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Abstract 32 

Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in South-East Asia, 33 

which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of 34 

resistant planting material as part of an integrated pest management of this disease is one sustainable solution. 35 

However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit 36 

from marker assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping 37 

approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL 38 

mapping approach applied to more than 10 years’ worth of data collected during pre-nursery tests revealed the 39 

quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is 40 

directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between 41 

pre-nursery and field environments, information was collected on the disease status of the genitors planted in 42 

genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely 43 

to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave 44 

the way for a MAS of Ganoderma resistant and high yielding planting material and the provided proof-of-concept 45 

of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. 46 

 47 
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 71 

1. Introduction 72 

The African oil palm (Elaeis Guineensis Jacq.) is the leading oil crop worldwide with a global annual production 73 

of around 73 Mt, and accounts for more than 35% of all the edible vegetable oil produced worldwide (USDA 74 

statistics, 2019). Oil palm is expected to be able to respond to the global increase in the demand for vegetable oil 75 

projected to be 240 Mt in 2050, even higher if its non-food uses are included  (Corley 2009). The oil palm sector 76 

has agreed on sustainability goals to reach this global demand (Rochmyaningsih 2019), in particular through the 77 

certification of sustainable produced palm oil (the Roundtable on Sustainable Palm Oil, RSPO, https://rspo.org/). 78 

However, pests and diseases threaten palm oil production in all areas of cultivation and contribute to the current 79 

yield gap (Woittiez et al. 2017). If it is to achieve the zero-deforestation goal in high conservation value forests 80 

included in the RSPO commitments, oil palm will inevitably be cultivated on existing arable lands under increasing 81 

pathogen pressure. The integrated pest management (IPM) covers sustainable solutions to this problem including 82 

improved plant disease resistance. Oil palm breeders thus needs to focus on developing resistant planting material, 83 

while maintaining or even improving oil yield. 84 
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The basal stem rot disease caused by Ganoderma boninense is a major threat in South East Asia, with projections 85 

worsening due to climate change (Paterson 2019). This pathogenic fungus is a soil-borne basidiomycete that 86 

mainly infects the oil palm when its roots come into contact with infected debris or with the roots of neighbor 87 

palms (Rees et al. 2009). Ganoderma stem rot disease has a significant effect on oil yield even when only 10-20% 88 

of palm trees are infected, and 30-70% of the trees may have died over a typical 25-year planting cycle (Durand-89 

Gasselin et al. 2005; Cooper et al. 2011). To date, no specific interaction and/or complete resistance have been 90 

identified in oil palm/Ganoderma pathosystem, which is consistent with its hemibiotrophic pathogenic lifestyle. 91 

However, observations of contrasted levels of resistance in diverse genetic backgrounds suggest that breeding for 92 

quantitative disease resistance (QDR) is a promising solution (Franqueville et al. 2001). Typically, research on 93 

perennial plant disease resistance is based on large scale costly field experiments, even more so when investigating 94 

QDR. When possible, ex situ experiments with controlled inoculation of the pathogen are powerful tools that offer 95 

more repeatability and increase both speed and throughput, especially in genetic surveys. In oil palm, such pre-96 

nursery tests were first developed for research on vascular wilt (De Franqueville and Renard 1990), followed by 97 

Ganoderma in the 2000s (Idris et al. 2004; Breton et al. 2006b; Rees et al. 2007) and are now widely used. 98 

However, transferring results to the field can be problematic because of a more complex biotic context, the age 99 

specificity of the QDR mechanisms, or the effects of cultural practice management on disease epidemiology. 100 

Despite these challenges, by combining field and pre-nursery approaches in long-term works in the framework of 101 

an oil palm breeding program, Cirad, its subsidiary PalmElit, and their partners have managed to release planting 102 

material that is highly resistant to vascular wilt and intermediate resistant to basal stem rot caused by Ganoderma 103 

(De Franqueville and Renard 1990; Franqueville et al. 2001; Durand-Gasselin et al. 2005; Breton et al. 2009).  104 

Information on the genetic architecture and molecular determinisms of traits of interest could help shorten the long 105 

breeding cycle of oil palm, which currently exceeds 20 years, and would be particularly useful in the case of 106 

Ganoderma disease given the cumbersome nature of field and nursery trials. Marker assisted selection (MAS) 107 

based on this information would increase the annual genetic gain thanks to both accelerated evaluation of selection 108 

candidates and increased selection intensity by enabling surveys of wider genetic diversity at the same cost (Cros 109 

et al. 2015, 2017). Moreover, identification of the genetic bases of resistance to Ganoderma could resolve the 110 

challenge of breeding for both QDR and yield related traits (Nelson et al. 2018) by using simulation and prediction 111 

tools (Tisné et al. 2019). Most molecular studies on Ganoderma disease to date have been based on inoculated vs 112 

non-inoculated seedlings at the pre-nursery stage, with no or low genetic diversity. The first investigations focused 113 

on a priori selection of candidate resistance genes to fungal diseases (Yeoh et al. 2012, 2013; Tan et al. 2013). 114 
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Next the genes, proteins and pathways affected by Ganoderma infection were identified using broader 115 

transcriptomic (Tee et al. 2013; Ho et al. 2016; Bahari et al. 2018; Faizah et al. 2020; Sakeh et al. 2020), proteomic 116 

(Al-Obaidi et al. 2014) and metabolomic (Nusaibah et al. 2016) approaches. Considering that Ganoderma is a 117 

white rot fungus (Paterson 2007), lignin related traits were investigated as putative QDR mechanisms by surveying 118 

the response of lignin content and composition to Ganoderma infection together with the associated genes 119 

(Govender et al. 2017). Lignin related traits and nutritional traits were found to differ in progenies with different 120 

levels of resistance to Ganoderma (Govender et al. 2020) but the restrained genetic design confounds the effects 121 

of genetic and resistance variation. 122 

QTL mapping offers an alternative approach that provides information on the genetic architecture based on a 123 

relevant genetic diversity, with no a priori biological knowledge. The detected loci form the basis of the MAS 124 

strategy but also provide insights into the mechanisms and genes involved in the QDR. The first published QTL 125 

study reported the analysis of 79 individuals from one resistant and two susceptible families based on 58 simple 126 

sequence repeat markers and found alleles associated with Ganoderma symptoms (Hama-Ali et al. 2015). More 127 

conclusive insights would require much more data, but QTL analyses of oil palm crosses are typically not 128 

sufficiently effective due to biological and cost constraints (Jeennor and Volkaert 2014; Lee et al. 2015; Pootakham 129 

et al. 2015). This is even more problematic for field studies that are indispensable to assess genetic diversity in an 130 

agronomic context, whose implementation is very costly and would result in lower production income due to the 131 

disease context. A powerful and cost-effective approach is to directly use the databases compiled in ongoing 132 

breeding programs, which are typically large and obtained from diverse relevant genetic backgrounds, to map in 133 

silico the QTLs for the traits of interest (Parisseaux and Bernardo 2004). Despite the potential of this approach, 134 

data from breeding programs are unique, mainly because of a complex genetic design that may be biased due to 135 

selection, or unbalanced phenotyping coverage. Thus, they require appropriate statistical models for their 136 

development and evaluation in contrasted contexts, which are currently an active research topic (Würschum 2012; 137 

Garin et al. 2017; Korontzis et al. 2020). In oil palm, an in silico QTL mapping approach based on the two step 138 

variance component approach considering identity by descent (IBD) information (George et al. 2000; van Eeuwijk 139 

et al. 2010) yielded promising results on production traits recorded in large scale evaluation genetic trials (Tisné 140 

et al. 2015). This approach was successfully extended to survival data and applied to a multi-parent population to 141 

detect Ganoderma resistance QTLs in the field, allowing to identify two QTL related to the occurrence of the first 142 

disease symptoms, and two related to the death due to Ganoderma (Tisné et al. 2017). A Bayesian approach to 143 

pedigree based QTL mapping using IBD information was also developed in the 2000s and implemented in the 144 
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FlexQTL software (van de Weg et al. 2004; Bink et al. 2008). This made it possible to carry out increasing numbers 145 

of studies in several crops that share the constraints and potential described above for oil palm, in particular for 146 

disease resistance in strawberry (Mangandi et al. 2017; Anciro et al. 2018) or in apple (van de Weg et al. 2018). 147 

In this study, we evaluated the potential of an in silico approach based on the large existing databases of a long-148 

term oil palm breeding program for the study of Ganoderma resistance. We genotyped an existing DNA bank 149 

primarily established for identity checking purpose and performed a pedigree-based QTL mapping using data 150 

recorded in Ganoderma pre-nursery trials over a period of more than ten years. We then assessed the consistency 151 

of pre-nursery QTL effects in natural field conditions using a database recording the Ganoderma infection status 152 

over years for the palms planted in genealogical gardens. Thus, using a cost-effective approach that is directly 153 

relevant to the breeding program, we were able to study two major issues, i.e. the genetic architecture and 154 

consistency between pre-nursery and field results, paving the way for the implementation of MAS for Ganoderma 155 

resistant planting material. 156 

 157 

2. Material and methods 158 

2.1. Plant material 159 

The palm trees used in this study belong to the oil palm breeding program of Cirad, its subsidiary PalmElit and 160 

their partner PT Socfin Indonesia (Indonesia). This breeding program is conducted in a recurrent reciprocal 161 

selection scheme with two heterotic groups A and B (GA and GB to produce superior GA×GB hybrid crosses used 162 

as commercial planting material (Gascon and De Berchoux 1964; Meunier and Gascon 1972). Individuals from 163 

different heterotic groups have complementary yield component traits, with low fruit bunch number and high 164 

bunch weight in GA and reciprocally in GB. GA×GB hybrids consequently show a heterosis effect on fruit bunch 165 

yield. Moreover, individuals included in GA are Dura palms, homozygous for the thick alleles of the shell gene 166 

(Singh et al. 2013) while individuals included in GB are Pisifera (homozygous alternative alleles), the hybrid 167 

GA×GB being Tenera which is the most productive form with thin shell. The parental population studied for the 168 

Ganoderma resistance included only individuals from GB, grouping genetic origins of La Mé (LM, Ivory Coast) 169 

and Yangambi (YBI, Republic Democratic of Congo). The GB pedigree used in the pre-nursery analysis comprised 170 

372 individuals including founders, with 246/126 from LM/YBI genetic origin respectively and 240 /93 genotyped 171 

(Supp. Table 1). Among them 200 LM and 83 YBI parents were directly progeny tested for Ganoderma resistance 172 

in a pre-nursery screening test (Fig. 1). The individuals were distributed over many full-sib families derived from 173 

a small number of founders through consecutive crosses or self-pollinations in the framework of the ongoing 174 
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breeding program (Fig. 1). Among the 372 individuals in the whole pedigree, 219 LM individuals were planted 175 

between 1970s and 2000s at the same location (Bangun Bandar, Indonesia) and were used for subsequent field 176 

analysis.  177 

2.2. Phenotypic data 178 

2.2.1. Pre-nursery screening tests 179 

An early pre-nursery screening test was developed in the 2000s by Cirad and Socfin Indonesia in the Tanah 180 

Gambus estate, Indonesia. The first objective was to speed up the evaluation of genetic resistance to Ganoderma 181 

of commercial oil palm planting materiel, using controlled and standardized inoculation of germinated seeds 182 

(Breton et al., 2006). The inoculation of germinated seed was performed using a 12 week-old Ganoderma-183 

colonized rubber wood block (108 cm3) as inoculum source, that was previously deposited in the nursery polybag 184 

before the seeds were planted. 185 

A pure dikariotic Ganoderma boninense isolate was used in all the trials (NJ), previously harvested from an 186 

infected oil palm planted in Bangun Bandar, SOCFINDO estate (Mercière et al. 2015). This isolate was 187 

successively regenerated from the bole of young infected seedlings in consecutive pre-nursery trials to provide 188 

several dikariotic clonal lines (CL, n=7) over the 10 years of testing. These reactivating steps of the isolate made 189 

it possible to avoid the loss of pathogenicity often observed after successive sub-cultures on artificial fungi growth 190 

media (Butt et al. 2006). A single pathogen CL was used for all the crosses tested in a single trial. Around 100 191 

crosses were assessed simultaneously in each pre-nursery trial. Among them, 20% were control crosses from 192 

susceptible, intermediate and resistant genetic backgrounds and were included in all the trials performed. Of the 193 

remaining 80% of crosses representing the tested crosses, 50% overlapped two consecutive trials, leading to at 194 

least two independent tests per tested cross. Each cross was represented by 100 inoculated germinated seeds 195 

clustered in five replicates following the protocol described by Breton et al. (2009). Inoculated seedlings were 196 

observed every four weeks for the appearance of the first external disease symptom, on average between 8 and 12 197 

weeks after inoculation of the germinated seeds, after which the disease symptoms were recorded at two weekly 198 

intervals as (1) infected and (0) if not infected. The trial was stopped when the average percentage of infected 199 

seedlings within the group of control crosses reached 30%, usually around 34 weeks after inoculation of the 200 

germinated seeds. This 30% threshold was determined to have the best “discriminating power” between the 201 

resistant and sensitive control crosses, and so among the tested progenies (Breton et al. 2009). 202 



 

8 

 

This study included 102 Ganoderma pre-nursery screening test trial, covering 10 years of data recording. The trials 203 

performed between 2007 and 2017 represented the evaluation of 4,017 unique crosses, from either GA×GA, 204 

GA×GB or GB×GB genetic background. Considering that the purpose of this study was to assess the genetic bases 205 

of Ganoderma resistance in the commercial genetic material, only the GA×GB crosses were taken into 206 

consideration (n=3,792), derived from 2,037 and 340 individuals from the GA and GB respectively. Each parent 207 

from GB included in the analysis was progeny tested in an average of 20.5 GA×GB crosses. 208 

