-1 (water with the smallest needle). The evolution of the pendant drop formation until 157 

its maximal volume is filmed using a USB microscope (DinoLite®) placed in front of the 158 

needle with an acquisition rate of 25 images.sec-1. A LED backlight system is also used to 159 

enhance the contrast. 160 

 161 

The prototype is placed on an insulated support to avoid any vibration and is isolated in a 162 

plexiglass chamber to minimize any contamination. All the tests are performed in quintuples, 163 

at a controlled temperature of 25.0 ± 0.2 °C, and a relative humidity of 40 ± 16 %. The total 164 

duration of formation of a drop is between 1 and 2 minutes which allows to neglect the 165 

evaporation phenomena [22]. 166 

 167 

2.2. Characteristics of liquids 168 

 169 

Pure water, Tween® 80 (Sigma-Aldrich) diluted at 2×10-3g/L, and Triacetin® (C2 99.0%, 170 

Sigma-Aldrich) are the three considered liquids. The surface tension, � , measured using a 171 

tensiometer Kruss K100 (Kruss, Germany) according to the Wilhelmy plate, is equal to 172 

71.83±0.59 mN.m-1 for water, 43.74±0.09 mN.m-1 for Tween 80, and 34.55±0.25 mN.m-1 for 173 

Triacetin. The density, #� , obtained thanks to DSA 5000M sonodensimeter (Anton Paar, 174 
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France), corresponds to 0.997±0.001 g.cm-3 for water and Tween 80, and 1.152±0.001 g.cm-3 175 

for Triacetin. The viscosity, �, determined using a rheometer Physica MCR 301 equipped 176 

with a double gap mobile (Anton Paar, Austria), has the value of 1.005±0.005 mPa.s for 177 

water, 1.010±0.012 mPa.s for Tween 80, and 23.021±0.001 mPa.s for Triacetin. All 178 

measurements were performed in triplicate at 25°C. 179 

 180 

These three liquids are distinguished by the capillary length: !"� = +� #��⁄ , sufficiently 181 

contrasted (2.71 mm for water, 2.11 mm for Tween 80 and 1.83 mm for Triacetin) to show 182 

differences in the geometric characteristics of the drops. For each tested configuration, the 183 

Bond number of the drop: ��� = -�� !"�⁄ .� < 1 (Fig. 2) and the Bond number of the needle: 184 

��� = -��� 2!"�⁄ .� < ���, ensure a piriform geometry of the drops. 185 

 186 

2.3. Description of the mechanical test  187 

 188 

This mechanical test, adapted from the works of Li et al. [23] and Neeson et al. [24], consists 189 

in loading with a calibrated particle of known mass a pendant drop obtained from a needle of 190 

a given diameter. Then the maximal weight of the loaded drop just before its detachment is 191 

measured. In order to highlight the role of Laplace pressure on the weight of a pendant drop, 192 

this test allows to modulate the main curvatures of the drop (see video). 193 

 194 

The aim of this test is to achieve conditions that ensure invariance of the capillary force at the 195 

drop/needle wetted perimeter while modulating Laplace pressure within the drop. When the 196 

drop reaches a stage of development corresponding to about 30% of its maximum volume, the 197 

glass bead is then approached to its apex. At its contact, the drop exerts a capillary traction 198 

that captures the bead and keeps it in suspension in a position that respects the global 199 
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axisymmetry (Fig. 2). The hydrodynamic flow conditions in the syringe allow a quasi-200 

stationary evolution of the growth of the loaded drop. The shape of the drop, and in particular 201 

its main curvatures, adapt to the resultant external forces applied to it [24]. Six spherical glass 202 

beads (density of 2.501 g.cm-3) of different masses (0.62, 1.48, 2.55, 4.52, 8.38 and 12.03 mg) 203 

are used. The Bond numbers of the glass beads are less than 1, which ensures their capillary 204 

capture by the pendant drop. 205 

 206 

The operating conditions are identical to those used during the formation of a single pendant 207 

drop and the evolution of the loaded drops is also captured by the USB microscope (Fig. 1). 208 

