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Abstract 

Background: Resilience can be defined as the capacity of animals to cope with 
short-term perturbations in their environment and return rapidly to their pre-
challenge status. In a perspective of precision livestock farming, it is key to 
create informative indicators for general resilience and therefore incorporate 
this concept in breeding goals. In the modern swine breeding industry, new 
technologies such as automatic feeding system are increasingly common and 
can be used to capture useful data to monitor animal phenotypes such as feed 
efficiency. This automatic and longitudinal data collection integrated with 
mathematical modelling has a great potential to determine accurate resilience 
indicators, for example by measuring the deviation from expected production 
levels over a period of time. 

Results: This work aimed at developing a modelling approach for facilitating the 

quantification of pig resilience during the fattening period, from 

approximately 34 kg to 105 kg of body weight. A total of 13 093 pigs, 

belonging to three different genetic lines were monitored (Pietrain, 

Pietrain NN and Duroc) since 2015, and body weight measures registered 

(approximately 11.1 million of weightings) with automatic feeding systems. 

We used the Gompertz model and linear interpolation on body weight 

data to quantify individual deviations from expected production, thereby 

creating a resilience index (ABC). The estimated heritabilities of ABC are low 

but not zero from 0.03 to 0.04 (± 0.01) depending on the breed. 

Conclusions: Our model-based approach can be useful to quantify pig 

responses to perturbations using exclusively the growth curves and should 

contribute to the genetic improvement of resilience of fattening pigs by 

providing a resilience index. 

Keywords: modelling, perturbation, resilience, robustness, body weight, big 

data, pig, precision livestock farming 
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Background 

Climate change and societal concerns (e.g., animal welfare and use of antibiotics) on livestock 

production result in important challenges for animal breeding. Alternatives to address these 

challenges include the implementation of strategies to select animals that can adapt to a 

changing environment and to promote a healthy environment for facilitating farm 

management (1). In this context, the last decade has seen an enormous increase in interest in 

animal robustness to environmental effects. Friggens et al. define the robustness as the 

ability, in the face of environmental constraints, to carry on doing the various things that the 

animal needs to do to favour its future ability to reproduce (2). Concomitantly, the concept of 

resilience has emerged in animal sciences encompassing not only the response of the 

individual to diseases challenge but also the individual’s response to other sources of 

stressors. Colditz and Hine defined resilience as the capacity of the animal to be minimally 

affected by disturbances or to rapidly return to the state pertained before exposure to a 

disturbance (3). Several definitions and resilience-associated concepts have been discussed in 

literature (1), reflecting the interest of this concept in a broad range of scientific disciplines 

(4). 

In the era of big data collection on farms, the digitalization process will generate new 

knowledge in most of the relevant topics in swine production including nutrition, health 

management, reproduction, genetics, biosecurity, behavior, welfare, and pollutant emissions 

(5). Sensors (6), such as commercially available automatic feeding systems (AFS), capture 

longitudinal data (feed intake -FI-, feeding time, daily visits and body weight -BW-). These data 

can be further exploited using the knowledge of animal requirements and physiology to 

develop new phenotypes increasing sustainability and efficiency of breeding. Such an 

exploitation calls for adequate mathematical tools. AFS allow pigs to feed ad libitum and 

recognize individual growing pigs via a radio frequency identification (RFID) transponder. The 

large number of automatic BW registers measured by AFS could generate knowledge for 

management decision-making. In particular, the detection of BW deviations from standard 

trajectories would generate useful insights on the status of animal with minimum effort if 

automated. 

Animal breeding is showing an increasing interest for resilience to be included as a trait in 

breeding goals. However, the incorporation of resilience in swine breeding goals is currently 

an uncommon practice. One of the main drawbacks that hinder the incorporation of resilience 

in breeding is the difficulty of providing quantitative resilience indicators (2). Recent 

technological developments based on longitudinal data give new opportunities to define 

resilience indicators based on the difference between observed production and an individual’s 

potential production (although the definition of the individual potential is a challenging issue). 

Several studies have explored continuous recording of pig performance to study the impact 

of perturbations, including novel phenotypes related to disease resilience using daily FI (7, 8), 

and modelling approaches to detect potential perturbations as deviations of FI (9). Modelling 
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efforts to characterize the animal response to perturbations in dairy cattle have also been 

developed (10). Our group has recently developed a modelling approach, for facilitating the 

quantification of piglet resilience to weaning (11). In our previous work, we proposed a 

resilience indicator that has the potential to be used in elite breeding populations. Building 

upon our previous work, the aim of the present study was to develop a modelling 

methodology for quantifying an individual pig resilience indicator based on longitudinal BW 

measurements registered routinely by an AFS during the fattening period. Moreover, the 

genetics underlying this resilience indicator were analyzed in two of the most used 

commercial breeds to show the potential to improve resilience of swine livestock through 

inclusion of this indicator in breeding goals. 

