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* On combined developmental stages, cross-validated F1-score is 88.67 %. 26 

 27 

Abstract 28 

During the past few years, milder autumn and winter seasons have caused severe problems to 29 

cauliflower harvest of Brittany region in France, mainly due to curd deformation. 30 

Consequently, cauliflower breeders are working on breeding new varieties that are more 31 

robust to climate change to stabilize the quality of cauliflower production. The aim of this 32 

study was to identify at which stage of the curd formation, significant difference can be 33 

detected between healthy and stressed cauliflower. A non-invasive classification based on 34 

Magnetic Resonance Imaging (MRI) images for cauliflower phenotyping was proposed. Plants 35 

exposed to vernalization stress were sampled at different times around primary meristem stage, 36 

then both MRI imaged and apex dissected. A work flow was developped to extract features 37 

from MRI images. A classification on phenotype was learned by LDA, QDA, PLSDA and 38 

CNN binary classification between two groups: healthy and stressed cauliflower. Promising 39 

F1 score and MCC up to 95% were achieved. Curd deformation is the main cause for 40 

cauliflower’s later physiological disorders when reaching maturity. Therefore, the cauliflowers 41 

with deformation could be removed at the earliest, e.g., screening for plant breeding. At the 42 

same time, the healthy cauliflowers are not destroyed and continue their life cycle. 43 

 44 

Keywords plant phenotyping ; non-invasive classification ; cauliflower primary meristem ; 45 

MRI application ; discriminant analysis  46 
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Abstract 62 

During the past few years, milder autumn and winter seasons have caused severe problems to 63 

cauliflower harvest of Brittany region in France, mainly due to curd deformation. 64 

Consequently, cauliflower breeders are working on breeding new varieties which are more 65 

robust to climate change to stabilize the quality of cauliflower production. The aim of this 66 

study was to identify at which stage of the curd formation, significant difference can be 67 

detected between healthy and stressed cauliflower. A non-invasive classification based on 68 

Magnetic Resonance Imaging (MRI) images for cauliflower phenotyping was proposed. Plants 69 

exposed to vernalization stress were sampled at different times around primary meristem stage, 70 

then both MRI imaged and apex dissected. A work flow was developped to extract features 71 

from MRI images. A classification on phenotype was learned by LDA, QDA,PLSDA. 72 
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Statistical analysis was then applied for a binary classification between two groups: healthy 73 

and stressed cauliflower. Promising F1 score and MCC up to 95% were achieved. Curd 74 

deformation is the main cause for cauliflower’s later physiological disorders when reaching 75 

maturity. Therefore, the cauliflowers with deformation could be removed at the earliest, e.g., 76 

screening for plant breeding. At the same time, the healthy cauliflowers are not destroyed and 77 

continue their life cycle. 78 

 79 

Keywords: plant phenotyping ; non-invasive classification ; cauliflower primary meristem ; 80 

MRI application ; discriminant analysis 81 

 82 

1  Introduction 83 

According to the Food and Agriculture Organization of the United Nations, large-scale 84 

experiments in crop phenotyping are a key factor in meeting the future agricultural needs to 85 

feed the world and provide biomass for energy while using less water and fertilizer under a 86 

constantly evolving environment adapted to climate change (Minervini et al., 2015). However, 87 

current assessments of phenotypic characteristics for disease resistance or stress in breeding 88 

programs rely largely on visual scoring by experts, which is laborious and dull, not sufficiently 89 

objective or destructive (Busemeyer et al., 2013). Various imaging methodologies are being 90 

used to collect data for quantitative studies of complex traits related to growth, yield and 91 

adaption to biotic or abiotic stress (disease, insects, drought and salinity) (Li et al., 2014). 92 