2.2.2. Statistical modeling of pre-nursery data 209 

The resistance of the GB individuals was progeny-tested through several GA×GB crosses involving them as GB 210 

parents. The response variable 𝑌 considered in this study was the proportion of affected progenies per cross at the 211 

end of the trial. A first step of statistical modeling of 𝑌 was necessary to obtain a single value per genotype required 212 

for the QTL analysis while accounting for nuisance effects due to the long-term data. 𝑌 was modeled using 213 

generalized linear mixed models (GLMM). Briefly, in a GLMM, 𝑌 is assumed to be generated by a particular 214 

distribution in the exponential family. The conditional mean of the distribution 𝜇 is linked to a linear predictor 𝜂 215 

which contains fixed and random effects, through the inverse link function 𝑔−1: 216 

𝑔(𝜇) = 𝜂 = 𝑋𝛽 + 𝑍𝑇𝑢𝑇 + 𝑍𝐴𝑢𝐴 + 𝑍𝐵𝑢𝐵 + 𝑍𝐶𝑢𝐶 217 

where 𝑋 is a 𝑛 ×  𝑚 design matrix relating observations to Ganoderma boninense CL fixed effects 𝛽 where 𝛽 is 218 

a 𝑚 ×  1 vector (𝑚 = 7), 𝑍𝑇 is a 𝑛 ×  𝑡 design matrix relating observations to trial random effects 𝑢 ~ 𝑁(0, 𝐼𝜎𝑇
2 ) 219 

with 𝑢 is a 𝑡 ×  1 vector (𝑡 = 102), 𝑍𝐶 is a 𝑛 ×  𝑐 design matrix relating observations to specific combining ability 220 

(SCA) random effects 𝑔𝐶  ~ 𝑁(0, 𝐼𝜎𝑐
2) where 𝑔𝐶  is a 𝑐 ×  1 vector (𝑐 = 3,792), 𝑍𝐴 and 𝑍𝐵 are 𝑛 × 𝑞𝐴 and 𝑛 × 𝑞𝐵 221 

design matrices relating observations to general combining ability (GCA) random effects for GA and GB, 222 

𝑔𝐴 ~ 𝑁(0, 𝐴𝐴𝜎𝐴
2 ) and 𝑔𝐵  ~ 𝑁(0, 𝐴𝐵𝜎𝐵

2 ) respectively, where 𝑔𝐴 and 𝑔𝐵 are 𝑞𝐴 ×  1 and 𝑞𝐵 ×  1 vectors, 223 

respectively (𝑞𝐴 = 2,037 and 𝑞𝐵 = 340). 𝐴𝐴 and 𝐴𝐵 are the pedigree-based kinship matrices of GA and GB, 224 

respectively. 225 

In our work, we explored two types of distributions: binomial distribution, which is the appropriate one for 226 

proportional data, and normal distribution, for which more derived genetic parameters can be estimated. 227 

The first model considers a binomial distribution such as: 228 

𝑌𝑐,𝑡  | 𝑢𝑡 , 𝑢𝐴, 𝑢𝐵, 𝑢𝐶~ 𝐵𝑖𝑛 (𝑛𝑐,𝑡 , 𝜋𝑐,𝑡)  229 
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where 𝑌𝑐,𝑡 is the number of affected progenies in the cross (𝑐) and the trial (𝑡) among the number of inoculated 230 

progenies 𝑛𝑐,𝑡, and 𝜋𝑐,𝑡 is the associated probability.  231 

The link function 𝑔 is the logit such as: 232 

 𝑔(𝜋𝑐,𝑡) = log (
𝜋𝑐,𝑡

1−𝜋𝑐,𝑡
) = 𝜂𝑐,𝑡 233 

The second model considers a normal distribution such as: 234 

𝑌𝑐,𝑡  | 𝑢𝑇 , 𝑢𝐴, 𝑢𝐵, 𝑢𝐶~ 𝑁 (𝜂𝑐,𝑡 , 𝜎2)  235 

where 𝑌𝑐,𝑡 is the proportion of affected progenies in the cross (𝑐) and the trial (𝑡) , 𝜎2 is the residual variance, and 236 

the link function is the identity. Note that this second model is a linear mixed model (LMM). 237 

Both models enabled prediction of the best linear unbiased predictor (BLUP) for each GB individual used in the 238 

QTL mapping, 𝐴𝐵 being replaced by an identity matrix in order to avoid using the pedigree information that was 239 

subsequently used in the QTL analysis.  Both statistical models were performed using ASReml-R software (Butler 240 

et al. 2007, V4) and resulted in two vectors of BLUP for group B individuals that were used in subsequent QTL 241 

mapping analysis.  242 

 243 

2.3. Molecular data and genetic map construction  244 

The 334 freeze-dried oil palm leaf samples available at the Cirad DNA-bank for the GB individuals included in 245 

the analysis were genotyped with 199 SSR markers developed in different studies. Among the 199 markers, 177 246 

markers were developed by Cirad (Billotte et al. 2005), two by the Lee et al. (2015), four markers by the Malaysian 247 

Palm Oil Board (MPOB) (Zaki et al. 2012) and 18 expressed sequence tags markers were developed by IRD 248 

(Institut de Recherche pour le Développement) and Cirad (Tranbarger et al. 2012). These markers were selected 249 

based on a previous integrated pedigree-based genetic map constructed from a population of related individuals 250 

(Cochard et al. 2015). Selection was for a uniform distribution in the genome and the highest level of 251 

polymorphism in both LM and YBI genetic backgrounds. The information concerning markers was gathered in 252 

the supp. Table 2. DNA extraction, evaluation of the DNA concentrations and microsatellite fragment 253 

amplification were performed using the protocol described in Cochard et al. (2015). Genemapper© V4.1 (Applied 254 

Biosystems, USA) software was used to determine the size of the alleles.  255 

Three genetic maps were constructed, one for each of LM and YBI population and one integrated map using the 256 

pedigree-based linkage mapping software CRI-MAP v2.4 (Green et al. 1990), as described in Cochard et al. (2015). 257 
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Consistency of marker calling across pedigrees and absence of spurious rates of double recombination events were 258 

checked using both CRI-MAP and FlexQTLTM, and data were improved where necessary. Genetic maps were 259 

drawn using MapChart v2.0 software (Voorrips 2002) and are presented in Supporting Information Figure S1. 260 

2.4. Pre-nursery QTL mapping approach 261 

QTL mapping of Ganoderma disease resistance in pre-nursery conditions followed two main steps. The first step 262 

was carried out using a Bayesian approach and a multiple QTL model implemented in FlexQTLTM (Bink et al. 263 

2002, 2014, 2008; www.flexqtl.nl) on the pre-nursery data after modeling, in order to identify putative QTL 264 

positions and predict the QTL genotypes. The second step consisted in stepwise QTL model selection on the raw 265 

pre-nursery data using the predicted QTL genotypes as fixed effects in the LMM. 266 

2.4.1. QTL region identification and QTL genotype prediction 267 

Six separate QTL analyses, corresponding to the two vectors of GB individual BLUP (see Phenotypic data section) 268 

with three different starting random seeds were performed using FlexQTLTM. The six QTL analyses were based 269 

on a model with additive QTL effects, with the parameters MaximQTL and priorQTL set at 20 and 5 respectively 270 

for the Markov chain Monte Carlo simulation. The length of the Markov chains were set at 1 000 000 with a 271 

thinning value of 1 000. Using these parameters, the convergence indicators reached satisfying values for each 272 

parameter assessed (overall mean, µ, the residual variance, 𝜎𝑒
2, the number of QTLs, NQTL, and the variance of 273 

QTLs, vQTL). QTL regions were marked from the marginal posterior distributions of the six simulations and 274 

consensus QTL positions identified at the peaks of the summed posterior intensities profiles over the six 275 

simulations. QTL regions were named by the concatenation of population ID (LM, YBI or GB which refers to the 276 

grouped LM and YBI populations), the linkage group and the peaks separated by “@”. For each consensus QTL, 277 

QTL genotypes for all individuals in the pedigree were predicted based on the vectors of QTL genotype posterior 278 

probabilities extracted from the FlexQTL output “MQTRegionsGTP.csv”. QTL genotypes values were calculated 279 

as [(0 ∗ 𝑃𝑞𝑞) + (1 ∗ 𝑃𝑄𝑞) +  (2 ∗ 𝑃𝑄𝑄)], with 𝑃 the probability associated with the 𝑞𝑞, 𝑞𝑄 and 𝑄𝑄 QTL genotypes, 280 

𝑞 being the favorable allele in this case. The continuous [0,2] values of the QTL genotypes were converted into 281 

discrete values {0,1,2} using the following threshold: values in the ranges [0,0.7], ]0.7,1.3[ and [1.3,2], were 282 

assigned to 0, 1 and 2 respectively, corresponding to individuals carrying homozygous favorable, heterozygous or 283 

homozygous unfavorable disease resistance alleles at the respective QTL regions considered.  284 

2.4.2. Stepwise QTL model selection 285 
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In order to obtain a full QTL model fitted on the raw phenotypic data, QTL results from different modeling and 286 

random seeds were aggregated using stepwise model selection. The stepwise approach was applied on QTL 287 

genotypes vectors tested in the LMM model (see Phenotypic data section), following the procedure of the 288 

stepwiseqtl function of the R/qtl package (Broman and Sen 2009). First, a main effect QTL model was selected by 289 

testing the QTL genotype vectors in the LMM model with sequentially, a forward selection and a backward 290 

elimination. Model selection was based on the Akaike information criterion (AIC, Akaike 1998) using the full 291 

loglikelihood (Verbyla 2019). Similarly, the main effect QTL model was extended to the complete QTL model by 292 

first testing the interactions between QTLs and both QTL and CL (fixed effects), and second with the GA genetic 293 

background (random effect). Stepwise model selection was performed using ASReml-R software (Butler et al. 294 

2007, V4). 295 

2.5. Field evaluation of pre-nursery QTL 296 

The relationships between Ganoderma genetic resistance in pre-nursery and field conditions were investigated 297 

using the census of disease status of the La Mé parents planted in genealogical gardens (see plant material section). 298 

The Ganoderma infection status was recorded biannually on 219 LM individuals planted in 1974 (5), 1976 (11), 299 

1996 (5), 1997(107), 1998 (1), 1999 (47), 2001 (20) and 2003 (23) in six different blocks at Bangun Bandar estate, 300 

Indonesia. The disease status recording began within the three years after planting in the case of plantation after 301 

1990 and in the 2000s for older plantings, and the last observation was recorded in 2018. G. boninense disease 302 

symptoms were scored blindly based on a six-level scale as described in Tisné et al. (2017). The appearance of the 303 

first Ganoderma symptom (T1S, first observation of score 2–6) was recorded and the associated time was 304 

considered as survival time, i.e., time from planting to the time the event occurred. The survival data were analyzed 305 

using the Cox model integrating a fixed effect for the date of planting: 306 

𝜆(𝑡, 𝑋) =  𝜆0(𝑡)𝑒𝑋 𝛽 (1) 307 

where 𝑡 is the time to the event or censoring,  𝜆0 denotes the baseline hazard function, 𝑋 is the 𝑛 ×  𝑑 design 308 

matrix relating the survival outcome for individuals to date of planting effects (𝑑 = 8) and 𝛽 = (𝛽1, … , 𝛽𝑑) is a 309 

𝑑 × 1 unknown vector.  310 

The effects of pre-nursery QTL were evaluated using the likelihood ratio test, for which the limiting distribution 311 

follows a chi-squared distribution, between the model (1) and the following model (2): 312 

𝜆(𝑡, 𝑋) =  𝜆0(𝑡)𝑒𝑋𝛽+𝑋𝑞𝑞 (2)  313 
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with 𝑋𝑞being the {0,1,2} vector of pre-nursery-based QTL genotypes for the individuals and 𝑞 the QTL effect. 314 

The analysis was performed with R software version 3.2.3 (Team 2012) and the survival package (Therneau 2015). 315 

 316 

3. Results 317 

3.1. Segregation of Ganoderma resistance in the GB population 318 

Resistance to Ganoderma disease was tested in pre-nursery trials on 3,792 GA×GB crosses. On average, 30.8% 319 

of oil palm seedlings per cross presented disease symptoms at the end of the trial, ranging from 3 to 92.5% among 320 

the different crosses (Fig. 2a). Both LMM or GLMM models led to very similar predictions of GCA for the GB 321 

parents (r=0.97). Predictions of GCA were higher in YBI genetic background compared to LM, indicating higher 322 

susceptibility of the YBI background tested in this study (Fig 2b-c). Within genetic backgrounds, the distribution 323 

of GCA indicated segregation of quantitative resistance among founders, with mainly additive effects. Indeed, in 324 

LM genetic background, LM_1 self-pollinated individuals were the most resistant, and all the combinations of 325 

LM_1 and the alternative founders LM_2 or LM_3 showed higher resistance than the populations derived from 326 

self-pollinations of LM_2 and LM_3 (Fig. 2b-c). Similarly in YBI, YBI_3 was the least resistant genetic 327 

background, but its combination with YBI_2 improved the resistance of derived individuals. Even in narrow 328 

genetic bases, i.e. self-pollinated progenies of the most recent generation, there was still segregation of the 329 

resistance supporting the quantitative nature of Ganoderma resistance (Fig. 2b-c). 330 

3.2. Genetic bases of Ganoderma resistance in pre-nursery trials 331 

QTL mapping of the Ganoderma disease resistance in the GB population was performed using a Bayesian 332 

approach. Cumulating both modeling and the three random seeds per model, the number of QTLs was 125 333 

considering all the marked QTL regions found by FlexQTL, regardless the 2lnBF threshold (supp. Table 3). These 334 

125 QTL corresponded to around 20 QTLs on average per simulation. The QTLs were distributed in 30 consensus 335 

regions covering every linkage group (LG), with overall, a similar pattern between the different simulations (Fig. 336 

3). Among these 29 QTL regions, 11 located on LG 1, 5, 6, 8, 9, 10, 12, 13 and 16 were identified consistently in 337 

the six simulations. The QTL mapping performed separately in LM and YBI revealed different QTL patterns 338 

between them: consistent QTL regions on LG 1, 6, 10, 12 and 13 segregated in the LM genetic background while 339 

the regions were located on LG 5, 8, 9 and 10 in the YBI genetic background (Supporting Information Figure S2). 340 