 

Methods 

Data source 

The pigs used in this study belonged to the Piétrain (Pie) and Duroc (Du) pure breeds. Piétrain 

is an European sire line breed, strongly selected for lean meat content during the last decades 

(12). The Du breed is also used as a terminal sire when fattening pigs are produced. The Du 

breed has both an excellent growth rate and high intramuscular fat (13). AXIOM Genetics have 

two different lines belonging to Piétrain breed namely Piétrain Français NN Axiom line (Pie 

NN) with pigs free from halothane-sensitivity and Piétrain Français Axiom line with animals 

positive to this gene. 

A total of 13 093 boars belonging to three different lines were used in this study: 5 841 and 5 

032 belonging to Pie and Pie NN line respectively, and 2 220 belonging to Du breed. 

 

Station conditions 

The boar testing station of the breeding company AXIOM Genetics (Azay-sur-Indre, France), 

built in 2015, located in the Centre region in France housed the animals used in this study. A 

group of 336 piglets were introduced to the station every 3 weeks. AXIOM’s requirements for 

biosafety are applied: forward march, showers and change of clothes, cleaning and 

disinfection program, blood monitoring. The boars arrived, after weaning, from 7 different 

birth farms (5 farms for Pie, 1 farm for Pie NN and 1 farm for Du) to the herd when they were 

between 25 and 35 days of age (8 ± 3 kg BW). Birth farms are integrated into the AXIOM 

breeding scheme, comply with AXIOM’s biosafety and health requirements (monitoring, 

vaccination plan) and are negative for major diseases. For each batch, all pigs arrived within 1 

successive week and were kept in the same pen of 14 animals. Each pen is made up of 14 male 

piglets from the same breed and from the same birth farm. The composition of the pens is 

never modified, no reallocation. They were kept in air-filtered quarantine rooms (nursery) for 

5 weeks, the time needed for seroconversion control and to validate there are not positive to 
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major disease, such as porcine reproductive and respiratory syndrome (PRRS), brucellosis, 

swine influenza, etc. They were then raised in post-weaning rooms for 2 weeks. The three 

lines are present in each group in the station and meet the same breeding conditions. Then 

they were transferred in fattening rooms when they were approximately between 70 and 80 

days of age (34.4 kg). They were kept in fattening rooms for 65 to 77 days until the individual 

testing (weighing, ultrasonic backfat and muscle measurements) around 150 days of age (104 

kg BW). Animals were kept in the same pen from arrival until slaughter. The station consisted 

in 2 nursery rooms, 2 post-weaning rooms and 10 fattening rooms with 12 identical pens each, 

housing a maximum of 14 pigs per pen, leading to a total capacity of 2 638 pig places. Only 

fattening rooms are equipped with AFS. Each pen had one water nipple available for the 

animals. One group, from the same week of introduction in the station, is divided in two 

fattening rooms (24 pens with 14 pigs). 

 

Automatic individual body weight data collection 

An AFS pig performance testing feeding station (Nedap N.V.; Groenlo, the Netherlands) was 

located in the front of each of the pen. The feeder was 0.7 m wide, and the total length was 

1.69 m. The feeder included a feed trough and had no gates. The feeder only allows the 

entrance of one animal. The pig entering the feeder was individually identified via an 

electronic RFID transponder located in the ear. All animals were maintained under standard 

intensive rearing conditions and were fed individually ad libitum from the feeder with a 

standard diet non limiting in amino-acids. Briefly, the growing diet provided 9.75 MJ/kg of net 

energy with 15% of crude protein and 0.9% of lysine. The boars were not castrated. 

Data collection started when animals were transferred in fattening pens and finished 1 week 

after individual testing. Animals were individually weighted the day of transfer (IW: initial 

weight) and the day of individual testing (WT). 

The data analyzed in this study used information registered at each visit in the AFS on 

individual pigs relating to identification number, date, location, duration of the visit, FI and 

BW. The dataset included boars raised at the station from September 2015 to July 2019. 

During that period, 65 batches arrived at the station (13 093 pigs in total).  

 

Data pre-treatment 

Datasets were processed separately for the three lines. Each dataset from the AFS was 

thoroughly assessed in order to validate the data, and identify important data gaps and quality 

issues using SAS (14). The different datasets were analyzed independently but using the same 

procedure. 