There is an urgent need to develop reliable computer vision methods that can extract 93 

phenotypic information from experiments at scales from single cell to whole plant, in the 94 

greenhouse or on the field (Li et al., 2014). The extracted information, integrated with genetic 95 

and environmental data by novel models based on accurate, robust and automatic statistical 96 
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analysis will give new opportunity to genetic diversity screening, new breeding strategies in 97 

agriculture as well as market management.  98 

Given the rapid development of high-throughout genotype screening in plant breeding and 99 

genomics for related growth, yield and tolerance to different biotic and abiotic stresses, there 100 

is a call for more effective and reliable phenotyping data to support modern genetic crop 101 

improvement (Li et al., 2014 ). To accomplish this goal, more and more projects for plant 102 

phenotype unite expertise from biological science, computer science, mathematics and 103 

engineering. Such an approach was needed to offer cauliflower breeders efficient screening 104 

methods on plant development as early as possible, by associating plant phenotype with 105 

genomes in imaging systems of computer vision. 106 

In recent years, cauliflower winter harvest for the region of Brittany in France has been 107 

observed to be very unstable and extremely reduced due to warmer autumns (Tremellat, 2017). 108 

Physiological disorders, such as open, ricey (Watts, 1966) or bracty (Kop et al., 2003) head 109 

appear. A healthy head is tightly compact with only florets and forms one bracts (Fig. 1a), 110 

whereas an open head has gaps among florets (Fig. 1b); a ricey head has protruding flower 111 

buds (Fig. 1c); and a bracty head has leaves intermingled with florets (Fig. 1d). These 112 

deformations renders cauliflower heads unmarketable, resulting in important commercial 113 

losses, e.g. with about a third of harvest was unmarketable (Tremellat, 2017).  114 

To induce flowering and thus curd formation, beyond the juvenile phase, cauliflower must 115 

be exposed to vernalization at "relative cold" temperature (Wurrand Fellows, 2000).  In the 116 

couple of weeks following vernalization, cauliflower primary meristem undergoes curd 117 

formation period, divided into 4 stages (Kieffer et al., 1998): vegetative, curd-induction, curd-118 

forming and curd-thickening stage, noted as Stage 1, 2, 3 and 4, respectively in this paper. 119 

This curd formation period is critical for cauliflower growth. If deformation appears during 120 

this period, the cauliflower head will remained deformed during subsequent growth until 121 
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maturity, about 2 months later. Breeding cauliflowers less sensible to autumn temperature 122 

fluctuation is thus desirable to stabilize yields in autumn to winter harvests. To render such 123 

breeding possible, early stage phenotyping during curd formation is needed.  124 

Floral initiation in cauliflower is the result of fine regulation of a whole network of genes 125 

and regulatory loops with interplay between transcription factors (Goslin et al., 2017). This 126 

regulation interacts with vernalization (Matschegewski et al., 2015). Bracting in cauliflower 127 

depends on its genotype (Kop et al., 2003) and the climate during floral initiation. The effect 128 

of temperature and developmental stage on bracting and riciness quality defects have already 129 

been studied in the field, either during harvest time (Grevsen et al., 2003) or by a destructive 130 

sampling with scanning electron microscopy (Fujime and Okuda,1996).  131 

Using non-invasive methods, healthy cauliflower without deformation could be kept for 132 

further growth. However, at this moment, the apex of cauliflower meristem is only around 133 

0.5mm of diameter, still tightly wrapped in a bunch of huge leaves making it invisible to 134 

naked eyes (Fig. 2) and preventing the use common RGB cameras to capture high resolution 135 

pictures on meristem without destroying the plant. For organs inavailable from the outside 136 

as plant apex, among the available techniques one could either use external imaging e.g. 137 

spectrometry or hyperspectral imaging; or internal imaging e.g. Xray or MRI. External 138 

imaging would be possible if the external part of the plant has features correlated to the apex 139 

deformation. At such early stages as the one investigated in this study, experts are not able 140 

to assess the healthy state by external observation of plant morphology. Raman 141 

spectrometry has been investigated in a companion project but will not be discussed here as 142 

no success was achieved. Current internal imaging techniques are Xray and Magnetic 143 