The average length of the QTL interval was around 25 cM (4-107 cM). Considering QTL genotypes in the 30 341 
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consensus QTL regions, there were on average, 35, 41 and 24% of QQ, Qq and qq genotypes respectively, in the 342 

GB population, q being the favorable allele in this case.  343 

Stepwise model selection was performed based on the QTL genotype vectors calculated for the 30 consensus QTL 344 

regions. The first step fitted the LMM and indicated that the components related to the genetic effects represented 345 

21% of total phenotypic variation, while 6% corresponded to the GCA of the GB individuals (Fig. 4). The final 346 

QTL model retained four main effect QTL on LG 8, 9, 10 and 16, and one in interaction with the GA genetic 347 

background on LG 6 (Fig. 4, supp. Table 4). Adding either the main effect or interacting QTLs in the LMM in the 348 

different steps did not change the values of the non-genetic components, whereas the GCAGB was reduced to 1%. 349 

Including the interaction between the QTL on LG6 and the GA genetic background reduced both the values of the 350 

SCA and the GCAGA components. The partial determination coefficients computed for each QTL ranged from 351 

0.05-2% of the total phenotypic variance, corresponding to 3-9% of genetic variance. 352 

3.3. Effects of pre-nursery-based QTL on field Ganoderma resistance in the La Mé parents 353 

The effects of the QTL identified using the pre-nursery data on GA×GB crosses were evaluated in the field where 354 

219 LM parents included in the pre-nursery study were planted and underwent natural, uncontrolled Ganoderma 355 

infection. The time of the first Ganoderma symptom appearance (T1S) was modeled using Cox regression with 356 

the date of planting as covariate (P < 0.01). The effect of the percentage of favorable alleles per individual among 357 

the 21 QTL regions identified in the LM genetic background (range 28-75%) was first assessed to evaluate the 358 

global trend between pre-nursery and field conditions. The percentage of favorable alleles effect was not found to 359 

be significant (P=0.2), but Kaplan-Meier estimates of survival showed consistency between the pre-nursery and 360 

field QTL effects, a higher percentage of favorable alleles increased the probability of survival (Fig. 5a). Hence, 361 

the individuals with less than 50% of favorable alleles were twice more affected by Ganoderma 20 years after 362 

planting than individuals with more than 50% of favorable alleles (Fig. 5a). Then QTL genotype vectors, predicted 363 

either GB or LM populations, were tested one at a time as covariates in the Cox model. The level of statistical 364 

evidence of QTL effects between pre-nursery and field data was not correlated and significant QTL effects were 365 

found for both a high (LG 9) or low (LG 4, 15) level of evidence in pre-nursery conditions (Fig. 5b). However the 366 

direction of effects between field and pre-nursery effects was consistent for 78% of the QTLs, and for 89% when 367 

a P-value=0.05 threshold was applied in the Cox model (Fig. 5b, Supporting Information Figure S3).  368 

 369 

4. Discussion 370 
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Marker assisted selection (MAS) has a great potential for plant breeding and has been widely used for many crops 371 

with substantial achievements, especially for resistance to biotic stresses (Muranty et al. 2014). MAS should be 372 

particularly useful for perennial crops with a long breeding cycle and high phenotyping costs like oil palm, despite 373 

the identified biological, socioeconomic or technical issues (Muranty et al. 2014). In this paper, we report the proof 374 

of concept of an efficient in silico QTL mapping approach based on data collected in an ongoing breeding program. 375 

This allowed us to gain valuable insights into the genetic architecture of Ganoderma resistance and the 376 

transferability between field and pre-nursery results, as a basis for a future MAS.  377 

4.1. Opportunities and issues of QTL mapping using data from breeding programs 378 

Breeding programs for perennials are inherently geared towards long-term work with extensive data recording. 379 

This make them highly suited to the in silico approach, which is likely to improve the statistical properties of QTL 380 

detection through the increase in population size and diversity compared to conventional biparental populations. 381 

However, the specificity of the data from breeding programs, such as the extent of non-genetic effects due to long-382 

term data or the genetic and phenotypic design unbalances due to the selection process, could reduce the expected 383 

benefits of QTL detection, namely its power and the accuracy of QTL location and QTL effect estimation 384 

(Würschum 2012). Hence, these datasets require a first stage of statistical modeling to account for several non-385 

genetic effects and to obtain genotypic values. Thanks to their flexibility,  mixed models are ideal tools to handle 386 

several types of data and effects (Smith et al. 2005). We used two types of mixed models, LMM and GLMM that 387 

enabled us to predict the GCA of genotyped individuals while accounting for confounding effects. We 388 

subsequently used these GCA values in FlexQTL because this software requires only one value per genotyped 389 

individual whereas they were progeny tested in the pre-nursery trials. Such a two-stage approach could affect QTL 390 

results so one-stage approaches are preferred when possible (Xue et al. 2017; Barrasso et al. 2019). The two types 391 

of mixed model used in this study did not lead to major differences in the QTLs identified, and a one-stage IBD–392 

based variance component approach previously reported for production traits (IBD-VC, Tisné et al. 2015) that we 393 

used on pre-nursery Ganoderma data also produced similar results (data not shown). However, the calculation 394 

time requirement for the IBD-VC is an obstacle to a proper estimation of the significance threshold by permutation 395 

and a multi-QTL mapping procedure, which made us favor the approach presented.  396 

Few studies have assessed the effects of the dataset features on QTL detection. In barley, using GWAS with an 397 

unbalanced dataset, the false positive rate was increased, whereas one-stage analysis performed better (Wang et 398 

al. 2012). In durum wheat, a GWAS performed both on an unbalanced and balanced dataset from a breeding 399 
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program showed major overlapping of selected SNP (Johnson et al. 2019). In diploid potato, a dataset grouping 400 

F3 families under selection was analyzed using either GWAS, stratified linkage or IBD based approaches that led 401 

to consistent QTL detection, but revealed issues concerning the QTL allele frequencies that could affect the results 402 

(Korontzis et al. 2020). In our study, the population studied could be genetically biased due to prior selection of 403 

the crosses tested for Ganoderma resistance based on yield related traits. However, inspection of QTL genotype 404 

frequencies showed that there were no depleted allelic classes among the QTL retained in the stepwise model 405 

selection. Moreover, the QTL genotype vectors predicted at the QTL regions were not correlated for the different 406 

linkage groups, indicating little segregation distortion that could have arisen due to the selection process.   407 

Concerning the accuracy of QTL location, the increased population size allowed by the in silico approach should 408 

reduce the QTL interval thanks to the increased number of recombinations. In this proof of concept study, we 409 

chose to genotype the population using well characterized SSR markers in order to be able to connect the results 410 

with previous ones obtained with related populations. However, the QTL intervals were much larger than in other 411 

studies using FlexQTL on populations of similar size but with thousands of markers, indicating that the density 412 

was insufficient to mark them accurately. The large QTL regions could probably be considerably reduced thanks 413 

to the favorable genetic design and we are currently performing high-density SNP genotyping to achieve this 414 

objective. Beyond this limitation, the use of FlexQTL was particularly interesting: the use of IBD information 415 

mitigates the effect of low density genotyping, and the prediction of QTL genotypes offers the opportunity to use 416 

them in subsequent analyses. Hence, we were able to select a full QTL model using the raw data by testing main 417 

and interaction effects, and to assess the effects of pre-nursery QTL in the field. As reported by Verma and 418 

Whitaker (2018), QTL genotypes have great potential in the breeding context, for example, to predict QTL alleles 419 

for unobserved individuals in the breeding program based only on their marker and pedigree information, and then 420 

their expected resistance level. 421 

4.2. Insights into the genetic architecture of Ganoderma resistance in oil palm 422 

A first insight into genetic architecture came from the variance decomposition using the sire and dam mixed model 423 

designed for the analysis of the data on GA×GB hybrids. The genetic component, i.e. GCA in both heterotic groups 424 

and SCA, represented around 20% of the total phenotypic variance, which was expected due to the consistent 425 

genetic resistances identified in contrasted crosses or clones, balanced by the moderate repeatability of the 426 

screening tests (Durand-Gasselin et al. 2018). More surprising, the variance assigned to the GA pedigree was 427 

double that for the GB pedigree, while the pure parental GB genetic backgrounds are both more resistant and 428 
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exhibit more resistance variability than GA backgrounds (Durand-Gasselin et al. 2018). This could be an artefact 429 

of the unbalanced number of parents screened between heterotic groups and further investigation is needed to 430 

accurately estimate their relative contribution to the GA×GB resistance. The variance associated with SCA effect 431 

was 20% of the genetic variance and one QTL×genetic background interaction was retained, while well supported 432 

previous observations indicated that resistance was mainly additive, both in pre-nursery and field trials (Durand-433 

Gasselin et al. 2018). Again, this could be an artefact, as only the GB pedigree was genotyped for this study but 434 

further analyses using both heterotic groups will allow us to estimate the proportion of variance due to GA×GB 435 

interaction and identifying underlying QTL.  436 

The distributions of the GCA of GB individuals showed segregation of the Ganoderma resistance throughout the 437 

pedigree, even in the most inbred generations. Consequently, we identified a large number of putative QTL regions 438 

using FlexQTL, with weak to moderate effects. This partially reflects the composition of the GB that grouped two 439 

contrasted populations, LM and YBI, which displayed distinct QTL patterns when analyzed separately. However, 440 

even when we focused on a restricted genetic background, the large number of putative QTL found despite the 441 

reduced population size confirm the quantitative nature of Ganoderma resistance (quantitative disease resistance, 442 

QDR). Thus, the marked difference in Ganoderma resistance consistently observed between the four full-sib 443 

founders of the studied LM pedigree (Durand-Gasselin et al. 2018) is rather the consequence of a better 444 

combination of many favorable alleles than of a limited number of major QTLs. The numerous QTL found and 445 

the dissimilarity of QTL patterns between the LM and YBI genetic backgrounds is likely due to either the 446 

Ganoderma bio-trophic pathogenesis that induce contrasted transcriptomic responses (Bahari et al. 2018) or the 447 

multiple mechanisms involved in the QDR (Poland et al. 2009). This could explain the few discrepancies observed 448 

for some pre-nursery QTL with no effect in the field, and even a QTL with an opposite effect on LG12, considering 449 

that such QDR mechanisms are more prone to depend on the age of palms, on the environmental conditions, or on 450 

the genetic background surveyed. 451 

Inspection of QTL colocalization may validate putative QTL when found for similar traits in independent 452 

experiments and inform QTL pleiotropy or linkage for different traits. Pleiotropy is especially worth investigating 453 

for QDR to obtain insights into possible underlying mechanisms and, together with linkage, on the resulting trade-454 

off with other traits of interest (Nelson et al. 2018). To date, only two genetic mapping studies have been reported 455 

on Ganoderma resistance. The first analyzed data from a nursery test involving one resistant and two susceptible 456 

progenies, with a similar genetic background (Deli×YBI) and common markers to our study (Hama-Ali et al. 457 

2015). Despite the limited scope of the study, i.e. involving only 79 individuals genotyped with 58 SSRs, Hama-458 
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Ali et al. (2015) identified two significant markers on LG2 and seven in the same QTL regions as in our study, 459 

what is more, in equivalent populations, YBI and GB respectively. The second study used field data recorded on 460 

a multi-parental GA×GB population involving four GB founders that were the same as in the present study (Eg9PP 461 

population, Tisné et al. 2017). Four Ganoderma resistance loci were identified, two controlling the occurrence of 462 

the first Ganoderma symptoms (T1S), and two the death of palm trees (TD). Among them, the T1S QTL at the 463 

bottom of LG1 collocated with a QTL identified in GB and LM populations in the present study. The Eg9PP 464 

population and a large-scale genetic trial involving GB parents related to the founder of the present study (NGP 465 

population, Tisné et al. 2015, Tisné et al. 2019) were evaluated in the framework of the breeding program. Hence, 466 

data for fruit bunch production, oil extraction rate, and height increment traits were stored in databases, and both 467 

populations as well as the population from the present study were genotyped with the same SSR markers from a 468 

reference genetic map (Cochard et al. 2015) allowing QTL detection. We observed that among the six Ganoderma 469 

QTL regions with higher statistical support found in the GB, LM or YBI populations, most collocated with a large 470 

number of QTL for other agronomic traits (Tisné, personal communication). The colocalizations were more 471 

frequent in the LM population (33) than in the YBI one (15), while they were mostly found with oil extraction rate 472 

related traits and bunch number in LM genetic background in contrast with bunch weight and height increment in 473 

the YBI one (Tisné, personal communication). These preliminary findings now require further support, in 474 

particular by using a high-density SNP genotyping that is currently in progress, but already provide interesting 475 

insights into the possible diverse mechanisms underlying the QDR, which could differ considering the genetic 476 

backgrounds. This also highlights the benefits of the in silico approach assessed in this study that makes it possible 477 

to gather information from the entire breeding program for a more comprehensive description of the genetic 478 

architecture of traits of interest.  479 

4.3. Advances towards a MAS of Ganoderma resistance in oil palm breeding programs  480 

No complete resistance to Ganoderma has been identified to date and the results of the present study corroborate 481 

previous observations to indicate its quantitative nature (Franqueville et al. 2001; Idris et al. 2004; Durand-Gasselin 482 

et al. 2005). Despite the increasing use of QDR to improve the sustainability of disease resistance (Poland et al. 483 

2009; Roux et al. 2014) the high number of loci and mechanisms involved makes its selection challenging. This is 484 

more acute in the case of oil palm with its long breeding cycle, worsened by the slow Ganoderma disease 485 

progression. Pre-nursery testing accelerated the screening of genetic material and revealed a genetic component 486 

that accounted for about 20% of phenotypic variance, which is generally a favorable level for a MAS perspective 487 