In the raw data file, one record corresponded to one animal visit to an AFS. A first processing 

step consisted of eliminating the records without an RFID tag detected, and without a valid 

association between animal ID and RFID tag. 
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As a second step of quality control for each visit, the weight was considered as null for records 

without BW record, with a duration of the feeder visit <5s (scale stabilization) and weights 

measured during the 6 first days of the fattening period that were out of a range between 

0.7*IW and 1.3*IW. Indeed, during the first 6 days, the pigs are in the adaptation phase and 

the AFS stalls remain open. It is possible that two pigs try to enter in the AFS stall at the same 

time or that a pig puts a leg in the feeder causing an incorrect weight measurement. 

For the third control step, a quadratic regression of weight on age + age² for each animal was 

applied to eliminate aberrant weights. The ratio between the residual value and the fitted 

value was calculated for each visit of each animal. If the ratio was > 0.15, the measured weight 

was considered to be null. The ratio of 0.15 was selected by using a trial-and-error approach 

to find a compromise between the data cleaning and the number of data points to be kept for 

further analysis. This step was repeated a second time excluding the initially identified 

aberrant weights. Following this step, the visits of an animal during a day were aggregated in 

a single record. The weight of the day was estimated from the median of the non-null weights 

(WM) measured during the day's visits. If the number of non-null weights for the day was <3, 

the median of daily weights was considered to be null. 

The fourth control step consisted in analyzing all of data from each AFS within fattening group 

(AFS*Group) in order to detect inconsistencies linked to the AFS machine. A linear regression 

of WM on days (number of days since the beginning of measurements) was applied. The 

standard deviation of the residual value is calculated for each day for each AFS*Group. If more 

than 10% of the weights measured on AFS*Group were > 3 * standard deviation, then 

AFS*Group records have been removed from the data set. The objective is to rule out animals 

from AFS with a mechanical problem. Animals with less than 15 AFS measurements in total or 

more than 10 consecutive days without measurements were removed from the analysis. We 

accepted that animals had missing weights during the fattening period. 

The total FI (TFI) during control period was calculated as the sum of FI for all visits during the 

control period. When a control day is missing (i.e.¸ due to a mechanic problem of AFS or loss 

of a RFID tag), the missing daily FI is estimated by using local regression, “proc loess” 

implement in SAS (14). 

Finally, for visualization purpose a kernel density estimation was performed to produce a 

smoothed color representation of a scatterplot by using the “smooothScatter” function 

implement in R (15). Multivariate kernel smoothing is described by Wand and Jones (16). 

 

Two-step mathematical model approach 

Our modelling approach comprises two steps. The first step looks at determining a theoretical 

(potential) growth curve of each animal. The second step looks at constructing the actual 

perturbed growth curve. The resulting two curves are the ingredients for further 

determination of an individual resilience indicator. 
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Animal growth models aim at describing the pattern of growth over the animal’s lifetime, 

defining an upper limit to growth. In our study, we assumed that, under ideal conditions, 

animal growth follows the theoretical (potential) growth of the animal not experiencing any 

perturbation. The potential growth of each pig was modelled using the Gompertz equation (i) 

(17), using the formulation described on Schulin-Zeuthen et al. (18). 

 

𝑊 = 𝑊0 𝑒𝑥𝑝 [
𝜇0

𝐷
(1 − 𝑒−𝐷∗(𝑡−𝑡0)] (i) 

 
where 𝑊0 is the value of live weight 𝑊 (kg) at the initial time of the recordings (𝑡0), 𝜇0 (d−1) is 

the initial value of the specific growth rate at 𝑡0, the constant 𝐷 (d−1) is a growth rate 

coefficient that controls the slope of the growth rate (µ) curve and 𝑡 (days) is time since birth. 

All parameters are positive. In the remaining text, we will call the trajectories that resulted 

from this calibration as the unperturbed curve. The unperturbed growth model resulted in 

two parameters to be estimated, µ0 and D. As explained below in the model calibration 

section, we constructed the unperturbed curve such that the perturbed data cannot be above 

the unperturbed curve by a margin of 5%. The value of 5% was set in accordance with the 

accuracy provided by AFS.  

For our second modelling step, since the Gompertz equation is a monotonic function that does 

not account for possible decrease of BW due to perturbations, we construct a perturbed 

growth curve using the daily BW measurements registered routinely by the AFS. For missing 

records, values were estimated using the linear interpolation method implemented in the 

“interp1” function in Scilab (19). It should be noted that if high frequency data are available, 

the linear interpolation step is not needed. 

We further calculated the difference of the area under the curve between the perturbed curve 

and the unperturbed growth. The area under the curve was calculated using the trapezoidal 

rule implemented in the “inttrap” Scilab function. The resulting value was called Area Between 

Curves (ABC) index, and was considered as a proxy of resilience (the lower ABC the higher the 

resilience or an animal faced to low perturbation). When required, ABC parameter results 

were normalised applying the log2 transformation. Visualization of the quartiles distribution 

of this parameter was performed with the ‘ggridges’ R package (15). 

