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Letters

Home-field advantage of litter
decomposition differs between
leaves and fine roots

Introduction

Litter decomposition is a fundamental process influencing carbon
dynamics and nutrient cycling in terrestrial ecosystems. In the 20th

century, it was commonly accepted that climate, litter quality and
soil biota hierarchically influenced the decomposition process from
the large to the local scale (Swift et al., 1979; Coûteaux et al., 1995).
However, recent studies have suggested that decomposer commu-
nities are much more important in driving litter decomposition
than previously thought, mainly because aggregate data at large
spatial scales are falsely assumed to represent causative relationships
at small spatial scales (Bradford et al., 2014, 2017). In particular,
microbial functioning may depend on complex interactions
between microbial decomposers and their substrates such as plant
litter (Jackrel et al., 2019; Lin et al., 2019). The home-field
advantage (HFA) hypothesis predicts that decomposers are more
efficient with the plant litters they most frequently encounter
(Gholz et al., 2000; Ayres et al., 2009b; Austin et al., 2014; Palozzi
& Lindo, 2018). This hypothesis has been empirically tested in
various ecosystems via reciprocal litter transplant experiments
(Ayres et al., 2009a; Milcu & Manning, 2011; Fanin et al., 2016;
Lu et al., 2017; Palozzi & Lindo, 2017; Veen et al., 2018; Jackrel
et al., 2019; Lin et al., 2019), and HFA was shown to increase
decomposition rates by 7.5% on average (Veen et al., 2015a).
However, the vast majority of studies demonstrating HFA effects
used leaf litter, andwhether the results are consistent with root litter
has seldom been tested.

Fine roots account for a substantial amount of litter inputs in
terrestrial ecosystems, and play a major role in carbon and nutrient
cycling through their afterlife ‘effects’ (Jackson et al., 1997, 2017;
Freschet et al., 2013). Because HFA may arise due to the
specialization of microbial communities towards their substrates,
especially when the substrate is recalcitrant (Milcu & Manning,
2011), root litter should generate importantHFA effects because of
the necessity to synthesize specific oxidative enzymes to breakdown
complex organic compounds. Yet, the very limited empirical
experiments evaluating HFA effects using roots have reported
positive, neutral or negative effects (Freschet et al., 2012a; Jacobs
et al., 2018;Minerovic et al., 2018), perhaps as a consequence of an
important variability in litter chemistry between ‘home’ and ‘away’
sites (Veen et al., 2015a). Hence, it is difficult to generalize the
specialization of microbial communities towards root litter

decomposition. Furthermore, whether HFA effects are coherent
between different plant organs originating from the same species
(e.g. leaves and roots), has never been evaluated in the same
experiment. Because leaves and roots of the same species commonly
differ substantially in their chemical compositions (Freschet et al.,
2012b; Ma et al., 2016; Sun et al., 2018), different substrate
qualities may stimulate contrasting microbial communities char-
acterized by varying metabolic requirements and catabolic capac-
ities (Sauvadet et al., 2019). Therefore, we hypothesize that the
concordance in HFA effects between aboveground and below-
ground plant parts depends on the (dis)similarity in litter chemistry
between leaves and roots, that is, plant species having a greater
similarity in their chemical traits between leaves and roots should
present relatively similar HFA effects (hypothesis 1). Furthermore,
because litter recalcitrance is thought to be one of the main drivers
controlling HFA due to a higher degree of specialization of
microbial communities (Milcu&Manning, 2011), we hypothesize
that root litters should display greater HFA effects than leaf litters
because they are often more recalcitrant (hypothesis 2).

Materials and Methods

We performed an 1132-d reciprocal litter transplant experiment
among three forest sites using litters collected from the dominant
tree species in each site: broadleaf (Castanopsis eyrei), coniferous
(Cunninghamia lanceolata) and bamboo (Phyllostachys heterocycla
cv Pubescens) (see Supporting Information Methods S1 for more
details of the study sites). Freshly fallen leaf litters were collected
using litter traps to prevent infection by soil biota of the ‘home’ site.
Roots were extracted from the soil and washed on a sieve under
running water. Fresh fine roots (Ф < 2 mm) were picked out and
sterilized using chloroform vapour. Litter quality was characterized
by 14 chemical traits related to element concentration, stoichiom-
etry and carbon quality (Table S1; details about traitmeasurements
are in Methods S1). In each site, six randomized blocks, with a
distance of at least 10 m between each block, were selected for
litterbag incubation. Each litterbag (15 cm9 10 cm with a mesh
size of 25-lm, which allows microbial decomposers to enter the
litterbags), was filled with c. 3.0 g litters, and labelled with a plastic
tag. Although soil faunamay also significantly affect themagnitude
of the HFA effects in some ecosystems (Milcu &Manning, 2011),
previous results in our study sites showed that soil fauna did not
substantially contribute to driving the HFA (Lin et al., 2019). In
total, we placed six litterbags per litter type in each block for six
successive harvests during the first year (94 and 222 d), second year
(392 and 583 d) and third year (827 and 1132 d) after the start of
the incubation, resulting in a total of 648 litterbags used in this
study (three sites9 six blocks9 six litter types9 six harvest times).
Leaf litterbags were anchored on the forest floor and root litterbags
were buried in the soil. Following harvest, the litter samples were
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cleaned under tap water, oven-dried at 60°C for 48 h and weighed.
Litter mass loss (%) was calculated as (Mi�Mf)/Mi9 100, where
Mi andMf are initial and final litter dry mass, respectively.