(Muranty et al. 2014). A first concern is to insure the consistency of QTL effects between the pre-nursery and field 488 
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results, like in conventional selection (Durand-Gasselin et al. 2018). We attempted to assess this at the QTL level 489 

with the extensive use of the data from the breeding program, including the Ganoderma census routinely recorded 490 

on seed and genealogical gardens. Following the previous study assessing the Ganoderma resistance in field  we 491 

used a survival analysis approach that provides several advantages (Tisné et al. 2017). Despite the limitations of 492 

specific to the data recorded in seed gardens, i.e. mature palms of pure genetic backgrounds in the field vs GA×GB 493 

seedlings in pre-nursey and spatio-temporal heterogeneity in the field, the accumulation of favorable pre-nursery 494 

QTL alleles improved field resistance. Interestingly, the majority of QTL effect directions were consistent 495 

regardless the statistical evidence in pre-nursery. Thus, the many QTL that would not have been detected in the 496 

field setup because of a lack of statistical power, were identified in the pre-nursery study and are valuable for a 497 

marker-assisted Ganoderma resistance selection.  498 

Secondly, the quantitative nature of Ganoderma resistance identified could hamper the conventional QTL 499 

pyramiding approach due to the high number of loci involved, especially considering the long generation time in 500 

oil palm. In such a QDR context, the MAS approaches developed for other agronomic quantitative traits are 501 

probably more suitable, especially the genomic selection (GS) approach (Poland and Rutkoski 2016). In oil palm, 502 

GS has emerged as an efficient MAS method and is being increasingly evaluated for yield improvement (Nyouma 503 

et al. 2019). Thus GS statistical models and implementation modes already assessed in oil palm could be 504 

transferred or adapted to Ganoderma disease related data from the breeding program (Cros et al. 2015, 2017). 505 

However, the qualitative/quantitative nature of disease resistance is a continuum (Poland et al. 2009). Despite a 506 

large number of QTL regions identified using FlexQTL, only 5 QTL with weak to moderate effects explained 507 

almost all the GB GCA component based on pre-nursery data. GS models including information on QTL or genes 508 

have been proposed to improve prediction capacity in such situations (Bernardo 2014; Zhang et al. 2014) and 509 

should be considered for a GS of implementation in light of the emerging insights into the genetic architecture of 510 

Ganoderma resistance.  511 

A final issue is that selection for Ganoderma resistance will need to be combined with resistance to other diseases 512 

and cannot be at the expense of other traits of interests. The cost of disease resistance through negative trade-off 513 

with performance or fitness was a long-lasting question in model plants but was less investigated in plant breeding 514 

(Brown 2002). In the former section, we described colocalization of Ganoderma resistance QTL with yield related 515 

ones, with a genetic background specificity of these complex patterns. Dealing with multiple traits and multiple 516 

genetic background is challenging and the QTL information provided by the in silico approach assessed in the 517 

present study is very valuable for comprehensive modeling of a MAS strategy. Hence, a recent study in oil palm 518 
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simulated the outcomes of alternative selection strategies on yield and its components based on their global genetic 519 

architecture, including the pleiotropy/linkage and phases between the underlying QTL (Tisné et al. 2019). Virtual 520 

individuals and crosses were simulated from the actual founders via meiosis simulations based on the QTL 521 

positions identified with FlexQTL, which thus integrated their recombination frequencies. The QTL genotypes 522 

predicted in FlexQTL enabled prediction of their multiple trait values and their incorporation in yield based on the 523 

QTL effects. This use of QTL genotypes is of prime interest as QTL genotypes can be predicted based on markers 524 

alone in any related individual, whether phenotyped or not. In the MAS perspective for Ganoderma resistance, 525 

this approach would help attenuate possible trade-offs with other traits of interest and optimize the combination of 526 

QDR from diverse genetic backgrounds. 527 

5. Conclusion 528 

The cost-effective and efficient in silico mapping approach assessed in this study has great potential for the 529 

implementation of MAS of traits of interest in oil palm. Its application in the context of Ganoderma disease 530 

resistance enabled us to use the considerable quantities of data generated in the framework of conventional 531 

phenotypic selection to obtain valuable information in the MAS perspective. First, important information on the 532 

genetic architecture of resistance to Ganoderma disease was obtained, confirming its quantitative nature and 533 

identifying the loci involved. In addition, together with other ongoing works, this study sheds light on the 534 

relationships between Ganoderma resistance and yield related traits that could produce undesirable trade-offs. 535 

Second, the consistency between genetic resistance in pre-nursery conditions and in the field was assessed at the 536 

QTL level and globally indicated satisfactory portability. However, a few loci deserve careful consideration due 537 

to underlying mechanisms that could lead to contrasted phenotypic expression between pre-nursery and field 538 

conditions. Finally, this proof-of-concept study provides guidelines for future works on Ganoderma disease 539 

resistance and should encourage oil palm breeders to use this approach to collectively acquire a better 540 

comprehension of its complex genetic architecture. 541 
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 783 

Figure captions 784 

Fig. 1 Pedigree of the pre-nursery GB oil palm population. Boxes on the left represent the founders of the La Mé 785 

(LM, panel A) and Yangambi (YBI, panel B) populations. Note that the La Mé founders LM_1:4 are full sibs. 786 

Other boxes represent full-sib families whose color represents their relation to their genetic background, with the 787 

number of individuals in parenthesis. The circled cross symbols represent progenies obtained through self-788 

pollination, and successive self-pollinated progenies keep the same color. 789 

Fig. 2 Distribution of Ganoderma disease resistance in the pre-nursery GB oil palm population. Distribution of 790 

the percentage of affected individuals in crosses (A), BLUP obtained from random effect of the GCA in GB in a 791 

GLMM (B) and LMM (C) for the La Mé (LM) and Yangambi (YBI) populations. Different colors represent 792 

different genetic backgrounds.  793 

Fig. 3 QTL mapping of Ganoderma resistance in the pre-nursery GB oil palm population. QTL regions marked 794 

by FlexQTL software in six independent simulations (LMM and GLMM models, three random starting seeds) (A) 795 

and the averaged posterior intensity calculated at a 1 cM grid for the six simulations (B) are plotted along the 796 

genome. In panel A, the yellow to red color code scale depict the value of intensity of the corresponding marked 797 

QTL regions found in the “MQTRegions.new” FlexQTL output file. In panel B, a white to red color scale indicates 798 

the number of marked QTL regions among the six simulations at the corresponding position in the genome.  799 

Fig. 4 Variance components of Ganoderma resistance in the pre-nursery screening tests. Variance components are 800 

plotted as a percentage of the total phenotypic variance for each of the steps performed in the stepwise selection 801 

model. GA/GB: heterotic group A and B; GCA: general combining ability; SCA: Specific combining ability; CL: 802 

Ganoderma clonal lines; QTL names: see M&M section. 803 
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Fig. 5 Pre-nursery QTL effects on Ganoderma resistance to natural field infection in the La Mé genetic 804 

background. (A) Survival curves of the La Mé population according to the percentage of favorable alleles at the 805 

21 La Mé QTL detected in the pre-nursery analysis, the red to green color scale indicates an increasing percentage. 806 

Survival estimates are plotted at the time of the first observation of a Ganoderma symptom. (B) Scatterplot 807 

showing the relationship between the statistical significances of QTL effects in the pre-nursery experiments 808 

(posterior intensity, x-axis) and in the field (-log (P-value) from the Cox model, y-axis). QTL originate from QTL 809 

mapping using the GB (squares) or LM (triangles) pedigree. Consistency between field and pre-nursery QTL 810 

effects was defined for QTL alleles decreasing the number of affected progenies in the pre-nursery trials and 811 

delaying the appearance of the first symptom of Ganoderma: inconsistent and consistent QTL effects are depicted 812 

by green (+) or red (-) symbols, respectively. QTL for which one of the three allelic classes (QQ, Qq or qq) was 813 

represented by less than ten individuals are depicted by shaded symbols. QTL names: see M&M section. 814 



M
od

el

GLMM

LMM
Intensity

0

0.74

Chromosome

In
te

ns
ity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.
05

0.
15

●●
●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●
●●
●●
●●
●●
●●
●●●●●●●●●
●●
●●
●
●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●
●●
●●
●
●●
●●
●
●●

●●
●●●●

●
●
●●●●●●●●

●●●
●
●●●
●
●●●●●●
●

●

●
●
●●
●
●

●●
●
●

●
●

●●
●●
●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●●●●●●●●●●●

●●
●

●●

●●
●●●●
●●
●
●●●●
●●
●
●
●●●
●
●
●
●●
●
●

●●
●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●
●●
●●
●●
●●●●●●●●●●●●●●●

●
●
●
●
●
●

●
●

●
●
●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●●
●●●●●●●
●●●●●●●●●
●●●●●●
●●
●

●
●●●●●●●

●
●
●
●

●●●
●
●
●
●
●

●

●●

●●

●●

●●

●●

●

●

●

●

●
●
●
●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●●●●●
●●●
●

●●
●
●
●

●●
●
●
●●
●●●●●
●●●
●●
●
●
●●●●
●●●●●●

●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●
●●●●●
●●●●
●●
●●
●
●●●

●

●
●
●●●●●●●●●●
●●●

●
●

●

●
●
●
●
●●
●
●●
●●

●

●●
●●

●●

●●
●●

●

●

●

●

●
●
●●●●●●●●

●
●●●●●●●●●●●●●●●

●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●

●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●
●
●●
●●
●●●●
●●●●●
●●●●●●●●●●●●

●●
●●
●

●●●●
●
●●●●
●

●
●●

●

●●●●●●●●
●●●

●●
●●
●
●
●●
●
●
●

●
●
●●●●●●●

●
●●

●●●
●●
●●●●●●●●●●●●●●●

●
●●●●●●●●
●
●
●●
●
●
●● ●●

●●
●●●●●●●●
●
●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●
●●●

●

●●●

●

●

●

●

●

●●
●
●●
●
●

●

●
●

●●
●●
●
●
●

●●

●
●

●
●

●●●
●●
●

●●

●●

●●

●
●

●

●

●
●

●
●
●●
●●●●●●●●●●●●●

●●●●●●●●●●
●
●●
●●
●●
●●●
●●●
●
●

●●
●
●
●
●●

●●

●

●
●●
●●

●

●

● ●
●

●

●
●
●
●●●●
●●

●●●●●
●●
●●●●●
●●●●●●●●●●●●●●●●

●●
●●
●
●
●
●
●

●
●●

●●●
●
●
●●
●●

●●●●●
●●
●
●

●●●●
●
●●●
●

●
●

●●
●
●●
●
●●●
●●●●●●●●●●●

●●●●●
●●●
●
●
●●
●
●
●●●●●

●

●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●●●●●●●●●●●●●●●●

●●
●●
●
●

●●●●

●
●
●●●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●●●●●●●●●

●●●●●
●●●●●●●
●●●

●

●●
●●
●
●

●●●

●●
●●

●

●
●●
●●
●●●●●●●●●●●●●●

●●●●●●●●●●
●●
●●
●
●
●
●

●
●
●
●
●

●●
●●●●
●●

●
●
●●●

●
●●
●
●
●
●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●
●●●●●●
●● ●●

●●
●●●●●●
●●
●●
●●
●●
●
●
●
●

●●●

●●
●
●●●
●
●

●
●

●●
●
●●
●●
●●●●●●●●
●●
●●●●●
●●●●●●●●
●
●●●
●
●
●
●
●●
●
●
●
●
●

●
●
●

●

●

●

●

●
●●●●●
●

●●
●●●●

●
●
●●
●

●
●

●

●
●
●
●
●
●

●

●
●

●
●
●

●●●●
●●
●●●●●
●●
●●●●●●●
●●●●●●
●●●●●
●●●●●●●
●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●
●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●●
●●
●●
●●

●●
●●●●●
●●

●
●

●
●●
●
●
●●●●●●●
●
●●
●●
●●
●●●●●●●●●●●●●●●

●
●
●
●
●
●
●

N_qtl

0

6

Figure 3 Click here to access/download;Figure;Fig3.pdf

https://www.editorialmanager.com/molb/download.aspx?id=226973&guid=60b63548-e1c3-4f92-a0a8-60e35e725125&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226973&guid=60b63548-e1c3-4f92-a0a8-60e35e725125&scheme=1


0

25

50

75

100
Va

ria
nc

e 
co

m
po

ne
nt

s 
(%

)

GB_10@6

GB_16@20

GB_8@75

GB_9@5

GCAGB

GB_6@24:GA

SCA

GCAGA

CL

Trial

Residual

1 2 3 4 5 6
Steps

Figure 4 Click here to
access/download;Figure;Fig4.pdf

https://www.editorialmanager.com/molb/download.aspx?id=226974&guid=e9471eb1-8ebe-4908-ba25-3585720bd5bf&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226974&guid=e9471eb1-8ebe-4908-ba25-3585720bd5bf&scheme=1


|
| |

|
|||| ||||

| |

| ||||

|
| |

||||
|

||

| |

||
|
||

|

|

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50

Year

S
ur

vi
va

l p
ro

ba
bi

lit
y

|    <40      |    40−50     |    50−60     |    >60

0.05 0.10 0.15 0.20 0.25

0
1

2
3

4
5

6

Prenursery - intensity

F
ie

ld
 - 

−
lo

g(
p−

va
lu

e)

GB_6@121

GB_9@34

GB_9@5
LM_12@11

LM_15@65
LM_4@168

LM_9@8

(a) (b)

GB / + / nmin>10
LM / + / nmin>10 
GB / - / nmin>10 
LM / - / nmin>10 
GB / + / nmin<10
LM / + / nmin<10 
GB / - / nmin<10
LM / - / nmin<10

(N=45) (N=85) (N=72) (N=17)

Percentage of favorable alleles

Figure 5 Click here to access/download;Figure;Fig5.pdf

https://www.editorialmanager.com/molb/download.aspx?id=226975&guid=cf30d59b-7d1c-454d-8206-48df30216077&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226975&guid=cf30d59b-7d1c-454d-8206-48df30216077&scheme=1


−0.2 0. 0.2

Percentage of 
affected individuals

Genetic background

YBI_3

YBI_1×YBI_2

YBI_2×YBI_3

LM_1

LM_2

LM_3

LM_1×LM_2

LM_1×LM_3

LM_2×LM_3

LM_1×LM_4

LM_1×(LM_1×LM_2)