Finally, correlation analyses were performed to explore the relationships between growth 

model parameters to be estimated (𝜇0, 𝐷) and ABC. Pearson correlations were analyzed in R 

using the ‘cor’ function in the base package. 

 

Model calibration 

The parameters 𝜇0, 𝐷 of the Gompertz model for each animal were estimated by minimizing 

the normalized least square error with a penalized function (ii): 
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𝐽𝐸 = 𝜔 ∙ ∑ [
𝑊𝑖 −  𝑊𝑑,𝑖

𝑊𝑑,𝑖
]

2𝑛t

𝑖=1

 (ii) 

 
where 𝑊𝑑 is the weight data (kg), 𝑊 the weight predicted by the model, and 𝑛t the total 

number of measurements. The parameter 𝜔 is a penalization factor that we constructed to 

constrain the unperturbed curve to envelope all experimental data. The penalization factor is 

defined as follows (iii): 

 

𝜔 = 10
𝑛r

𝑛t−1 (iii) 

 
Where 𝑛t is the number of measurements for each animal and 𝑛r is the number of records 

where the ratio between the residual (real BW – predicted weight) and the real BW was higher 

than 5%. 

 

Phenotypic swine production traits 

When the average weight of the group was approximately 100 kg, the individual testing was 

performed. Measurements made during the test were: weight (WT), average ultrasonic 

backfat thickness (BF: mean of 3 measurements) and ultrasonic longissimus dorsi thickness 

(LD: 1 measurement). BF and LD were adjusted to 100 kg live weight (BF100 and LD100 

respectively) by applying linear coefficients. These equations are based on those established 

by Jourdain et al. (20). 

The average daily gain (ADG) was calculated as the ratio between the BW gain (WG), 

difference between WT and IW, and number of days of control period, expressed in g/day. 

The feed conversion ratio (FCR) was calculated as the ratio between TFI during the fattening 

period and WG, expressed in kg/kg. 

The selection traits estimated in the 3 lines are BF100, LD100, ADG and FCR. 

 

Statistical analyses 

For each breed, each trait was first analyzed separately with a linear mixed model (LMM). The 

global statistical model was defined as (iv): 

 

𝑦 =  𝑋𝛽 + 𝑍𝜇 +  𝑒 (iv) 

 

 

where 𝑦 is the vector of phenotype measures for a trait, 𝛽 is the vector of fixed effects 

depending on the trait considered (Table S1). 𝑋 is the known matrix for fixed effects. 𝜇 is the 

vector of animal genetic random effects with ∼ N(0, A σ²u) where A is the pedigree-based 

relationship matrix. Z is the known design matrices for animal genetic effect. 𝑒 is a vector of 

residual random effects with e ~ N(0, I σ²e) where I is the identity matrix of appropriate size. 
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Variance components (variance and covariance) were estimated using the REML method with 

ASReml 3.0 (21) separately for each line. 

Heritability was calculated as the ratio of animal genetic variance to the phenotypic variance. 

Due to convergence issues, correlations between ABC and selection traits were estimated 

using two-trait analyses for lines Pie and Pie NN. Genetic correlations have not been estimated 

for Duroc due to insufficient data. 

 

For Pie, 24 generations of pedigree information comprising 57 459 animals from 1991 to 2019 

were included in the analysis. For Pie NN, 24 generations of pedigree information comprising 

16 137 animals from 1993 to 2019 were included in the analysis. For Du, 22 generations of 

pedigree information comprising 20 632 animals from 1995 to 2019 were included in the 

analysis. 

 

 

Results 

Data pre-treatment procedure 

From a total of 13 093 animals, more than 11.1 million measurements (1 measurement = 1 

visit including BW and FI recording) were registered using the AFS. These numbers correspond 

to the raw dataset. We implemented a data pre-treatment procedure to provide high quality 

data for the modelling approach. This dataset was analyzed separately in three different data 

subsets belonging to Pie, Pie NN and Du breed lines, and the same procedure was applied in 

each dataset. The comparison between the number of animals in the filtered data and the raw 

dataset showed a ratio of 0.93, 0.91 and 0.87, for Pie, Pie NN and Du lines, respectively. 