 209 

2.4. Determination of drop characteristics 210 

 211 

An image analysis method was developed to determine the maximum pendant drop volume 212 

and the two radii of curvature. Technical details are given in the Supplementary Materials file. 213 

 214 

Maximal volume. Each drop is filmed (from 1 to 2 min at 25 fps) during its entire 215 

development and all the images are extracted (from 1500 to 3000) then analyzed to precisely 216 

determine the maximum volume of each pendant drop. The linear progression of the volume 217 

of the drop, due to the constant flow, makes it possible to locate the maximal volume reached 218 

with an error less than 0.01 %. The maximum weight is then calculated from the 219 

determination of the volume.  220 

 221 

Radius of curvature, main curvature and Laplace pressure. The image, corresponding to the 222 

limit stage of drop development, is used to determine the curvature radii. The curvature radius 223 

��, is determined at the level of the maximum diameter in the horizontal plane. The curvature 224 
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radius ��, is located in the vertical plane, and corresponds to the radius of the circle being 225 

superimposed with the drop curve [18]. The main curvature of the drop is then deduced from 226 

these measurements according to its standard definition in 3D space, 2� = �
23

+ �
25

. The 227 

Laplace pressure in the drop is then calculated according to its definition [25]: ∆�� =  �2�. 228 

This procedure is used for single and loaded drops. 229 

 230 

3. Results and discussion  231 

 232 

3.1. Maximal weight of a pendant drop 233 

 234 

Pendant drops are formed at the end of needle of a syringe using a stationary flow rate of the 235 

liquid, Q, ensured by a force ��	 applied on the piston. The maximal mass reached by the drop, 236 

�� , is calculated from the measurement of the volume. The laminar regime ensures the 237 

stability of the drop formation and we verify that neither the value of the flow nor the height 238 

of liquid (��) between the surface of the piston and the lowest part of needle, does not change 239 

the maximal mass of the drop (see Supplementary Materials file). This point implies that the 240 

hydrostatic pressure does not affect the maximal weight of a pendant drop generated by a 241 

syringe.  242 

In these conditions, the balance of the external forces applied to a pendant drop takes into 243 

account only three actions (the weight, the capillary force exerted at the triple line and inertia 244 

[25]), and can be written as follow: 245 

 246 

���� + ��
 = ��
�78�9

�:
≈ 08�        (1) 247 

 248 
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where the inertial force is negligible when a steady state is imposed (a constant flow rate 249 

implies that the barycentric velocity of the drop inertia center, ��� , remains constant). The 250 

projection of this vectorial equation on the horizontal axis cancels out, while on the vertical 251 

axis we find that the weight must be compensated by the projection of the capillary force on 252 

��. Assuming that the intensity of the capillary force is equal to [25]: �
 = =���γcos - ., for 253 

each tested condition, the wetting angle   at the drop connection on the outer perimeter of the 254 

needle is checked. It is always close to 0° and does not impact the value of the capillary force, 255 

as already observed by Nazari et al. [26]. With this definition, the maximal weight of the 256 

pendant drop is given by: 257 

 258 

��� = �=���        (2) 259 

 260 

This expression is well known as the Tate’s law [20, 27], and the maximal weight defined by 261 

Equation (2) is classically called the weight of the "ideal drop". We remind that this 262 

maximum weight is the weight of a pendant drop still attached to its needle and not the weight 263 

of a detached drop. By plotting the measurements of the maximum drop weight as a function 264 

of the corresponding capillary force for each tested case, it can be clearly observed in Figure 265 