LM_1×(LM_2×LM_3)

(LM_1×LM_2)×(LM_2×LM_3)

(a) (b) (c)

LM_A

0

1

2

3

4

de
ns

ity

0

10

20

30

40

0

50

100

150

0 25 50 75  −0.05 0 0.05 

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

10

20

30

40

0

10

20

30

40

0

10

20

30

40

0

50

100

150

0

50

100

150

0

50

100

150

LM_A LM_A

LM_B LM_B LM_B

LM_C LM_C LM_C

YBI YBI YBI

GLMM BLUP LMM BLUP

LM_A

LM_C

YBI

LM_B

Figure 2 Click here to access/download;Figure;Fig2_revised.pdf

https://www.editorialmanager.com/molb/download.aspx?id=226927&guid=3ca2d125-50ce-43ed-a904-af6b249d5e2c&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226927&guid=3ca2d125-50ce-43ed-a904-af6b249d5e2c&scheme=1


LM_1

LM_2

LM_3

LM_4

1LM_(N=17)

7LM_(N=5)

13LM_(N=4)

9LM_(N=3)

11LM_(N=4)

3LM_(N=6)

5LM_(N=3)

2LM_(N=4)

15LM_(N=22)

16LM_(N=11)

8LM_(N=8)

10LM_(N=8)

12LM_(N=25)

17LM_(N=26)

4LM_(N=40)

14LM_(N=23)

6LM_(N=32)

(a)

(b)

LM_1

LM_2

LM_3

LM_4

LM_1xLM_2

LM_2xLM_3

LM_1xLM_4

LM_1xLM_3

YBI_1

YBI_2

YBI_3

1YBI_(N=3)

3YBI_(N=7)

5YBI_(N=6)

2YBI_(N=16)

4YBI_(N=54)

6YBI_(N=16)

LM_1x(LM_1xLM_2)

LM_1x(LM_2xLM_3)

(LM_1xLM_2)x(LM_2xLM_3)

YBI_2 

YBI_3 

YBI_1xYBI_2 

YBI_2xYBI_3 

YBI_1 

Genetic background

Figure 1 Click here to access/download;Figure;Fig1_revised.pdf

https://www.editorialmanager.com/molb/download.aspx?id=226926&guid=f515f7e2-d995-4ed7-8776-dcec1150e8ec&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226926&guid=f515f7e2-d995-4ed7-8776-dcec1150e8ec&scheme=1


 

1 

 

 Title Page 1 

Title 2 

In silico QTL mapping in an oil palm breeding program reveals a quantitative and complex genetic resistance to 3 

Ganoderma boninense 4 

Authors 5 

Aurélie Daval, Virgine Pomiès, Sandrine le Squin, Marie Denis, Virginie Riou, Frederic Breton, Nopariansyah, 6 

Marco Bink, Benoît Cochard, Florence Jacob, Norbert Billotte and Sébastien Tisné  7 

Author information 8 

Aurélie Daval : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, INRAE, 9 

Institut Agro, Montpellier, France ; ORCID ID: 0000-0002-2613-0562 10 

Virgine Pomiès : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, 11 

INRAE, Institut Agro, Montpellier, France ; ORCID ID: 0000-0002-5481-5120 12 

Sandrine le Squin : PalmElit SAS, Montferrier-sur-Lez, France 13 

Marie Denis : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, INRAE, 14 

Institut Agro, Montpellier, France ; ORCID ID : 0000-0002-1693-9894 15 

Virginie Riou : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, INRAE, 16 

Institut Agro, Montpellier, France 17 

Frederic Breton : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, 18 

INRAE, Institut Agro, Montpellier, France ; ORCID ID: 0000-0002-6853-2623 19 

Nopariansyah: P.T SOCFINDO, Jl. Yos Sudarso, Medan, Sumatera Utara 20115, Indonesia 20 

Marco Bink: Biometris, Wageningen UR, PO Box 16, 6700 AA Wageningen, The Netherlands; Current address: 21 

Research & Technology Center, Hendrix Genetics, Boxmeer, The Netherlands ; ORCID ID: 0000-0002-1278-22 

2092 23 

Benoît Cochard : PalmElit SAS, Montferrier-sur-Lez, France 24 

Florence Jacob : PalmElit SAS, Montferrier-sur-Lez, France ; ORCID ID : 0000-0002-0454-1037 25 

Revised Manuscript Click here to access/download;Revised Manuscript with Track
Changes;GanoPep_Revised.docx

https://orcid.org/0000-0002-2613-0562
https://orcid.org/0000-0002-5481-5120
https://orcid.org/0000-0002-1693-9894
https://orcid.org/0000-0002-6853-2623
https://orcid.org/0000-0002-1278-2092
https://orcid.org/0000-0002-1278-2092
https://orcid.org/0000-0002-0454-1037
https://www.editorialmanager.com/molb/download.aspx?id=226919&guid=2a966d44-9058-4a49-aa57-8ac9144e76e9&scheme=1
https://www.editorialmanager.com/molb/download.aspx?id=226919&guid=2a966d44-9058-4a49-aa57-8ac9144e76e9&scheme=1


 

2 

 

Norbert Billotte : CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ Montpellier, CIRAD, 26 

INRAE, Institut Agro, Montpellier, France ; ORCID ID : 0000-0002-0438-0966 27 

Sébastien Tisné (Corresponding author): CIRAD, UMR AGAP, F-34398 Montpellier, France ; AGAP, Univ 28 

Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France; E-mail address: sebastien.tisne@cirad.fr; 29 

ORCID ID: 0000-0001-9838-3975 30 

 31 

Abstract 32 

Basal stem rot caused by Ganoderma boninense is the major threat to oil palm cultivation in South-East Asia, 33 

which accounts for 80% of palm oil production worldwide, and this disease is increasing in Africa. The use of 34 

resistant planting material as part of an integrated pest management of this disease is one sustainable solution. 35 

However, breeding for Ganoderma resistance requires long-term and costly research, which could greatly benefit 36 

from marker assisted selection (MAS). In this study, we evaluated the effectiveness of an in silico genetic mapping 37 

approach that took advantage of extensive data recorded in an ongoing breeding program. A pedigree-based QTL 38 

mapping approach applied to more than 10 years’ worth of data collected during pre-nursery tests revealed the 39 

quantitative nature of Ganoderma resistance and identified underlying loci segregating in genetic diversity that is 40 

directly relevant for the breeding program supporting the study. To assess the consistency of QTL effects between 41 

pre-nursery and field environments, information was collected on the disease status of the genitors planted in 42 

genealogical gardens and modeled with pre-nursery-based QTL genotypes. In the field, individuals were less likely 43 

to be infected with Ganoderma when they carried more favorable alleles at the pre-nursery QTL. Our results pave 44 

the way for a MAS of Ganoderma resistant and high yielding planting material and the provided proof-of-concept 45 

of this efficient and cost-effective approach could motivate similar studies based on diverse breeding programs. 46 

 47 

Keywords 48 

Oil palm, basal stem rot disease, nursery screening test, breeding population, QTL mapping, pedigree-49 

based analysis. 50 
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 71 

1. Introduction 72 

The African oil palm (Elaeis Guineensis Jacq.) is the leading oil crop worldwide with a global annual production 73 

of around 73 Mt, and accounts for more than 35% of all the edible vegetable oil produced worldwide (USDA 74 

statistics, 2019). Oil palm is expected to be able to respond to the global increase in the demand for vegetable oil 75 

projected to be 240 Mt in 2050, even higher if its non-food uses are included  (Corley 2009). The oil palm sector 76 

has agreed on sustainability goals to reach this global demand (Rochmyaningsih 2019), in particular through the 77 

certification of sustainable produced palm oil (the Roundtable on Sustainable Palm Oil, RSPO, https://rspo.org/). 78 

However, pests and diseases threaten palm oil production in all areas of cultivation and contribute to the current 79 

yield gap (Woittiez et al. 2017). If it is to achieve the zero-deforestation goal in high conservation value forests 80 

included in the RSPO commitments, oil palm will inevitably be cultivated on existing arable lands under increasing 81 

pathogen pressure. The integrated pest management (IPM) covers sustainable solutions to this problem including 82 

improved plant disease resistance. Oil palm breeders thus needs to focus on developing resistant planting material, 83 

while maintaining or even improving oil yield. 84 
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The basal stem rot disease caused by Ganoderma boninense is a major threat in South East Asia, with projections 85 

worsening due to climate change (Paterson 2019). This pathogenic fungus is a soil-borne basidiomycete that 86 

mainly infects the oil palm when its roots come into contact with infected debris or with the roots of neighbor 87 

palms (Rees et al. 2009). Ganoderma stem rot disease has a significant effect on oil yield even when only 10-20% 88 

of palm trees are infected, and 30-70% of the trees may have died over a typical 25-year planting cycle (Durand-89 

Gasselin et al. 2005; Cooper et al. 2011). To date, no specific interaction and/or complete resistance have been 90 

identified in oil palm/Ganoderma pathosystem, which is consistent with its hemibiotrophic pathogenic lifestyle. 91 

However, observations of contrasted levels of resistance in diverse genetic backgrounds suggest that breeding for 92 

quantitative disease resistance (QDR) is a promising solution (Franqueville et al. 2001). Typically, research on 93 

perennial plant disease resistance is based on large scale costly field experiments, even more so when investigating 94 

QDR. When possible, ex situ experiments with controlled inoculation of the pathogen are powerful tools that offer 95 

more repeatability and increase both speed and throughput, especially in genetic surveys. In oil palm, such pre-96 

nursery tests were first developed for research on vascular wilt (De Franqueville and Renard 1990), followed by 97 

Ganoderma in the 2000s (Idris et al. 2004; Breton et al. 2006b; Rees et al. 2007) and are now widely used. 98 

However, transferring results to the field can be problematic because of a more complex biotic context, the age 99 

specificity of the QDR mechanisms, or the effects of cultural practice management on disease epidemiology. 100 

Despite these challenges, by combining field and pre-nursery approaches in long-term works in the framework of 101 

an oil palm breeding program, Cirad, its subsidiary PalmElit, and their partners have managed to release planting 102 

material that is highly resistant to vascular wilt and intermediate resistant to basal stem rot caused by Ganoderma 103 

(De Franqueville and Renard 1990; Franqueville et al. 2001; Durand-Gasselin et al. 2005; Breton et al. 2009).  104 

Information on the genetic architecture and molecular determinisms of traits of interest could help shorten the long 105 

breeding cycle of oil palm, which currently exceeds 20 years, and would be particularly useful in the case of 106 

Ganoderma disease given the cumbersome nature of field and nursery trials. Marker assisted selection (MAS) 107 

based on this information would increase the annual genetic gain thanks to both accelerated evaluation of selection 108 

candidates and increased selection intensity by enabling surveys of wider genetic diversity at the same cost (Cros 109 

et al. 2015, 2017). Moreover, identification of the genetic bases of resistance to Ganoderma could resolve the 110 

challenge of breeding for both QDR and yield related traits (Nelson et al. 2018) by using simulation and prediction 111 

tools (Tisné et al. 2019). Most molecular studies on Ganoderma disease to date have been based on inoculated vs 112 

non-inoculated seedlings at the pre-nursery stage, with no or low genetic diversity. The first investigations focused 113 

on a priori selection of candidate resistance genes to fungal diseases (Yeoh et al. 2012, 2013; Tan et al. 2013). 114 
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Next the genes, proteins and pathways affected by Ganoderma infection were identified using broader 115 

transcriptomic (Tee et al. 2013; Ho et al. 2016; Bahari et al. 2018; Faizah et al. 2020; Sakeh et al. 2020), proteomic 116 

(Al-Obaidi et al. 2014) and metabolomic (Nusaibah et al. 2016) approaches. Considering that Ganoderma is a 117 

white rot fungus (Paterson 2007), lignin related traits were investigated as putative QDR mechanisms by surveying 118 

the response of lignin content and composition to Ganoderma infection together with the associated genes 119 

(Govender et al. 2017). Lignin related traits and nutritional traits were found to differ in progenies with different 120 

levels of resistance to Ganoderma (Govender et al. 2020) but the restrained genetic design confounds the effects 121 

of genetic and resistance variation. 122 

QTL mapping offers an alternative approach that provides information on the genetic architecture based on a 123 

relevant genetic diversity, with no a priori biological knowledge. The detected loci form the basis of the MAS 124 

strategy but also provide insights into the mechanisms and genes involved in the QDR. The first published QTL 125 

study reported the analysis of 79 individuals from one resistant and two susceptible families based on 58 simple 126 

sequence repeat markers and found alleles associated with Ganoderma symptoms (Hama-Ali et al. 2015). More 127 

conclusive insights would require much more data, but QTL analyses of oil palm crosses are typically not 128 

sufficiently effective due to biological and cost constraints (Jeennor and Volkaert 2014; Lee et al. 2015; Pootakham 129 

et al. 2015). This is even more problematic for field studies that are indispensable to assess genetic diversity in an 130 

agronomic context, whose implementation is very costly and would result in lower production income due to the 131 

disease context. A powerful and cost-effective approach is to directly use the databases compiled in ongoing 132 

breeding programs, which are typically large and obtained from diverse relevant genetic backgrounds, to map in 133 

silico the QTLs for the traits of interest (Parisseaux and Bernardo 2004). Despite the potential of this approach, 134 

data from breeding programs are unique, mainly because of a complex genetic design that may be biased due to 135 

selection, or unbalanced phenotyping coverage. Thus, they require appropriate statistical models for their 136 

development and evaluation in contrasted contexts, which are currently an active research topic (Würschum 2012; 137 