We ran nonmetricmultidimensional scaling (NMDS) on the 14
chemical litter traits to visualize the variation in litter quality among
the different litter types, and then performed a permutational
multivariate analysis of variance (PERMANOVA) to test the
significant effects of species, organ type and their interaction on
litter chemical traits. We also calculated dissimilarity among the
different litter types using the Euclidean distance. The effects of
litter species, incubation site, harvest time and their interactions on
mass loss of leaves or fine roots, respectively, were analysed using
linear mixed effects models with a first-order auto-regressive
variance structure to account for temporal pseudo-replication. To
improve the reliability of our statistical inference, we selected the
most parsimonious models based on the lowest AICc (Akaike’s
information criterion corrected for small sample sizes). In addition,
the HFA index was estimated at each harvest time by running the
regression model proposed by Keiser et al. (2014) (see Methods S1
for detailed description of the statistical analyses).

Results and Discussion

The NMDS ordination separated relatively well the six litter types
along the two first NMDS axes (Fig. 1), which were associated to
chemical traits known to directly affect litter decomposition rates
such as nutrients (i.e. nitrogen (N), phosphorus (P), potassium (K),
manganese (Mn)), carbon forms (i.e. total phenols, lignin, tannins)
and stoichiometric ratios (N : P, C : P, lignin : N) (Swift et al.,
1979; Melillo et al., 1982; Keiluweit et al., 2015; Chomel et al.,

2016; Sun et al., 2018). Litter chemistry differed significantly
between different species (P < 0.001; Table S2). Litter chemical
traits also differed significantly between plant organs (P < 0.001;
Table S2), especially for the bamboo and coniferous species
(Fig. 1). Specifically, bamboo litters were the most labile among
the six litter types (Table S1), and both leaves and roots were
generally located at the high quality end of theNMDSaxes (Fig. 1).
By contrast, broadleaf litters were more recalcitrant in comparison
to bamboo litters and were generally located at the low quality end
of the NMDS axes (Fig. 1), especially for the fine root litter
(Table S1). In line with our expectations, bamboo and broadleaf
litters generally exhibited higher and lower litter mass loss,
respectively (Fig. 2). Coniferous was intermediate between bam-
boo and broadleaf litters. Overall, coniferous fine root litter was
more recalcitrant than leaf litter, mainly because of higher
concentrations in total phenols and tannins (Table S1), which
may explain the lower mass loss of fine root litter compared with
leaf litter over the course of the experiment (Fig. 2).

We found a significant tree species9 incubation site interaction
effect on leaf litter mass loss (F4,40 = 13.23, P < 0.001; Table 1),
suggesting that leaf litter decomposition depends on the environ-
ment in which it decomposes (Ayres et al., 2009a; Milcu &
Manning, 2011; Lu et al., 2017; Veen et al., 2018; Lin et al., 2019).
This is mainly the result of lower leaf litter mass loss of broadleaf
species in its ‘away’ site, especially in the bamboo forest (Fig. 2). By
contrast, there is no significant tree species9 incubation site
interaction effect on fine root litter mass loss (F4,40 = 0.78,
P = 0.546; Table 1). Accordingly, we found that HFA effects were
generally inconsistent between leaves and fine roots over 1132 d of
decomposition (Fig. 2). In addition, although the similarity in litter
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chemistry between leaves and roots varied in the order
broadleaf > bamboo > coniferous (Table S3), the broadleaf species
showed the highest degree of difference in HFA effects between
leaves and roots, that is leaf litter exhibited significant HFA effects
throughout the 1132-d of decomposition, but fine root litter did
not (Fig. 2). The only case for which both leaf and root litters
displayed significant HFA effects was for the bamboo litter after
222-d of decomposition (Fig. 2). Yet, this species showed a
relatively low degree of similarity in litter chemistry between leaves
and roots (Table S3). Therefore, these results contradict our first
hypothesis predicting that plant species having a greater similarity
in their chemical traits between leaves and roots should present a
greater similarity in HFA effects, and suggest that the interactions
between microbes and their substrates depend on the plant organ
considered.