3a that Equation (2) is not verified. The capillary force is systematically higher than the 266 

weight, and this gap is about 35.0% ±1.2% on average. Surprising as it may seem, we are not 267 

aware of any experimental data in the scientific literature on the weight of pendant drops. All 268 

the numerous works deal with detached drops with all the precautions on the validity of Tate's 269 

law. Lee et al. [28] pointed out that the force balance used to define the weight of the "ideal 270 

drop" does not include a compressive force in the upper plane of the drop. This balance needs 271 

to be redefined [29,30]. Therefore, such a gap implies to consider again the balance of 272 

external efforts applied to a pendant drop [30] taking into account the repercussion of the 273 
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force increment applied on the piston, ��	, called the Laplace force, on the pendant drop. A 274 

drop generated by a syringe is only developed by the action of a force increment on the 275 

piston. This force is oriented in the same direction as the weight and is transmitted until the 276 

top surface of the drop: =��(
� /4, via an overpressure throughout the liquid column. We can 277 

show that this overpressure corresponds to the Laplace pressure in the pendant drop. The 278 

expression of the external force balance becomes: 279 

 280 

���� + ��	 + ��
 ≈ 08�        (3) 281 

 282 

Under all these hypotheses and by introducing the definition of the Laplace pressure in the 283 

external force balance exerted on the pendant drop, Equation (3) can be written as: 284 

��� = �=��� − Δ��=��(
� /4        (4) 285 

 286 

This equation involves the internal ��( , and external ��� diameters of the needle. From 287 

Laplace's pressure measurements, we verify in Figure 3b that the maximal weight of a 288 

pendant drop is then well described by Equation (3). 289 

 290 

We propose in the following section an experiment at the drop level in order to highlight the 291 

role of the Laplace pressure and the trend with which it acts on the maximal weight drop. The 292 

implication of Laplace pressure in the balance of external forces applied to a pendant drop has 293 

already been suggested by Garandet et al. [29]. However, our approach highlights the non-294 

contribution of hydrostatic pressure, contrary to the equation presented by Garandet et al. 295 

[29]. We also provide an explanation of the origin of this involved Laplace force and a 296 

justification by establishing a model under well-identified hypotheses. 297 

 298 
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3.2. Drop loading to highlight the Laplace pressure  299 

 300 

The drop keeps held to the needle by the capillary force at its triple line which equilibrates the 301 

weight added to the force applied on the piston transmitted to the drop via the pressure in the 302 

liquid column. The test consists of keeping the capillary force constant (constant needle 303 

diameter and constant surface tension of the liquid) and varying the drop weight by 304 

distributing it between the liquid and a glass bead placed at the apex. Whatever its weight, the 305 

presence of a glass bead does not modify the intensity of the capillary force exerted on the 306 

pendant drop due to the fact that: (i) the wetted perimeter is unchanged, (ii) the contact angle 307 

value just before drop detachment has been systematically measured by image analysis (Fig. 308 

4) and remains unchanged:  ≈ 0°, and (iii) the liquid surface tension is not modified (the 309 

beads are carefully cleaned beforehand). Thus, the force balance (Eq. 4) is satisfied for the 310 

maximal total weight of the loaded drop: ��
∗ � = ��� + ��

∗� , where ��
∗�  is the liquid 311 

weight and ��� is the glass bead weight. The weight of the bead has an impact on the shape 312 

of the drop (Fig. 4) and therefore on the Laplace pressure inside the drop. The drop loading 313 

with a glass bead constitutes therefore a reliable mechanical test with a fixed capillary force. 314 

 315 

For each liquid, increasing loads with calibrated glass beads were realised for all pendant 316 

drops obtained with the five needles. Figures 5 presents an illustration of the maximal weight 317 

of the loaded pendant drops, as a function of the bead mass. Whatever the needle diameter 318 

and the liquid, the maximal weight of the loaded drops is not constant but decreases with the 319 

increase of the bead mass. In all cases, ��� > ��
∗� and so, the hypothesis of the capillary 320 

force, only opposed to the weight of the maximal pendant drop in the external force balance, 321 

is invalidated by the imposed conditions in these experiments. 322 

 323 
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This result indicates that at constant capillary force, if the maximum weight of a pendant drop 324 