Garin et al. 2017; Korontzis et al. 2020). In oil palm, an in silico QTL mapping approach based on the two step 138 

variance component approach considering identity by descent (IBD) information (George et al. 2000; van Eeuwijk 139 

et al. 2010) yielded promising results on production traits recorded in large scale evaluation genetic trials (Tisné 140 

et al. 2015). This approach was successfully extended to survival data and applied to a multi-parent population to 141 

detect Ganoderma resistance QTLs in the field, allowing to identify two QTL related to the occurrence of the first 142 

disease symptoms, and two related to the death due to Ganoderma (Tisné et al. 2017). A Bayesian approach to 143 

pedigree based QTL mapping using IBD information was also developed in the 2000s and implemented in the 144 
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FlexQTL software (van de Weg et al. 2004; Bink et al. 2008). This made it possible to carry out increasing numbers 145 

of studies in several crops that share the constraints and potential described above for oil palm, in particular for 146 

disease resistance in strawberry (Mangandi et al. 2017; Anciro et al. 2018) or in apple (van de Weg et al. 2018). 147 

In this study, we evaluated the potential of an in silico approach based on the large existing databases of a long-148 

term oil palm breeding program for the study of Ganoderma resistance. We genotyped an existing DNA bank 149 

primarily established for identity checking purpose and performed a pedigree-based QTL mapping using data 150 

recorded in Ganoderma pre-nursery trials over a period of more than ten years. We then assessed the consistency 151 

of pre-nursery QTL effects in natural field conditions using a database recording the Ganoderma infection status 152 

over years for the palms planted in genealogical gardens. Thus, using a cost-effective approach that is directly 153 

relevant to the breeding program, we were able to study two major issues, i.e. the genetic architecture and 154 

consistency between pre-nursery and field results, paving the way for the implementation of MAS for Ganoderma 155 

resistant planting material. 156 

 157 

2. Material and methods 158 

2.1. Plant material 159 

The palm trees used in this study belong to the oil palm breeding program of Cirad, its subsidiary PalmElit and 160 

their partner PT Socfin Indonesia (Indonesia). This breeding program is conducted in a recurrent reciprocal 161 

selection scheme with two heterotic groups A and B (GA and GB to produce superior GA×GB hybrid crosses used 162 

as commercial planting material (Gascon and De Berchoux 1964; Meunier and Gascon 1972). Individuals from 163 

different heterotic groups have complementary yield component traits, with low fruit bunch number and high 164 

bunch weight in GA and reciprocally in GB. GA×GB hybrids consequently show a heterosis effect on fruit bunch 165 

yield. Moreover, individuals included in GA are Dura palms, homozygous for the thick alleles of the shell gene 166 

(Singh et al. 2013) while individuals included in GB are Pisifera (homozygous alternative alleles), the hybrid 167 

GA×GB being Tenera which is the most productive form with thin shell. The parental population studied for the 168 

Ganoderma resistance included only individuals from GB, grouping genetic origins of La Mé (LM, Ivory Coast) 169 

and Yangambi (YBI, Republic Democratic of Congo). The GB pedigree used in the pre-nursery analysis comprised 170 

372 individuals including founders, with 246/126 from LM/YBI genetic origin respectively and 240 /93 genotyped 171 

(Supp. Table 1). Among them 200 LM and 83 YBI parents were directly progeny tested for Ganoderma resistance 172 

in a pre-nursery screening test (Fig. 1). The individuals were distributed over many full-sib families derived from 173 

a small number of founders through consecutive crosses or self-pollinations in the framework of the ongoing 174 
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breeding program (Fig. 1). Among the 372 individuals in the whole pedigree, 219 LM individuals were planted 175 

between 1970s and 2000s at the same location (Bangun Bandar, Indonesia) and were used for subsequent field 176 

analysis.  177 

2.2. Phenotypic data 178 

2.2.1. Pre-nursery screening tests 179 

An early pre-nursery screening test was developed in the 2000s by Cirad and Socfin Indonesia in the Tanah 180 

Gambus estate, Indonesia. The first objective was to speed up the evaluation of genetic resistance to Ganoderma 181 

of commercial oil palm planting materiel, using controlled and standardized inoculation of germinated seeds 182 

(Breton et al., 2006). The inoculation of germinated seed was performed using a 12 week-old Ganoderma-183 

colonized rubber wood block (108 cm3) as inoculum source, that was previously deposited in the nursery polybag 184 

before the seeds were planted. 185 

A pure dikariotic Ganoderma boninense isolate was used in all the trials (NJ), previously harvested from an 186 

infected oil palm planted in Bangun Bandar, SOCFINDO estate (Mercière et al. 2015). This isolate was 187 

successively regenerated from the bole of young infected seedlings in consecutive pre-nursery trials to provide 188 

several dikariotic clonal lines (CL, n=7) over the 10 years of testing. These reactivating steps of the isolate made 189 

it possible to avoid the loss of pathogenicity often observed after successive sub-cultures on artificial fungi growth 190 

media (Butt et al. 2006). A single pathogen CL was used for all the crosses tested in a single trial. Around 100 191 

crosses were assessed simultaneously in each pre-nursery trial. Among them, 20% were control crosses from 192 

susceptible, intermediate and resistant genetic backgrounds and were included in all the trials performed. Of the 193 

remaining 80% of crosses representing the tested crosses, 50% overlapped two consecutive trials, leading to at 194 

least two independent tests per tested cross. Each cross was represented by 100 inoculated germinated seeds 195 

clustered in five replicates following the protocol described by Breton et al. (2009). Inoculated seedlings were 196 

observed every four weeks for the appearance of the first external disease symptom, on average between 8 and 12 197 

weeks after inoculation of the germinated seeds, after which the disease symptoms were recorded at two weekly 198 

intervals as (1) infected and (0) if not infected. The trial was stopped when the average percentage of infected 199 

seedlings within the group of control crosses reached 30%, usually around 34 weeks after inoculation of the 200 

germinated seeds. This 30% threshold was determined to have the best “discriminating power” between the 201 

resistant and sensitive control crosses, and so among the tested progenies (Breton et al. 2009). 202 
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This study included 102 Ganoderma pre-nursery screening test trial, covering 10 years of data recording. The trials 203 

performed between 2007 and 2017 represented the evaluation of 4,017 unique crosses, from either GA×GA, 204 

GA×GB or GB×GB genetic background. Considering that the purpose of this study was to assess the genetic bases 205 

of Ganoderma resistance in the commercial genetic material, only the GA×GB crosses were taken into 206 

consideration (n=3,792), derived from 2,037 and 340 individuals from the GA and GB respectively. Each parent 207 

from GB included in the analysis was progeny tested in an average of 20.5 GA×GB crosses. 208 

2.2.2. Statistical modeling of pre-nursery data 209 

The resistance of the GB individuals was progeny-tested through several GA×GB crosses involving them as GB 210 

parents. The response variable 𝑌 considered in this study was the proportion of affected progenies per cross at the 211 

end of the trial. A first step of statistical modeling of 𝑌 was necessary to obtain a single value per genotype required 212 

for the QTL analysis while accounting for nuisance effects due to the long-term data. 𝑌 was modeled using 213 

generalized linear mixed models (GLMM). Briefly, in a GLMM, 𝑌 is assumed to be generated by a particular 214 

distribution in the exponential family. The conditional mean of the distribution 𝜇 is linked to a linear predictor 𝜂 215 

which contains fixed and random effects, through the inverse link function 𝑔−1: 216 

𝑔(𝜇) = 𝜂 = 𝑋𝛽 + 𝑍𝑇𝑢𝑇 + 𝑍𝐴𝑢𝐴 + 𝑍𝐵𝑢𝐵 + 𝑍𝐶𝑢𝐶 217 

where 𝑋 is a 𝑛 ×  𝑚 design matrix relating observations to Ganoderma boninense CL fixed effects 𝛽 where 𝛽 is 218 

a 𝑚 ×  1 vector (𝑚 = 7), 𝑍𝑇 is a 𝑛 ×  𝑡 design matrix relating observations to trial random effects 𝑢 ~ 𝑁(0, 𝐼𝜎𝑇
2 ) 219 

with 𝑢 is a 𝑡 ×  1 vector (𝑡 = 102), 𝑍𝐶 is a 𝑛 ×  𝑐 design matrix relating observations to specific combining ability 220 

(SCA) random effects 𝑔𝐶  ~ 𝑁(0, 𝐼𝜎𝑐
2) where 𝑔𝐶  is a 𝑐 ×  1 vector (𝑐 = 3,792), 𝑍𝐴 and 𝑍𝐵 are 𝑛 × 𝑞𝐴 and 𝑛 × 𝑞𝐵 221 

design matrices relating observations to general combining ability (GCA) random effects for GA and GB, 222 

𝑔𝐴 ~ 𝑁(0, 𝐴𝐴𝜎𝐴
2 ) and 𝑔𝐵  ~ 𝑁(0, 𝐴𝐵𝜎𝐵

2 ) respectively, where 𝑔𝐴 and 𝑔𝐵 are 𝑞𝐴 ×  1 and 𝑞𝐵 ×  1 vectors, 223 

respectively (𝑞𝐴 = 2,037 and 𝑞𝐵 = 340). 𝐴𝐴 and 𝐴𝐵 are the pedigree-based kinship matrices of GA and GB, 224 

respectively. 225 

In our work, we explored two types of distributions: binomial distribution, which is the appropriate one for 226 

proportional data, and normal distribution, for which more derived genetic parameters can be estimated. 227 

The first model considers a binomial distribution such as: 228 

𝑌𝑐,𝑡  | 𝑢𝑡 , 𝑢𝐴, 𝑢𝐵, 𝑢𝐶~ 𝐵𝑖𝑛 (𝑛𝑐,𝑡 , 𝜋𝑐,𝑡)  229 
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where 𝑌𝑐,𝑡 is the number of affected progenies in the cross (𝑐) and the trial (𝑡) among the number of inoculated 230 

progenies 𝑛𝑐,𝑡, and 𝜋𝑐,𝑡 is the associated probability.  231 

The link function 𝑔 is the logit such as: 232 

 𝑔(𝜋𝑐,𝑡) = log (
𝜋𝑐,𝑡

1−𝜋𝑐,𝑡
) = 𝜂𝑐,𝑡 233 

The second model considers a normal distribution such as: 234 

𝑌𝑐,𝑡  | 𝑢𝑇 , 𝑢𝐴, 𝑢𝐵, 𝑢𝐶~ 𝑁 (𝜂𝑐,𝑡 , 𝜎2)  235 

where 𝑌𝑐,𝑡 is the proportion of affected progenies in the cross (𝑐) and the trial (𝑡) , 𝜎2 is the residual variance, and 236 

the link function is the identity. Note that this second model is a linear mixed model (LMM). 237 

Both models enabled prediction of the best linear unbiased predictor (BLUP) for each GB individual used in the 238 

QTL mapping, 𝐴𝐵 being replaced by an identity matrix in order to avoid using the pedigree information that was 239 

subsequently used in the QTL analysis.  Both statistical models were performed using ASReml-R software (Butler 240 

et al. 2007, V4) and resulted in two vectors of BLUP for group B individuals that were used in subsequent QTL 241 

mapping analysis.  242 

 243 

2.3. Molecular data and genetic map construction  244 

The 334 freeze-dried oil palm leaf samples available at the Cirad DNA-bank for the GB individuals included in 245 

the analysis were genotyped with 199 SSR markers developed in different studies. Among the 199 markers, 177 246 

markers were developed by Cirad (Billotte et al. 2005), two by the Lee et al. (2015), four markers by the Malaysian 247 

Palm Oil Board (MPOB) (Zaki et al. 2012) and 18 expressed sequence tags markers were developed by IRD 248 

(Institut de Recherche pour le Développement) and Cirad (Tranbarger et al. 2012). These markers were selected 249 

based on a previous integrated pedigree-based genetic map constructed from a population of related individuals 250 

(Cochard et al. 2015). Selection was for a uniform distribution in the genome and the highest level of 251 

polymorphism in both LM and YBI genetic backgrounds. The information concerning markers was gathered in 252 

the supp. Table 2. DNA extraction, evaluation of the DNA concentrations and microsatellite fragment 253 

amplification were performed using the protocol described in Cochard et al. (2015). Genemapper© V4.1 (Applied 254 

Biosystems, USA) software was used to determine the size of the alleles.  255 

Three genetic maps were constructed, one for each of LM and YBI population and one integrated map using the 256 

pedigree-based linkage mapping software CRI-MAP v2.4 (Green et al. 1990), as described in Cochard et al. (2015). 257 
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Consistency of marker calling across pedigrees and absence of spurious rates of double recombination events were 258 

checked using both CRI-MAP and FlexQTLTM, and data were improved where necessary. Genetic maps were 259 

drawn using MapChart v2.0 software (Voorrips 2002) and are presented in Supporting Information Figure S1. 260 

2.4. Pre-nursery QTL mapping approach 261 

QTL mapping of Ganoderma disease resistance in pre-nursery conditions followed two main steps. The first step 262 

was carried out using a Bayesian approach and a multiple QTL model implemented in FlexQTLTM (Bink et al. 263 

2002, 2014, 2008; www.flexqtl.nl) on the pre-nursery data after modeling, in order to identify putative QTL 264 

positions and predict the QTL genotypes. The second step consisted in stepwise QTL model selection on the raw 265 

pre-nursery data using the predicted QTL genotypes as fixed effects in the LMM. 266 

2.4.1. QTL region identification and QTL genotype prediction 267 

Six separate QTL analyses, corresponding to the two vectors of GB individual BLUP (see Phenotypic data section) 268 

with three different starting random seeds were performed using FlexQTLTM. The six QTL analyses were based 269 

on a model with additive QTL effects, with the parameters MaximQTL and priorQTL set at 20 and 5 respectively 270 

for the Markov chain Monte Carlo simulation. The length of the Markov chains were set at 1 000 000 with a 271 

thinning value of 1 000. Using these parameters, the convergence indicators reached satisfying values for each 272 

parameter assessed (overall mean, µ, the residual variance, 𝜎𝑒
2, the number of QTLs, NQTL, and the variance of 273 

QTLs, vQTL). QTL regions were marked from the marginal posterior distributions of the six simulations and 274 

consensus QTL positions identified at the peaks of the summed posterior intensities profiles over the six 275 

simulations. QTL regions were named by the concatenation of population ID (LM, YBI or GB which refers to the 276 

grouped LM and YBI populations), the linkage group and the peaks separated by “@”. For each consensus QTL, 277 