Resonance Imaging (MRI). Xray relies on a difference in tissue density, whereas MRI is 144 

based on the relaxation time of the tissues. Specifically, in plants the structure and chemical 145 

composition of the tissues imfluences the water molecules relaxation time (Musse and Van-146 
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As, 2018). Even though Xrays are cheaper and easier to use, this makes MRI a more 147 

selective technique to detect differences in tissues structure among plants. Although in most 148 

applications MRI is used to investigate water relations and transport in plant tissues, MRI 149 

can also be used to measure other plant constituents, such as metabolites and air spaces. 150 

MRI therefore provides access to a wide range of information about plant tissues, including 151 

structural characteristics at different length scales and physical-chemical features (Musse 152 

and Van-As, 2018). We hypothetised that such changes might occur in the transition from 153 

vegetative to floral induction in plant apex.Recent advances in spectroscopic techniques, 154 

such as Magnetic Resonance Imaging (MRI) promise non-invasive measurements on plant 155 

(Rascher et al., 2013) allowing assessment of plant phenotype revealing plant’s inner part 156 

without destroying its outside part. However, due to apex’s tiny size, its MRI image has 157 

only few pixels, which prevents an efficient image analysis. As the stems with deformed 158 

meristem have a form different from that of healthy one (Hupel, 2018), this offers the 159 

prospect of phenotyping by image analysis of stem shapes.  160 

The aim of this study was to identify at which stage of the curd formation, significant 161 

difference can be detected between healthy and stressed cauliflower. Plants exposed to 162 

vernalization stress were sampled at different times around primary meristem stage, then both 163 

MRI imaged and apex dissected. A work flow was developped to extract features from MRI 164 

images. Statistical analysis was then applied for a binary classification between two groups: 165 

healthy and stressed cauliflower. Since this application is designed to satisfy industrial need, 166 

focused was set on how to solve practical problems encountered during different steps in work 167 

flow, at same time, proposing adequate and efficient models.  168 
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2  Materials and methods 169 

2.1  Data collection 170 

Two environment conditions were imposed in greenhouse to simulate a normal autumn 171 

(group H) and a stressful warmer autumn weather (group S). The latter one was to simulate a 172 

milder autumn leading to a shorter vernalization period for cauliflower. A F1 hybrid variety of 173 

cauliflower detected as sensitive to temperature fluctuations when cultivated at large-scale 174 

Brittany region of France was selected for the experiment. Cauliflower seeds were sown in 175 

June 2018 on a mixture of sand and vermiculite at 20°C, with plants in group S sown two 176 

weeks later than plants in group H. Their seedlings at two-leaf stage were transferred to a 177 

plastic greenhouse at a temperature of 12-13°C for plant hardening during 7 weeks. The plants 178 

were transplanted in 7.5L pots and and grown for 7 further weeks, then vernalized at 4°C for 179 

either 2 weeks (group S) or 4 weeks (group H).  180 

After the vernalization, plants in group H were cultivated under tunnels with an average 181 

daily temperature between 9 and 15°C preventing the risk of devernalization, whereas those in 182 

group S were kept in a greenhouse with a temperature between 15 and 20°C simulating a 183 

warmer autumn. In this way, it was expected that the seeds of the same homogeneous variety 184 

would grow to healthy cauliflower heads under normal autumn, called group H, but those 185 

under stressful autumn would grow to stressed ones, called group S, in this paper.  186 