Regarding the number of AFS measurements, the ratios between the filtered and the raw 

dataset were 0.76 for Pie, 0.69 for Pie NN, and 0.77 for Du. Complete descriptive statistics for 

the dataset used in this study are shown in Table 1. 
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Table 1. Descriptive statistics for the datasets used in this study 

Breed  Piétrain  Piétrain NN Duroc 

No. of pigs  5 841 5 032 2 220 

No. of Batch  63 65 62 

No. of pigs per batch 92.7 ± 39.5 77.4 ± 18.5 35.8 ± 12.3 

Initial average weight at fattening period (kg) 34.3 ± 5.9 34.5 ± 5.4 34.3 ± 5.5 

Initial average age at fattening period (days) 78.4 ± 3.3 77.6 ± 2.5 78.4 ± 3.0 

Average weight at the individual testing (kg) 105.8 ± 11 102.4 ± 10.2 105.6 ± 10.4 

Average age at the individual testing (days) 150.4 ± 4.1 147.2 ± 2.7 147.8 ± 3.0 

Raw data 
No. of AFS measurements 4 870 323 4 438 121 1 833 941 

No. of animals 5 841 5 032 2 220 

After cleaning procedure 

No. of AFS measurements 3 704 692 3 061 330 1 420 317 

Daily AFS visits 7.7 ± 3.6 8.4 ± 4 8.5 ± 5.4 

No. of animals 5 430 4 602 1 938 
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The data analyzed in this study included information from a total of 11 970 boars, belonging 

to three of the most common lines used in swine industry. The final data set consisted of daily 

median BW records from 409 770, 337 964, and 140 170 Pie, Pie NN and Du measurements, 

respectively. 

A visual comparison of the AFS measurements dataset of Pie line before and after the data 

cleaning procedure is shown in Figure 1. Moreover, a graphic representation of Pie NN and Du 

lines filtering procedure is shown in Figure S1 and S2, respectively. The figure illustrates the 

proportion of measurement points discarded from the analysis before filtering (Figure 1: A1-

A4; Figure S1: A1-A4 and Figure S2: A1-A4 - Raw data) and after filtering (Figure 1: B1-B4; 

Figure S1: B1-B4 and Figure S2: B1-B4 - Filtered data), especially weights with a value close to 

zero. 

 

 
Figure 1. Comparison of body weight density plots before (A) and after (B) applying data cleaning procedure in Pie line. In A1 and B1 plots 

each point represent the median of the individual daily body weight registered by the AFS during the pig fattening period. A2 and B2 are 

smoothed color density representations of a scatterplot. Shaded areas are constructed to illustrate the density of points falling into each 

part of the plot allowing for an intuitive visualization of very large datasets. A zoom in the density scatter plot before (A3-B3) and after (A4-

B4) 100 days of individual age is illustrated. 

 

Growth curve modelling over pig fattening period 

To quantify the deviation of the unperturbed curve from the perturbed curve, we constructed 

the parameter ABC as a resilience indicator. Figure 2 displays the BW dynamic trajectories of 

two animals belonging to Pie line exhibiting different patterns. For an animal with a growth 

performance close to the unperturbed model (Figure 2A), ABC was 37 657. For an animal with 

high degree of perturbation (Figure 2B), ABC was 493 007. The parameter ABC is a useful 

indicator of the degree of perturbation of an animal and allows comparison within a 

population. Table 2 summarizes the complete descriptive statistics of the model parameters.  
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Figure 2. Comparison of the perturbed (blue line) and the unperturbed (red line) predicted response based on the body weight dynamic 

trajectories recorded during the whole fattening period. Circles represent the median daily body weight measures of the individual pig. Two 

different animals belonging to Pie line are represented. 
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Table 2. Descriptive statistics of the parameters for the growth curve modelling in the three pig lines analyzed 

Breed  Piétrain  Piétrain NN Duroc 

µ0 

Range 7.13 x 10-04 - 1.00 x 10-01 2.79 x 10-03 - 9.34 x 10-02 6.58 x 10-03 - 8.46 x 10-02 

Mean 2.62 x 10-02 2.59 x 10-02 2.78 x 10-02 

SD 1.95 x 10-02 6.19 x 10-03 8.40 x 10-03 

D 

Range 1.18 x 10-16 - 7.19 x 10-01 1.00 x 10-09 - 2.66 x 10-01 1.03 x 10-15 - 6.52 x 10-02 

Mean 1.16 x 10-02 1.64 x 10-02 1.65 x 10-02 

SD 2.22 x 10-02 8.83 x 10-03 7.85 x 10-03 

ABC parameter 

Min. 239 2 253 2 788 

1st quartile 26 244 27 489 31 518 

Median 33 564 35 804 44 069 

Mean 41 556 46 474 58 441 

3rd quartile 44 524 49 257 69 738 

Max 703 283 595 914 407 425 
µ0: individual growth rate (d-1); D: extent of the exponential decay of the grow0th (d-1); ABC: area between the perturbed and the unperturbed growth curves; SD: standard deviation. 
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Furthermore, Figure 3 represents a visual comparison of the model parameters for the three 

analyzed lines. Parameter µ0 (Figure 3A) showed no significant differences when Pie and Pie 

NN lines were analyzed, nevertheless both of them were significantly different (p-value ≤ 

0.001) compared with Du line. In the case of parameter D (Figure 3B) significant differences 

were found between Pie and Pie NN (p-value ≤ 0.001), and Pie and Du lines (p-value ≤ 0.05).  