QTL genotypes for all individuals in the pedigree were predicted based on the vectors of QTL genotype posterior 278 

probabilities extracted from the FlexQTL output “MQTRegionsGTP.csv”. QTL genotypes values were calculated 279 

as [(0 ∗ 𝑃𝑞𝑞) + (1 ∗ 𝑃𝑄𝑞) +  (2 ∗ 𝑃𝑄𝑄)], with 𝑃 the probability associated with the 𝑞𝑞, 𝑞𝑄 and 𝑄𝑄 QTL genotypes, 280 

𝑞 being the favorable allele in this case. The continuous [0,2] values of the QTL genotypes were converted into 281 

discrete values {0,1,2} using the following threshold: values in the ranges [0,0.7], ]0.7,1.3[ and [1.3,2], were 282 

assigned to 0, 1 and 2 respectively, corresponding to individuals carrying homozygous favorable, heterozygous or 283 

homozygous unfavorable disease resistance alleles at the respective QTL regions considered.  284 

2.4.2. Stepwise QTL model selection 285 
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In order to obtain a full QTL model fitted on the raw phenotypic data, QTL results from different modeling and 286 

random seeds were aggregated using stepwise model selection. The stepwise approach was applied on QTL 287 

genotypes vectors tested in the LMM model (see Phenotypic data section), following the procedure of the 288 

stepwiseqtl function of the R/qtl package (Broman and Sen 2009). First, a main effect QTL model was selected by 289 

testing the QTL genotype vectors in the LMM model with sequentially, a forward selection and a backward 290 

elimination. Model selection was based on the Akaike information criterion (AIC, Akaike 1998) using the full 291 

loglikelihood (Verbyla 2019). Similarly, the main effect QTL model was extended to the complete QTL model by 292 

first testing the interactions between QTLs and both QTL and CL (fixed effects), and second with the GA genetic 293 

background (random effect). Stepwise model selection was performed using ASReml-R software (Butler et al. 294 

2007, V4). 295 

2.5. Field evaluation of pre-nursery QTL 296 

The relationships between Ganoderma genetic resistance in pre-nursery and field conditions were investigated 297 

using the census of disease status of the La Mé parents planted in genealogical gardens (see plant material section). 298 

The Ganoderma infection status was recorded biannually on 219 LM individuals planted in 1974 (5), 1976 (11), 299 

1996 (5), 1997(107), 1998 (1), 1999 (47), 2001 (20) and 2003 (23) in six different blocks at Bangun Bandar estate, 300 

Indonesia. The disease status recording began within the three years after planting in the case of plantation after 301 

1990 and in the 2000s for older plantings, and the last observation was recorded in 2018. G. boninense disease 302 

symptoms were scored blindly based on a six-level scale as described in Tisné et al. (2017). The appearance of the 303 

first Ganoderma symptom (T1S, first observation of score 2–6) was recorded and the associated time was 304 

considered as survival time, i.e., time from planting to the time the event occurred. The survival data were analyzed 305 

using the Cox model integrating a fixed effect for the date of planting: 306 

𝜆(𝑡, 𝑋) =  𝜆0(𝑡)𝑒𝑋 𝛽 (1) 307 

where 𝑡 is the time to the event or censoring,  𝜆0 denotes the baseline hazard function, 𝑋 is the 𝑛 ×  𝑑 design 308 

matrix relating the survival outcome for individuals to date of planting effects (𝑑 = 8) and 𝛽 = (𝛽1, … , 𝛽𝑑) is a 309 

𝑑 × 1 unknown vector.  310 

The effects of pre-nursery QTL were evaluated using the likelihood ratio test, for which the limiting distribution 311 

follows a chi-squared distribution, between the model (1) and the following model (2): 312 

𝜆(𝑡, 𝑋) =  𝜆0(𝑡)𝑒𝑋𝛽+𝑋𝑞𝑞 (2)  313 
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with 𝑋𝑞being the {0,1,2} vector of pre-nursery-based QTL genotypes for the individuals and 𝑞 the QTL effect. 314 

The analysis was performed with R software version 3.2.3 (Team 2012) and the survival package (Therneau 2015). 315 

 316 

3. Results 317 

3.1. Segregation of Ganoderma resistance in the GB population 318 

Resistance to Ganoderma disease was tested in pre-nursery trials on 3,792 GA×GB crosses. On average, 30.8% 319 

of oil palm seedlings per cross presented disease symptoms at the end of the trial, ranging from 3 to 92.5% among 320 

the different crosses (Fig. 2a). Both LMM or GLMM models led to very similar predictions of GCA for the GB 321 

parents (r=0.97). Predictions of GCA were higher in YBI genetic background compared to LM, indicating higher 322 

susceptibility of the YBI background tested in this study (Fig 2b-c). Within genetic backgrounds, the distribution 323 

of GCA indicated segregation of quantitative resistance among founders, with mainly additive effects. Indeed, in 324 

LM genetic background, LM_1 self-pollinated individuals were the most resistant, and all the combinations of 325 

LM_1 and the alternative founders LM_2 or LM_3 showed higher resistance than the populations derived from 326 

self-pollinations of LM_2 and LM_3 (Fig. 2b-c). Similarly in YBI, YBI_3 was the least resistant genetic 327 

background, but its combination with YBI_2 improved the resistance of derived individuals. Even in narrow 328 

genetic bases, i.e. self-pollinated progenies of the most recent generation, there was still segregation of the 329 

resistance supporting the quantitative nature of Ganoderma resistance (Fig. 2b-c). 330 

3.2. Genetic bases of Ganoderma resistance in pre-nursery trials 331 

QTL mapping of the Ganoderma disease resistance in the GB population was performed using a Bayesian 332 

approach. Cumulating both modeling and the three random seeds per model, the number of QTLs was 125 333 

considering all the marked QTL regions found by FlexQTL, regardless the 2lnBF threshold (supp. Table 3). These 334 

125 QTL corresponded to around 20 QTLs on average per simulation. The QTLs were distributed in 30 consensus 335 

regions covering every linkage group (LG), with overall, a similar pattern between the different simulations (Fig. 336 

3). Among these 29 QTL regions, 11 located on LG 1, 5, 6, 8, 9, 10, 12, 13 and 16 were identified consistently in 337 

the six simulations. The QTL mapping performed separately in LM and YBI revealed different QTL patterns 338 

between them: consistent QTL regions on LG 1, 6, 10, 12 and 13 segregated in the LM genetic background while 339 

the regions were located on LG 5, 8, 9 and 10 in the YBI genetic background (Supporting Information Figure S2). 340 

The average length of the QTL interval was around 25 cM (4-107 cM). Considering QTL genotypes in the 30 341 
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consensus QTL regions, there were on average, 35, 41 and 24% of QQ, Qq and qq genotypes respectively, in the 342 

GB population, q being the favorable allele in this case.  343 

Stepwise model selection was performed based on the QTL genotype vectors calculated for the 30 consensus QTL 344 

regions. The first step fitted the LMM and indicated that the components related to the genetic effects represented 345 

21% of total phenotypic variation, while 6% corresponded to the GCA of the GB individuals (Fig. 4). The final 346 

QTL model retained four main effect QTL on LG 8, 9, 10 and 16, and one in interaction with the GA genetic 347 

background on LG 6 (Fig. 4, supp. Table 4). Adding either the main effect or interacting QTLs in the LMM in the 348 

different steps did not change the values of the non-genetic components, whereas the GCAGB was reduced to 1%. 349 

Including the interaction between the QTL on LG6 and the GA genetic background reduced both the values of the 350 

SCA and the GCAGA components. The partial determination coefficients computed for each QTL ranged from 351 

0.05-2% of the total phenotypic variance, corresponding to 3-9% of genetic variance. 352 

3.3. Effects of pre-nursery-based QTL on field Ganoderma resistance in the La Mé parents 353 

The effects of the QTL identified using the pre-nursery data on GA×GB crosses were evaluated in the field where 354 

219 LM parents included in the pre-nursery study were planted and underwent natural, uncontrolled Ganoderma 355 

infection. The time of the first Ganoderma symptom appearance (T1S) was modeled using Cox regression with 356 

the date of planting as covariate (P < 0.01). The effect of the percentage of favorable alleles per individual among 357 

the 21 QTL regions identified in the LM genetic background (range 28-75%) was first assessed to evaluate the 358 

global trend between pre-nursery and field conditions. The percentage of favorable alleles effect was not found to 359 

be significant (P=0.2), but Kaplan-Meier estimates of survival showed consistency between the pre-nursery and 360 

field QTL effects, a higher percentage of favorable alleles increased the probability of survival (Fig. 5a). Hence, 361 

the individuals with less than 50% of favorable alleles were twice more affected by Ganoderma 20 years after 362 

planting than individuals with more than 50% of favorable alleles (Fig. 5a). Then QTL genotype vectors, predicted 363 

either GB or LM populations, were tested one at a time as covariates in the Cox model. The level of statistical 364 

evidence of QTL effects between pre-nursery and field data was not correlated and significant QTL effects were 365 

found for both a high (LG 9) or low (LG 4, 15) level of evidence in pre-nursery conditions (Fig. 5b). However the 366 

direction of effects between field and pre-nursery effects was consistent for 78% of the QTLs, and for 89% when 367 

a P-value=0.05 threshold was applied in the Cox model (Fig. 5b, Supporting Information Figure S3).  368 

 369 

4. Discussion 370 
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Marker assisted selection (MAS) has a great potential for plant breeding and has been widely used for many crops 371 

with substantial achievements, especially for resistance to biotic stresses (Muranty et al. 2014). MAS should be 372 

particularly useful for perennial crops with a long breeding cycle and high phenotyping costs like oil palm, despite 373 

the identified biological, socioeconomic or technical issues (Muranty et al. 2014). In this paper, we report the proof 374 

of concept of an efficient in silico QTL mapping approach based on data collected in an ongoing breeding program. 375 

This allowed us to gain valuable insights into the genetic architecture of Ganoderma resistance and the 376 

transferability between field and pre-nursery results, as a basis for a future MAS.  377 

4.1. Opportunities and issues of QTL mapping using data from breeding programs 378 

Breeding programs for perennials are inherently geared towards long-term work with extensive data recording. 379 

This make them highly suited to the in silico approach, which is likely to improve the statistical properties of QTL 380 

detection through the increase in population size and diversity compared to conventional biparental populations. 381 

However, the specificity of the data from breeding programs, such as the extent of non-genetic effects due to long-382 

term data or the genetic and phenotypic design unbalances due to the selection process, could reduce the expected 383 

benefits of QTL detection, namely its power and the accuracy of QTL location and QTL effect estimation 384 

(Würschum 2012). Hence, these datasets require a first stage of statistical modeling to account for several non-385 

genetic effects and to obtain genotypic values. Thanks to their flexibility,  mixed models are ideal tools to handle 386 

several types of data and effects (Smith et al. 2005). We used two types of mixed models, LMM and GLMM that 387 

enabled us to predict the GCA of genotyped individuals while accounting for confounding effects. We 388 

subsequently used these GCA values in FlexQTL because this software requires only one value per genotyped 389 

individual whereas they were progeny tested in the pre-nursery trials. Such a two-stage approach could affect QTL 390 

results so one-stage approaches are preferred when possible (Xue et al. 2017; Barrasso et al. 2019). The two types 391 

of mixed model used in this study did not lead to major differences in the QTLs identified, and a one-stage IBD–392 

based variance component approach previously reported for production traits (IBD-VC, Tisné et al. 2015) that we 393 

used on pre-nursery Ganoderma data also produced similar results (data not shown). However, the calculation 394 

time requirement for the IBD-VC is an obstacle to a proper estimation of the significance threshold by permutation 395 

and a multi-QTL mapping procedure, which made us favor the approach presented.  396 

Few studies have assessed the effects of the dataset features on QTL detection. In barley, using GWAS with an 397 

unbalanced dataset, the false positive rate was increased, whereas one-stage analysis performed better (Wang et 398 

al. 2012). In durum wheat, a GWAS performed both on an unbalanced and balanced dataset from a breeding 399 
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program showed major overlapping of selected SNP (Johnson et al. 2019). In diploid potato, a dataset grouping 400 

F3 families under selection was analyzed using either GWAS, stratified linkage or IBD based approaches that led 401 

to consistent QTL detection, but revealed issues concerning the QTL allele frequencies that could affect the results 402 

(Korontzis et al. 2020). In our study, the population studied could be genetically biased due to prior selection of 403 

the crosses tested for Ganoderma resistance based on yield related traits. However, inspection of QTL genotype 404 

frequencies showed that there were no depleted allelic classes among the QTL retained in the stepwise model 405 

selection. Moreover, the QTL genotype vectors predicted at the QTL regions were not correlated for the different 406 

linkage groups, indicating little segregation distortion that could have arisen due to the selection process.   407 

Concerning the accuracy of QTL location, the increased population size allowed by the in silico approach should 408 

reduce the QTL interval thanks to the increased number of recombinations. In this proof of concept study, we 409 

chose to genotype the population using well characterized SSR markers in order to be able to connect the results 410 

with previous ones obtained with related populations. However, the QTL intervals were much larger than in other 411 

studies using FlexQTL on populations of similar size but with thousands of markers, indicating that the density 412 

was insufficient to mark them accurately. The large QTL regions could probably be considerably reduced thanks 413 

to the favorable genetic design and we are currently performing high-density SNP genotyping to achieve this 414 

objective. Beyond this limitation, the use of FlexQTL was particularly interesting: the use of IBD information 415 

mitigates the effect of low density genotyping, and the prediction of QTL genotypes offers the opportunity to use 416 

them in subsequent analyses. Hence, we were able to select a full QTL model using the raw data by testing main 417 

and interaction effects, and to assess the effects of pre-nursery QTL in the field. As reported by Verma and 418 