decreases with increasing loads, then the Laplace pressure should increase to ensure the 325 

external force balance (Eq. 4). 326 

 327 

In order to determine the Laplace pressure in the drop, the mean curvature is measured. For a 328 

given needle, as the particle mass increases, a loaded drop adopts an increasingly elongated 329 

shape (Fig. 4). The axisymmetry being satisfied, the quantitative analysis of the main 330 

curvatures (Fig. 2) shows that the increasing mechanical solicitation induces an elongation of 331 

the axial radius of curvature (vertical plane), ��, and simultaneously a narrowing of the radial 332 

radius of curvature (horizontal plane), �� (Fig. 6a). For each liquid and each needle, the radii 333 

of curvature of the loaded drops are resized by those of the unloaded drops made with the 334 

same needle: ��
∗/��  and ��

∗/�� . The antagonistic variation of the two radii of curvature 335 

systematically leads to an increase of the mean curvature defined by,: 2�∗ = �
23

∗ + �
25

∗, for all 336 

loaded pendant drops. 337 

 338 

Figure 6b shows that 2�∗/2�  ratio increases linearly with the solid mass fraction and is 339 

superimposed on a single curve for all experiments. 340 

 341 

For each tested liquid and needle, experiments show that loading induces a decrease of the 342 

maximal weight of the pendant drops (Fig. 5) and an increase of the Laplace pressure (Fig. 7). 343 

This point represents an experimental validation of the influence of the Laplace pressure in 344 

the weight of a pendant drop. The expression of the external force balance given by Equation 345 

(3) seems more correct than Equation (1). 346 

 347 
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Because of the glass and liquid incompressibility, the volumes of unloaded drops and loaded 348 

drops are respectively given by: �� = ��/#� , and ��
∗ = ��

∗/#� + ��/#� . For all maximal 349 

drops (loaded and unloaded), a well-defined relationship is shown between the mean 350 

curvature and the volume of a maximal pendant drop (Fig. 8). This power law dependence 351 

between these geometrical quantities constitutes a master curve for the maximal pendant 352 

drops. When unloaded maximal pendant drops are quasi-spherical, which is the case for very 353 

small drops, �� ≈ �� ≈ �, the curvature follows a power law with the volume: 2�~��
"3

G . 354 

Such a trend is experimentally obtained as shown in Figure 8a. 355 

Regardless of the mechanical loading, for each liquid and according to the variation of the 356 

mean curvature, Laplace pressure decreases with the maximal weight of the pendant drops 357 

(Fig. 8b). The surface tension value discriminates Laplace pressure levels within drops made 358 

of different liquids. At equal density, the mixture of water and Tween 80 has a lower surface 359 

tension than water, so the Laplace pressure is lower.  360 

 361 

 362 

3.3. Demonstration of maximal pendant drop weight expression 363 

 364 

For a pendant drop generated at the end of a syringe needle, the external force balance (Eq. 3) 365 

includes (Fig. 9): (i) the weight of the drop: ����, (ii) the force increment applied on the 366 

piston that propagates until the drop via the internal section of the needle (=��(
� /4): ��	, and 367 

(iii) the capillary force at the wetted perimeter (here the outer perimeter of the needle): ��
. The 368 

rigorous demonstration that the intensity of the force ��	 is related to the Laplace pressure is 369 

not so obvious. The intensity �	 exerted on a pendant drop can be written as a function of the 370 

overpressure at the piston (Δ��) within the fluid at the end of the needle: �	 = Δ��=��(
� /4 371 
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(the force exerted on the piston equals: Δ�	Ω%). The overpressure Δ�� can be calculated from 372 

the momentum balance of the flowing fluid between the piston and the end of the needle. 373 