 
Figure 3. Comparison of µ0, D and ABC statistics in the three pig lines analyzed. Parameter µ0 (A - initial growth rate value), parameter D 

(B – exponential rate of decay of growth rate), and parameter ABC (C – area between the perturbed and unperturbed growth curves) are 

represented. Red points show the average value of the model parameters for each line. The dotted line represents the global average of the 

parameter. Significant differences between groups are indicated as *p-value≤ 0.05, **p-value≤ 0.01, and ***p-value≤ 0.001. 

 

For the parameter ABC (Figure 3C) significant differences were identified in all the 

comparisons performed (p-value ≤ 0.001). Despite the observed significant differences for the 

parameter ABC, their distribution between Pie and Pie NN lines were similar (Figure 4A and 

4B), compared with the distribution observed for Du line (Figure 4C). This result is logical due 

to the close genetic origin of both lines. 
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Figure 4. ABC parameter distribution in the three pig lines analyzed. ABC: area between the perturbed and the unperturbed growth curves. 

Colors represent quartiles information. 

 

Moreover, correlations between the model parameters of the three lines were analyzed 

(Table 3). The parameter µ0 showed positive significant correlations with parameter D in the 

three analyzed lines, 0.88 for Pie, 0.81 for Du, and 0.62 for Pie NN. In the case of parameter 

µ0 and parameter ABC significant correlations were only identified in Du (0.37) and Pie NN 

lines (0.20). A similar pattern was also identified between parameter D and parameter ABC, 

being Du (0.30) and Pie NN (0.19) lines those that showed significant correlations. 

 

Table 3. Pearson’s correlation coefficients among the growth curve model parameters in the 
three pig lines analyzed 

Breed Piétrain  Piétrain NN Duroc 

Rµ0-D 0.88* 0.62* 0.81* 

Rµ0-ABC -0.01 0.20* 0.37* 

RD-ABC -0.01 0.19* 0.30* 
* P-value less than 0.05 were considered as significant. µ0: initial growth rate value, D: exponential rate of decay of growth rate, ABC: area 
between the perturbed and unperturbed growth curves. 

 

Estimating trait heritability and genetic correlations 

The heritability of the ABC parameter was analyzed (Table 4), ranging between 0.03 and 0.04. 

Both pig breeds had similar heritability. Phenotypic and genetic correlations were also 

performed between the ABC parameter and important swine production traits such as BF100, 

LD100, ADG and FCR (Table 5). Phenotypic correlations between ABC and production traits 

are close to 0 for both breeds, ranging from -0.09 to 0.10. Genetic correlations between ABC 
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and production traits are low to moderate. In both breeds, the highest genetic correlation is 

between the resilience index and ADG, with values of 0.59 for Pie and 0.39 for Pie NN. 
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Table 4. Estimated heritabilities (h2) and corresponding standard errors (SE) of ABC parameter in Pie and Pie NN 

Breed Piétrain  Piétrain NN 

h2 (SE) 0.04 ± 0.01 0.03 ± 0.016 

 

 

Table 5. Estimates of heritabilities (diagonal) and of genetic (above diagonal) and phenotypic (below diagonal) correlations among ABC and 

four commercial selection traits in Pie and Pie NN 

Breed Piétrain   Piétrain NN  

Trait* ABC BF100 LD100 ADG FCR  ABC BF100 LD100 ADG FCR  

ABC 
0.04 

(0.01) 

0.19 

(0.16) 

-0.02 

(0.16) 

0.59 

(0.17) 

0.30 

(0.17) 

 0.03 

(0.016) 

-0.31 

(0.21) 

-0.24 

(0.23) 

0.39 

(0.23) 

0.37 

(0.20) 

 

BF100 
0.01 

(0.02) 

0.57 

(0.04) 
- - - 

 -0.03 
(0.02) 

0.42 

(0.04) 
- - - 

 

LD100 
-0.04 

(0.02) 
- 

0.46 

(0.04) 
- - 

 -0.03 

(0.02) 
- 

0.23 

(0.03) 
- - 

 

ADG 
-0.09 

(0.02) 
- - 

0.45 

(0.04) 
- 

 -0.06 

(0.01) 
- - 

0.33 

(0.04) 
- 

 