Whitaker (2018), QTL genotypes have great potential in the breeding context, for example, to predict QTL alleles 419 

for unobserved individuals in the breeding program based only on their marker and pedigree information, and then 420 

their expected resistance level. 421 

4.2. Insights into the genetic architecture of Ganoderma resistance in oil palm 422 

A first insight into genetic architecture came from the variance decomposition using the sire and dam mixed model 423 

designed for the analysis of the data on GA×GB hybrids. The genetic component, i.e. GCA in both heterotic groups 424 

and SCA, represented around 20% of the total phenotypic variance, which was expected due to the consistent 425 

genetic resistances identified in contrasted crosses or clones, balanced by the moderate repeatability of the 426 

screening tests (Durand-Gasselin et al. 2018). More surprising, the variance assigned to the GA pedigree was 427 

double that for the GB pedigree, while the pure parental GB genetic backgrounds are both more resistant and 428 
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exhibit more resistance variability than GA backgrounds (Durand-Gasselin et al. 2018). This could be an artefact 429 

of the unbalanced number of parents screened between heterotic groups and further investigation is needed to 430 

accurately estimate their relative contribution to the GA×GB resistance. The variance associated with SCA effect 431 

was 20% of the genetic variance and one QTL×genetic background interaction was retained, while well supported 432 

previous observations indicated that resistance was mainly additive, both in pre-nursery and field trials (Durand-433 

Gasselin et al. 2018). Again, this could be an artefact, as only the GB pedigree was genotyped for this study but 434 

further analyses using both heterotic groups will allow us to estimate the proportion of variance due to GA×GB 435 

interaction and identifying underlying QTL.  436 

The distributions of the GCA of GB individuals showed segregation of the Ganoderma resistance throughout the 437 

pedigree, even in the most inbred generations. Consequently, we identified a large number of putative QTL regions 438 

using FlexQTL, with weak to moderate effects. This partially reflects the composition of the GB that grouped two 439 

contrasted populations, LM and YBI, which displayed distinct QTL patterns when analyzed separately. However, 440 

even when we focused on a restricted genetic background, the large number of putative QTL found despite the 441 

reduced population size confirm the quantitative nature of Ganoderma resistance (quantitative disease resistance, 442 

QDR). Thus, the marked difference in Ganoderma resistance consistently observed between the four full-sib 443 

founders of the studied LM pedigree (Durand-Gasselin et al. 2018) is rather the consequence of a better 444 

combination of many favorable alleles than of a limited number of major QTLs. The numerous QTL found and 445 

the dissimilarity of QTL patterns between the LM and YBI genetic backgrounds is likely due to either the 446 

Ganoderma bio-trophic pathogenesis that induce contrasted transcriptomic responses (Bahari et al. 2018) or the 447 

multiple mechanisms involved in the QDR (Poland et al. 2009). This could explain the few discrepancies observed 448 

for some pre-nursery QTL with no effect in the field, and even a QTL with an opposite effect on LG12, considering 449 

that such QDR mechanisms are more prone to depend on the age of palms, on the environmental conditions, or on 450 

the genetic background surveyed. 451 

Inspection of QTL colocalization may validate putative QTL when found for similar traits in independent 452 

experiments and inform QTL pleiotropy or linkage for different traits. Pleiotropy is especially worth investigating 453 

for QDR to obtain insights into possible underlying mechanisms and, together with linkage, on the resulting trade-454 

off with other traits of interest (Nelson et al. 2018). To date, only two genetic mapping studies have been reported 455 

on Ganoderma resistance. The first analyzed data from a nursery test involving one resistant and two susceptible 456 

progenies, with a similar genetic background (Deli×YBI) and common markers to our study (Hama-Ali et al. 457 

2015). Despite the limited scope of the study, i.e. involving only 79 individuals genotyped with 58 SSRs, Hama-458 
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Ali et al. (2015) identified two significant markers on LG2 and seven in the same QTL regions as in our study, 459 

what is more, in equivalent populations, YBI and GB respectively. The second study used field data recorded on 460 

a multi-parental GA×GB population involving four GB founders that were the same as in the present study (Eg9PP 461 

population, Tisné et al. 2017). Four Ganoderma resistance loci were identified, two controlling the occurrence of 462 

the first Ganoderma symptoms (T1S), and two the death of palm trees (TD). Among them, the T1S QTL at the 463 

bottom of LG1 collocated with a QTL identified in GB and LM populations in the present study. The Eg9PP 464 

population and a large-scale genetic trial involving GB parents related to the founder of the present study (NGP 465 

population, Tisné et al. 2015, Tisné et al. 2019) were evaluated in the framework of the breeding program. Hence, 466 

data for fruit bunch production, oil extraction rate, and height increment traits were stored in databases, and both 467 

populations as well as the population from the present study were genotyped with the same SSR markers from a 468 

reference genetic map (Cochard et al. 2015) allowing QTL detection. We observed that among the six Ganoderma 469 

QTL regions with higher statistical support found in the GB, LM or YBI populations, most collocated with a large 470 

number of QTL for other agronomic traits (Tisné, personal communication). The colocalizations were more 471 

frequent in the LM population (33) than in the YBI one (15), while they were mostly found with oil extraction rate 472 

related traits and bunch number in LM genetic background in contrast with bunch weight and height increment in 473 

the YBI one (Tisné, personal communication). These preliminary findings now require further support, in 474 

particular by using a high-density SNP genotyping that is currently in progress, but already provide interesting 475 

insights into the possible diverse mechanisms underlying the QDR, which could differ considering the genetic 476 

backgrounds. This also highlights the benefits of the in silico approach assessed in this study that makes it possible 477 

to gather information from the entire breeding program for a more comprehensive description of the genetic 478 

architecture of traits of interest.  479 

4.3. Advances towards a MAS of Ganoderma resistance in oil palm breeding programs  480 

No complete resistance to Ganoderma has been identified to date and the results of the present study corroborate 481 

previous observations to indicate its quantitative nature (Franqueville et al. 2001; Idris et al. 2004; Durand-Gasselin 482 

et al. 2005). Despite the increasing use of QDR to improve the sustainability of disease resistance (Poland et al. 483 

2009; Roux et al. 2014) the high number of loci and mechanisms involved makes its selection challenging. This is 484 

more acute in the case of oil palm with its long breeding cycle, worsened by the slow Ganoderma disease 485 

progression. Pre-nursery testing accelerated the screening of genetic material and revealed a genetic component 486 

that accounted for about 20% of phenotypic variance, which is generally a favorable level for a MAS perspective 487 

(Muranty et al. 2014). A first concern is to insure the consistency of QTL effects between the pre-nursery and field 488 
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results, like in conventional selection (Durand-Gasselin et al. 2018). We attempted to assess this at the QTL level 489 

with the extensive use of the data from the breeding program, including the Ganoderma census routinely recorded 490 

on seed and genealogical gardens. Following the previous study assessing the Ganoderma resistance in field  we 491 

used a survival analysis approach that provides several advantages (Tisné et al. 2017). Despite the limitations of 492 

specific to the data recorded in seed gardens, i.e. mature palms of pure genetic backgrounds in the field vs GA×GB 493 

seedlings in pre-nursey and spatio-temporal heterogeneity in the field, the accumulation of favorable pre-nursery 494 

QTL alleles improved field resistance. Interestingly, the majority of QTL effect directions were consistent 495 

regardless the statistical evidence in pre-nursery. Thus, the many QTL that would not have been detected in the 496 

field setup because of a lack of statistical power, were identified in the pre-nursery study and are valuable for a 497 

marker-assisted Ganoderma resistance selection.  498 

Secondly, the quantitative nature of Ganoderma resistance identified could hamper the conventional QTL 499 

pyramiding approach due to the high number of loci involved, especially considering the long generation time in 500 

oil palm. In such a QDR context, the MAS approaches developed for other agronomic quantitative traits are 501 

probably more suitable, especially the genomic selection (GS) approach (Poland and Rutkoski 2016). In oil palm, 502 

GS has emerged as an efficient MAS method and is being increasingly evaluated for yield improvement (Nyouma 503 

et al. 2019). Thus GS statistical models and implementation modes already assessed in oil palm could be 504 

transferred or adapted to Ganoderma disease related data from the breeding program (Cros et al. 2015, 2017). 505 

However, the qualitative/quantitative nature of disease resistance is a continuum (Poland et al. 2009). Despite a 506 

large number of QTL regions identified using FlexQTL, only 5 QTL with weak to moderate effects explained 507 

almost all the GB GCA component based on pre-nursery data. GS models including information on QTL or genes 508 

have been proposed to improve prediction capacity in such situations (Bernardo 2014; Zhang et al. 2014) and 509 

should be considered for a GS of implementation in light of the emerging insights into the genetic architecture of 510 

Ganoderma resistance.  511 

A final issue is that selection for Ganoderma resistance will need to be combined with resistance to other diseases 512 

and cannot be at the expense of other traits of interests. The cost of disease resistance through negative trade-off 513 

with performance or fitness was a long-lasting question in model plants but was less investigated in plant breeding 514 

(Brown 2002). In the former section, we described colocalization of Ganoderma resistance QTL with yield related 515 

ones, with a genetic background specificity of these complex patterns. Dealing with multiple traits and multiple 516 

genetic background is challenging and the QTL information provided by the in silico approach assessed in the 517 

present study is very valuable for comprehensive modeling of a MAS strategy. Hence, a recent study in oil palm 518 
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simulated the outcomes of alternative selection strategies on yield and its components based on their global genetic 519 

architecture, including the pleiotropy/linkage and phases between the underlying QTL (Tisné et al. 2019). Virtual 520 

individuals and crosses were simulated from the actual founders via meiosis simulations based on the QTL 521 

positions identified with FlexQTL, which thus integrated their recombination frequencies. The QTL genotypes 522 

predicted in FlexQTL enabled prediction of their multiple trait values and their incorporation in yield based on the 523 

QTL effects. This use of QTL genotypes is of prime interest as QTL genotypes can be predicted based on markers 524 

alone in any related individual, whether phenotyped or not. In the MAS perspective for Ganoderma resistance, 525 

this approach would help attenuate possible trade-offs with other traits of interest and optimize the combination of 526 

QDR from diverse genetic backgrounds. 527 

5. Conclusion 528 

The cost-effective and efficient in silico mapping approach assessed in this study has great potential for the 529 

implementation of MAS of traits of interest in oil palm. Its application in the context of Ganoderma disease 530 

resistance enabled us to use the considerable quantities of data generated in the framework of conventional 531 

phenotypic selection to obtain valuable information in the MAS perspective. First, important information on the 532 

genetic architecture of resistance to Ganoderma disease was obtained, confirming its quantitative nature and 533 

identifying the loci involved. In addition, together with other ongoing works, this study sheds light on the 534 

relationships between Ganoderma resistance and yield related traits that could produce undesirable trade-offs. 535 

Second, the consistency between genetic resistance in pre-nursery conditions and in the field was assessed at the 536 

QTL level and globally indicated satisfactory portability. However, a few loci deserve careful consideration due 537 

to underlying mechanisms that could lead to contrasted phenotypic expression between pre-nursery and field 538 

conditions. Finally, this proof-of-concept study provides guidelines for future works on Ganoderma disease 539 

resistance and should encourage oil palm breeders to use this approach to collectively acquire a better 540 

comprehension of its complex genetic architecture. 541 
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 783 

Figure captions 784 

Fig. 1 Pedigree of the pre-nursery GB oil palm population. Boxes on the left represent the founders of the La Mé 785 

(LM, panel A) and Yangambi (YBI, panel B) populations. Note that the La Mé founders LM_1:4 are full sibs. 786 

Other boxes represent full-sib families whose color represents their relation to their genetic background, with the 787 

number of individuals in parenthesis. The circled cross symbols represent progenies obtained through self-788 

pollination, and successive self-pollinated progenies keep the same color. 789 

Fig. 2 Distribution of Ganoderma disease resistance in the pre-nursery GB oil palm population. Distribution of 790 

the percentage of affected individuals in crosses (A), BLUP obtained from random effect of the GCA in GB in a 791 

GLMM (B) and LMM (C) for the La Mé (LM) and Yangambi (YBI) populations. Different colors represent 792 

different genetic backgrounds.  793 

Fig. 3 QTL mapping of Ganoderma resistance in the pre-nursery GB oil palm population. QTL regions marked 794 

by FlexQTL software in six independent simulations (LMM and GLMM models, three random starting seeds) (A) 795 

and the averaged posterior intensity calculated at a 1 cM grid for the six simulations (B) are plotted along the 796 

genome. In panel A, the yellow to red color code scale depict the value of intensity of the corresponding marked 797 

QTL regions found in the “MQTRegions.new” FlexQTL output file. In panel B, a white to red color scale indicates 798 

the number of marked QTL regions among the six simulations at the corresponding position in the genome.  799 

Fig. 4 Variance components of Ganoderma resistance in the pre-nursery screening tests. Variance components are 800 

plotted as a percentage of the total phenotypic variance for each of the steps performed in the stepwise selection 801 

model. GA/GB: heterotic group A and B; GCA: general combining ability; SCA: Specific combining ability; CL: 802 

Ganoderma clonal lines; QTL names: see M&M section. 803 
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Fig. 5 Pre-nursery QTL effects on Ganoderma resistance to natural field infection in the La Mé genetic 804 

background. (A) Survival curves of the La Mé population according to the percentage of favorable alleles at the 805 

21 La Mé QTL detected in the pre-nursery analysis, the red to green color scale indicates an increasing percentage. 806 

Survival estimates are plotted at the time of the first observation of a Ganoderma symptom. (B) Scatterplot 807 

showing the relationship between the statistical significances of QTL effects in the pre-nursery experiments 808 

(posterior intensity, x-axis) and in the field (-log (P-value) from the Cox model, y-axis). QTL originate from QTL 809 

mapping using the GB (squares) or LM (triangles) pedigree. Consistency between field and pre-nursery QTL 810 

effects was defined for QTL alleles decreasing the number of affected progenies in the pre-nursery trials and 811 

delaying the appearance of the first symptom of Ganoderma: inconsistent and consistent QTL effects are depicted 812 

by green (+) or red (-) symbols, respectively. QTL for which one of the three allelic classes (QQ, Qq or qq) was 813 

represented by less than ten individuals are depicted by shaded symbols. QTL names: see M&M section. 814 
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