Assuming that the liquid is incompressible and the flow in a steady-state, Bernouilli's 374 

equation gives: 375 

 376 

�	 + #��-�� − Δ�. + �
�

#�
H5

IJ
5 = �� + �

�
#�

H5

IKL
5 + Δ�	→�   (5) 377 

 378 

with Δ�, the displacement corresponding to the piston lowering, �	  and ��  respectively the 379 

pressures in the liquid at the piston interface and at the end of the needle, and Δ�	→� the drop 380 

pressure between the piston and the end of the needle. During all the pendant drop formation, 381 

the ratio Δ�/��  remains below 1 %. The term contributions related to the kinetic energy: 382 

�
�

#���/Ω%
�  and: 

3
5

MNH5

IKL
5 ,  take values of the order of magnitude of 10-4 Pa at most and are 383 

therefore negligible. Due to the large gap between the internal sections of the syringe and the 384 

needle (Ω�(/Ω% ≈ 0.025 at most), the pressure drop in the body of the syringe is negligible 385 

compared to the one in the needle. The flow occurs in laminar regime so, we assume that the 386 

pressure drop is given by Hagen-Poiseuille formula: Δ�	→� = ��OP�KH
QRKL

S , with � the viscosity of 387 

the liquid and 
� the length of the needle. With these value ranges of the parameters, this 388 

pressure drop does not exceed ~102 Pa in the worst case (Triacetin with the smallest needle) 389 

and ~10 Pa for all other conditions. Therefore, the viscous dissipation can be neglected 390 

compared to the other pressure values (~105 Pa). Under these considerations, the balance (Eq. 391 

5) can be reduced to the hydrostatic part: 392 

 393 

�� ≈ �	 + #����        (6) 394 

 395 
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As the liquid was initially drawn into the syringe by the application of a vacuum, the 396 

condition of hydrostatic equilibrium that precedes the application of the overpressure to the 397 

piston can be written as: ��
�T = �	

�T + #���� , where ��
�T

 and �	
�T

 are the pressures at 398 

equilibrium after the entrance of the liquid. When the pendant drop is generated, the 399 

overpressure applied to the piston is given by: Δ�	 = �	−�	
�T

, and is transmitted to the end of 400 

the needle by: Δ�� = ��−��
�T

. The momentum balance (Eq. 6) leads to the conclusion that 401 

Δ�	 ≈ Δ��. In quasi-static conditions, the overpressure applied to the piston is transmitted to 402 

the drop. We find that hydrostatic pressure no longer plays a role on the drop weight, as 403 

experimentally verified (see Supplementary materials file). 404 

For the studied configuration and the implemented process conditions, we verified that the 405 

stationary kinetics of the drop growth can be assimilated to a succession of equilibrium states 406 

(1.8×10-2 ≤ �� ≤ 5.6×10-1). Under this hypothesis of local quasi-static state, we consider that 407 

the expression of the overpressure within the drop can be given by the Laplace-Young 408 

relation. Consequently, Δ�� = Δ�� and so the “Laplace force” is given by: �	 = Δ��=��(
� /4. 409 

Under all these hypotheses, the expression of the maximal weight of a pendant drop at the end 410 

of a syringe needle is consistent with Equation (4). By noting the “ideal drop” weight: �V� =411 

�=���, equation (Eq. 7) provides a correction to Tate's law in the case of a pendant drop 412 

generated by a syringe, that is expressed as follows: 413 

 414 

��� = �V� − Δ��=��(
� /4        (7) 415 

 416 

Figure 3b shows the set of experimental results that validates Eq. 7. Figure 9 illustrates more 417 

intuitively the meaning of Eq. 7: the maximum weight of the pendant drop is equal to the 418 

capillary force exerted at the end of the needle, from which must be subtracted the force 419 

coming from the pressure increment applied to the piston and which imposes the value of the 420 
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Laplace pressure within the drop. We provide a justification of Eq. 7 by establishing this 421 

model under well-identified hypotheses and mathematical developments and it differs from 422 

that one suggested by Garandet et al. [29]. 423 

 424 

Conclusion 425 

 426 

This work contributes to the characterization of the weight of pendant drops. It experimentally 427 