FCR 
0.10 

(0.02) 
- - - 

0.32 

(0.04) 

 0.06 

(0.02) 
- - - 

0.26 

(0.04) 

 

ABC: area between the perturbed and unperturbed growth curves; BF100: backfat thickness at 100kg; LD100: longissimus dorsi thickness at 100kg; ADG: average daily gain during control; FCR: feed conversion ratio. 
* Standard errors of correlations are given in parentheses. 
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Discussion 

Although the performance of on-farm fattening pigs has improved over the last decades, 

phenotypic expression of certain traits remains below their genetic potential. In this context, 

obtaining reliable estimates of growth potential (unperturbed) and resilience over the 

fattening period in large populations is a challenge in actual swine breeding conditions. In a 

perspective of quantifying swine resilience and as an attempt to identify indicator traits for 

this complex trait, here we described a modelling approach based on pig BW registered 

routinely by AFS in station conditions: ad-libitum feeding, high sanitary level, controlled 

temperature. Even if conditions are optimal, animals have to face to macro (heat stress, 

disease outbreak) and micro (social hierarchy, AFS mechanic problem) environmental 

perturbations that modify expression of growth potential. The modelling approach was tested 

on different swine breeds and their genetic contribution was analyzed in each one of them. 

Our modelling approach can further facilitate a real implementation at large scale in pig 

breeding systems. 

 

Pretreatment and validation of data registered by AFS 

A prerequisite for the linkage of animal data to precision livestock farming systems is through 

animal identification systems, such as RFID, that are automated and affordable both for the 

farmer and breeder (22). The development of AFS not only increases the convenience and 

control of the feeding process, it also allows a precision phenotyping. This development was 

made possible by the amount of data registered by these devices. These devices routinely 

record the individual identification, date, age, daily frequency of feeder visits, timing and 

duration of the visits, FI, and BW (23). However, unlocking the potential of new technology 

for precision livestock farming requires a deep understanding of how to manage the huge 

amount of data. Within this framework, data pre-treatment procedures to guarantee high 

quality data are essential as a first step to exploit the available information. Understanding 

the data and identifying the main data quality issues require deep data exploration (Figure 1), 

because modelling approaches are strongly dependent on data quality. 

 

Quantifying animals’ response to perturbations 

Developing models that are able to capture perturbations during the fattening period is a 

challenge in swine breeding industry. In recent years, the development of more frequent data 

acquisition and more sophisticated statistical methods have allowed modelling approaches to 

focus explicitly on perturbations. Revilla et al. (11) focused on piglets BW change induced by 

the weaning event to propose an index to quantify animal robustness during this critical 

phase. Such a study is based on the modeling of growth, by using with the Gompertz–

Makeham function, following an identified disturbance: the weaning. This was shown to 

correlate with a number of health-related parameters. Nguyen-Ba et al. (9) developed a data 
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analysis procedure to detect the impact of perturbations on FI in growing pigs. These two 

studies aim to analyze and quantify the consequences of an identified disturbance. In the 

context of our study, pigs can be subjected to different perturbations at different scales 

depending on the groups: temperature, social hierarchy, health situation. Our approach 

differs of the approaches developed by Revilla et al. (11) and Nguyen-Ba et al. (9) in the fact 

that we do not require the identification of the number of the perturbations and their nature. 

In this study, we described a combined model approach to extract, in a two-step mathematical 

model approach, perturbed and unperturbed individual growth curves over the pig-fattening 

period. The Gompertz function (17) was chosen as it is suitable to describe the potential 

growth of pigs in non-limiting conditions (18, 24). It needs only two parameters, with biological 

meaning, that can be estimated simply from data (24). The assumption was that the resulting 

model is an approximation of the theoretical growth rate of the animals not experiencing any 

perturbation (unperturbed model). The second step characterizes the perturbed growth curve 

that reflects the production permitted by the farm environment and captures different types 

of perturbations. With this two-step mathematical model and by comparing the unperturbed 

and perturbed model a very informative parameter was created, the ABC parameter, which 

gives an estimate of the degree of resilience (11) over the pig-fattening period. Animals can 

be ranked according to the values of this parameter, with this ranking being an indication on 

the magnitude of the perturbation and animal resilience. In this case, an ABC value parameter 

closer to zero, means good animal resilience properties. With respect to interpretation, an 

ABC parameter of zero could mean either that the animal is perfectly resilient or that it did 

not experience any kind of environmental perturbation. In this study, an important hypothesis 

has been made, we consider that, on average, all animals are subjected to the same 

perturbations, and so the ABC parameter really indicates the resilience response. With this 

resilience indicator, animals can be ranked based not only on the measured production level, 

but also on their capacity to cope with perturbations. This kind of approach opens the 

perspective to use this information for breeding selection. Our hypothesis has however the 

limitation that we cannot guarantee that all animals are subjected equally to the 

perturbations. A key challenge is to extend the model to account for the specific perturbations 

that the individual animals face. Integration of observational data and precision livestock 

farming technologies are alternatives to explore in future work. For our case study, the 

interest of genetic analysis is to make it possible to estimate the individual resilience potential 

by estimating the impact of the environment in which the animal was fattened. 