Interestingly, we found that root litter rarely showed significant
HFA effects compared with leaf litter (Fig. 2). Contrary to our
second hypothesis, these findings highlight that HFA effects are
not higher for low litter quality compared with relatively high
quality litter (Veen et al., 2015b; Palozzi & Lindo, 2017; Lin
et al., 2019). In line with these results, previous microcosm
incubation and field studies have also reported that root litter
decomposition did not exhibit significant HFA effects (Jacobs
et al., 2018; Minerovic et al., 2018). One potential explanation
could be due to the differences in microhabitats along the soil
profile. Leaf litter decomposes on the forest floor that is covered
by freshly fallen litter, which is relatively rich in nutrients and
labile carbon compounds, whereas root litter decomposes within
the soil, in which the organic matter is heavily decomposed and
more recalcitrant (Adl, 2003). These different resource conditions
may generate significant differences in the composition and
activity of microbial communities along the litter–soil continuum
(Sterkenburg et al., 2018). In particular, the microbial commu-
nities from recalcitrant environments may have a wider functional
capacity than those originating from richer environments,
meaning that they more efficiently decompose root litters that
vary widely in their chemical characteristics (functional breadth

hypothesis; Keiser et al., 2011, 2014; Fanin et al., 2016), thereby
decreasing their specialization toward the litters they most
frequently encounter. Alternatively, although we buried fine root
litter in the soil close to the adult trees of targeted species, the soil
environment is likely more heterogeneous than the forest floor
because it includes fine root litters frommany other coexisting tree
species. Therefore, the adaptation of specialist decomposers to
individual species might be less important in an environment in
which the resources are highly diverse and mixed. Furthermore,
we cannot exclude that the difference in microclimatic conditions
along the soil profile, with notably higher water content in the
soil, may also affect decomposer communities and reduce the
differences in decomposition rates for root litter (Fanin et al.,
2019a). Additional studies simultaneously manipulating leaves
and roots on the forest floor and in the soil will be necessary to
disentangle the effects of microclimatic conditions from those of
resource environment on HFA effects.

Conclusions

By using a long-term reciprocal litter transplant experiment, we
sought to test whetherHFApatternswere consistent between leaves
and fine roots. We found that HFA effects were generally
inconsistent between plant organs, either across or within species,
thereby underlining that leaf and root litters need to be considered
separately when evaluating the adaptation of decomposers to their
substrates. These results have several implications. First, they
emphasize that HFA is not more pronounced for recalcitrant (i.e.
roots) than labile litter (i.e. leaves) (Veen et al., 2015b; Palozzi &
Lindo, 2017), and they demonstrate thatHFAmay also occurwhen
litters are relatively rich in nutrients and labile carbon compounds
(Lin et al., 2019). Second, the results highlight that there is often
some decoupling between the aboveground and belowground
subsystems in terrestrial ecosystems (Cameron et al., 2019;
Delgado-Baquerizo et al., 2019; Fanin et al., 2019b), and this
finding begs the question of whether the position at which soil
communities perform decomposition is important to understand
the local adaption of microbes to their sustrates. Finally, our results
over a thousand days of incubation demonstrate an important
temporal variability inHFA effects (Ayres et al., 2009a; Fanin et al.,
2016; Veen et al., 2018), indicating that the succession inmicrobial
communities may be also an important factor to predict the
variability in plant–soil interactions over time. We conclude that
plant–microbe interactions contribute significantly to nutrient and
carbon cycling, but these interactions may strongly depend on the
plant organ considered and the environmental conditions at the
local scale.
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Table 1 Results from the most parsimonious linear mixed effects model to
test for the effects of species, incubation site, harvest time and their
interactions on mass loss of leaf and fine root litter, respectively (see
Supporting Information Table S4 for model selection procedure).

Leaf litter Fine root litter

F-value P-value F-value P-value

Variable

Species F2,40 = 36.24 < 0.001 F2,40 = 71.16 < 0.001
Site F2,40 = 20.77 < 0.001 F2,40 = 1.05 0.358
Time F1,269 = 2327.41 < 0.001 F1,269 = 2275.74 < 0.001
Species9 site F4,40 = 13.23 < 0.001 F4,40 = 0.78 0.546
Model performance

logLik �1097.78 �1071.02
AICc 2224.90 2171.40
xi 1.00 0.96

Values in bold typeface represent significant effect with P < 0.05; xi, model
weight.
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