and mathematically demonstrates the influence of the Laplace pressure on the maximum 428 

weight of a pendant drop. The involved physical phenomena in the equilibrium of a pendant 429 

drop are well known. However, the writing of the balance of the applied external forces to the 430 

pendant drop associated with the rigorous demonstrations of (i) the non-influence of the 431 

hydrostatic pressure (which appears in the equation of Garandet et al. [29]) and (ii) the 432 

equality of the overpressure exerted on the piston with the Laplace pressure, lead to an 433 

original equation (Eq. 7) providing a correction to the well-known Tate's law. Tate's law [20], 434 

based on the theoretical balance of applied external forces to a drop, is usually used to 435 

theoretically calculate this weight. Despite numerous criticisms [28-30], to the best of our 436 

knowledge, no experimental measurements relating to the validation of Tate's law are 437 

reported in the scientific literature. Our work thus constitutes a new basis of reflection 438 

associated with experimental data in order to elucidate the factors that determine the weight of 439 

a pendant drop. 440 

We have carried out the weight measurement of maximal pendant drops at the end of a 441 

syringe needle of different sizes for three liquids of contrasting capillary lengths. The results 442 

show a gap with the capillary force alone. These experimental results invalidate Tate's law 443 

under the employed conditions. This difference, highlighted with three liquids, is corrected by 444 

taking into account the exerted force on the piston in the applied external force balance to a 445 
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pendant drop. This force can be related to the Laplace pressure within the drop. A mechanical 446 

loading experiment, with imposed capillary force adapted from the works of Li et al. [23] and 447 

Neeson et al. [24], is proposed in order to highlight the role of Laplace pressure in the 448 

mathematical expression of the maximal weight. 449 

The principle of the mechanical loading with a bead attached to the drop apex, allows to 450 

modulate its main curvature and therefore the Laplace pressure. The results show that the 451 

mean curvature increases with the mechanical loading according to a master curve which is 452 

independent of the liquid characteristics and the needle size. If they are extended to a larger 453 

number of liquids, they would provide the basis for a remarkable universality. For each 454 

unloaded pendant drop, the curvature is a decreasing function of the drop volume. The 455 

relationship between Laplace pressure and the applied force on the piston is mathematically 456 

established. An analytical expression of the maximal weight of a pendant drop is deduced. 457 

The model, which considers the weight equal to the capillary force, is then revisited and 458 

replaced by a new model that explicitly incorporates the Laplace pressure. It is experimentally 459 

validated for each tested case. 460 

 461 

Our approach can be extended to determine the liquid-solid adhesion work using centrifugal 462 

adhesion balance [31, 32]. For this, one needs to replace the piston motion with the increase 463 

of the effective gravity performed with centrifugal device. It could be also used to define with 464 

high precision the volume that constitutes a pendant drop, especially in the context of 465 

downsizing technologies [33]. The better knowledge of the maximum weight of a pendant 466 

drop could participate to the improvement of particle coating techniques as used for marbles 467 

[4,5]. In the pharmaceutical field, this work could have repercussions on the precision of 468 

active drugs formulation distributed as drop (eye drops, perfusion, oral solution in drops…). 469 
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Finally, Tate's law is mainly used to characterize the weight of detached drops [19, 21, 27]. 470 

The work of Harkins and Brown [21] shows that the ratio of the volume of a detached drop to 471 

the volume predicted by Tate's law, varies according to a unique characteristic curve as a 472 

function of the capillary radius scaled by the cube root of the detached drop volume. What 473 

happens to this relationship if we now consider the real maximum weight of a pendant drop 474 

and not the one given by Tate's law? This last point, which constitutes our future work, will 475 

bring a new representation of the weight of the drops that fall from a capillary. 476 
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Figure 1. Scheme of the experimental prototype for pendant drop generation and contouring 

acquisition of the maximal pendant drop. 