Here Pie and Pie NN lines presented a lower average mean score of parameter ABC, -28.89% 

and -20.48% respectively, compared with Du line (Table 2, Figure 3C). The objective of this 

comparison is not to conclude that one breed copes better than as other but to illustrate the 

potential to include a resilience indicator in the selection index. In this scenario, the Du line 

has a higher level of improvement in terms of selection response to resilience. 
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Resilience trait in the breeding objective 

The response to societal concerns (e.g., antibiotics use, viability, etc) and the need to propose 

pigs that adapt to diverse and changing environmental conditions need to include selection 

for resilience through the direct inclusion of resilience traits, or their indexes, in the breeding 

objective and in the selection index (25). Two pre-requisites to the success of this approach 

are: a practical and accurate quantitative definition of this resilience trait, and a positive 

selection response measured with the heritability estimation. The inclusion of heritabilities of 

functional traits and their feasibility in the breeding objective has been reported (26). In this 

context, the genetic improvement of resilience traits, maximizing the bottom line instead of 

performance in a single trait, could be beneficial for the total system profitability (27). 

Undoubtedly, directly including resilience traits in future selection criteria will depend on 

having quantifiable traits that can be recorded cost-effectively and reliably on the large 

number of animals that are necessary for a breeding program. The estimated heritabilities 

found in this study are low, ranging from 0.03 to 0.04, suggest that selection for this trait 

would result in a limited positive selection response. However, the favorable genetic 

correlations observed between resilience index (ABC), and ADG or FCR indicate that gains in 

both traits can be achieved at the same time, if resilience traits are properly included in the 

selection criteria. It means that an increase of the resilience index (= a decrease of ABC) is 

globally positively correlated to a genetic improvement of feed efficiency and carcass quality. 

Conversely, ABC is genetically correlated with growth (ADG), which could be interpreted as 

that an increase in the genetic potential for ADG increases the risk of a greater deviation of 

this potential in case of perturbation/stress, that is to say a loss of resilience. Although 

accuracies of estimates are low, the trends in these correlations must be taken into account 

in the choice of the weighting applied on each trait of the global index. One difficulty is to 

define what weighting to give to this resilience index in order to propose a breeding objective 

balanced with the production traits. Berghof et al (2) proposed a first approach of estimating 

and economic value of resilience index based on the reduction of time to manage alerts and 

observations. Beyond the economic value, this approach answers to environmental and 

societal concerns, that are difficult to quantify. 

Conclusions 

This study describes a method to quantify individual resilience during the pig-fattening period, 

by modelling routine BW measures registered by AFS. In addition, we have identified low to 

moderate genetic relationship between a resilience indicator and important phenotypic traits 

in swine production. The heritabilities found for the proposed resilience indicator are low but 

gives opportunity to be considered as a selection criterion and thus improve resilience. This 

first approach to building a resilience index, based on an analysis of the growth pattern could 

be enriched by the inclusion of observations of the environment (health observations, room 

temperature) and the concomitant analysis of feeding behavior (FI or feeding duration). 
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List of abbreviations 

ABC: Area between curves; ADG: average daily gain; AFS: automatic feeding system; BF: 

backfat thickness; BF100: backfat thickness at 100kg; BW: body weight; Du: Duroc; FCR: feed 

conversion ratio; FI: feed intake; IW: initial weight; LMM: linear mixed model; LD: longissimus 

dorsi; LD100: longissimus dorsi thickness at 100kg; Pie: Piétrain ; Pie NN: Piétrain Français NN 

Axiom line; PRRS: porcine reproductive and respiratory syndrome; RFID: radio frequency 

identification; TFI: total feed intake; WG: weight gain; WM: non-null weights; WT: individual 

testing. 
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Additional files 

Additional File 1 Table S1. 

Format: .xlsx 

Title: Fixed effects in linear mixed models. 

Additional File 2 Figure S1. 

Format: .tiff 

Title: Comparison of body weight density plots before (A) and after (B) applying data cleaning 

procedure in Pie NN line. 

Description: In A1 and B1 plots each point represent the median of the individual daily body weight 

registered by the AFS during the pig fattening period. A2 and B2 are smoothed color density 
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