Figure 2. Illustration of the curvature radii measurement for a single pendant drop (left) and a 

loaded pendant drop with a glass bead (right). 

Figure 3. (a) Capillary force as a function of the maximal drop weight (Eq. 2) for all 

experiments, (b) capillary force minored by the “Laplace force” versus maximal drop weight 

(Eq. 4) for all experiments. The order of the error magnitude is about 10-4 mN. The dashed 

line is a guideline. 

Figure 4. Illustration of the drop loading with a glass bead at constant capillary force. The 

images correspond to pendant water drops just before their detachment and formed with a 

same needle of diameter (��� = 1.80 mm) and an increasing load. 

Figure 5. Maximal mass of loaded pendant drops as a function of bead mass for Water 

(circle), Tween 80 (square) and Triacetin (triangle). For each liquid only results, obtained for 

needles of external diameters equal to 1.26 (empty symbols) and 1.80 mm (blanck symbols), 

are shown. The dashed lines are a guideline. Full results are available in the Supplementary 

Materials file. 

Figure 6. Variation of the loaded pendant drop curvatures as a function of the solid mass 

fraction for all experiments: (a) dimensionless curvature radii, (b) dimensionless mean 

curvature. The dashed lines are a guideline. 

Figure 7. Laplace pressure within the maximal pendant drops as a function of the particle 

mass for (a) Water, (b) Tween 80, (c) Triacetin and different external diameters of the needle 

(��� = 0.23, 0.50, 0.80, 1.26 and 1.80 mm). The order of the diameters is respected for each 

figure. The dashed lines are a guideline. 

Figure 8. (a) Variation of the mean curvature as a function of the maximum pendant drop 

volume (R² = 0.9736) for all liquids and needles used (Log-Log representation), (b) Laplace 

pressure within the maximal pendant drops as a function of its weight. 

Figure 9. Scheme of the external forces applied to a maximal pendant drop generated by a 

syringe. 
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Figure 1. Scheme of the experimental prototype for pendant drop generation and contouring 

acquisition of the maximal pendant drop. 
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Figure 2. Illustration of the curvature radii measurement for a single pendant drop (left) and a 

loaded pendant drop with a glass bead (right). 
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Figure 3. (a) Capillary force as a function of the maximal drop weight (Eq. 2) for all 

experiments, (b) capillary force minored by the “Laplace force” versus maximal drop weight 

(Eq. 4) for all experiments. The order of the error magnitude is about 10-4 mN. The dashed 

line is a guideline. 
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Figure 4. Illustration of the drop loading with a glass bead at constant capillary force. The 

images correspond to pendant water drops just before their detachment and formed with a 

same needle of diameter (��� = 1.80 mm) and an increasing load. 
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Figure 5. Maximal mass of loaded pendant drops as a function of bead mass for Water 

(circle), Tween 80 (square) and Triacetin (triangle). For each liquid only results, obtained for 

needles of external diameters equal to 1.26 (empty symbols) and 1.80 mm (blanck symbols), 

are shown. The dashed lines are a guideline. Full results are available in the Supplementary 

Materials file. 
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Figure 6. Variation of the loaded pendant drop curvatures as a function of the solid mass 

fraction for all experiments: (a) dimensionless curvature radii, (b) dimensionless mean 

curvature. The dashed lines are a guideline. 
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Figure 7. Laplace pressure within the maximal pendant drops as a function of the particle 

mass for (a) Water, (b) Tween 80, (c) Triacetin and different external diameters of the needle 

(��� = 0.23, 0.50, 0.80, 1.26 and 1.80 mm). The order of the diameters is respected for each 

figure. The dashed lines are a guideline. 
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Figure 8. (a) Variation of the mean curvature as a function of the maximum pendant drop 

volume (R² = 0.9736) for all liquids and needles used (Log-Log representation), (b) Laplace 

pressure within the maximal pendant drops as a function of its weight. 

 

  



 10

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Scheme of the external forces applied to a maximal pendant drop generated by a 

syringe. 
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