The plants were sent sampled for MRI measurement weekly between 0 and 31 days after 187 

the end of vernalization, 5 plants per date and per treatment each time, in order to have 188 

samples distributed on the 4 stages of primary meristem.  189 

The MRI measurement was carried out by a 1.5 Tesla MRI whole body scanner 190 

(Magnetom Avanto, Siemens, Erlangen, Germany) equipped with an eight-channel "knee" 191 

receiver coil. The plant was laid down on the examination table because it was too high to be 192 

placed uprightly (Fig. 3). Due to this reason, cauliflower apex might not be found in the coil 193 
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center due to gravity. This was especially true for plant of meristem at stage 1 and 2 due to its 194 

young and fragile stem. Another practical issue was that plant leaves were piled up in the ring 195 

resulting in aliasing artifacts in MRI. Therefore, some extra image pre-processing methods 196 

were carried out and will be explained in Section 2.2.1.  197 

The 3D MRI images were acquired by a 3D turbo spin echo (TSE3D) sequence with a voxel 198 

size of 0.5mm×0.5mm×0.5mm, a matrix size of 192×192, a FOV of 96×96, 96 slices per 199 

volume, a slice thickness of 0.5mm, an echo time of 9.5ms, a repetition time of 500ms, 2 200 

averages, a turbo factor of 14 and a bandwidth of 263 Hz/pixel. These values were chosen as 201 

the best compromise between on the one hand enhancing, at best, the contrast between the 202 

stem and the rest of the plant by the MRI operator at the time of acquisition and on the other 203 

hand, the acquisition time short enough to allow analysis of a sufficient number of plants per 204 

day. 205 

The acquisition time for one plant was about 33 min. Plant were well watered at the eve of 206 

every acquisition in order to improve MRI image contrast.  207 

After the MRI acquisition, cauliflower was dissected and photographed to enable breeding 208 

experts to identify growth stage and thus construct a ground truth for the database. Dissected 209 

cauliflower apex were stained with aceto-carmine, observed under a magnifying lens (Nikon 210 

SMZ-U, zoom 1:10) and digital RGB images were taken (Fig. 4). In this article, four stages 211 

were distinguished: 1. Vegetative stage; 2. Curd-induction stage; 3. curd-forming stage; 4. 212 

Curd-thickening stage.The top line (images ABCD) in Figure 4 illustrates a schematic 213 

representation of cauliflower floral induction based on the scanning electron micrographs in 214 

(Kieffer et al., 1998). At vegetative stage, only leaf scales are produced (Fig. 4A). During the 215 

curd-induction stage, an enlarging empty area becomes visible between leaf scales (Fig. 4B). 216 

Through the curd-forming stage, round floral primordia appears at axil of each bract scale (Fig. 217 

4C). The growth of bracts scales is repressed at curd-thickening stage (Fig. 4D). For further 218 
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growth, the apex consists of only floral primordia stopped in their development (Smyth1995), 219 

grown into florets (ramified group of flowers). Their further maturation into flowering is 220 

postponed long afterwards.  221 

The middle (images EFGH) and bottom (images IJKL) line in Figure 4 give corresponding 222 

examples of each of the stages on healthy and stressed cauliflower, respectively. Altogether, 223 

100 plants were collected for the year 2018 and 60 plants for 2019.  224 

These RGB images were used for a double-blinded identification of meristem 225 

developmental stage, compared manually with Fig. 4 by experts on cauliflower’s mersitem 226 

morphological development in order to decide their corresponding sample’s primary meristem 227 

stage. 228 

 229 

2.2  Feature extraction 230 

For each dissected plant, called a sample in this paper, a set of MRI images was acquired, 231 

called raw images. Feature extraction consisted of three steps: extraction of region of interest, 232 

image of contour and image of skeleton. 233 

2.2.1  Extraction of region of interest 234 

Its aim was to select slice from raw images (Fig. 5) and pre-process the selected slice. There 235 

were 96 raw images on plane XY per sample. The raw image resolution was 192×192 pixels. 236 

Therefore, a sample can be represented in 3D (Fig. 5b) with the apex of cauliflower meristem 237 

circled in red. In this 3D presentation, the top of a cauliflower plant has of volume of 0.5dm3. 238 

Reminding that an apex was only about 0.5mm, it barely corresponded to one pixel on raw 239 

image. Hence, it was chosen to extract features on cauliflower’s stem appearance.  240 

Because variable numbers of leaves had been included in the coil during MRI acquisition, 241 

rather than extracting 3D morphological features directly from raw images, the plant 3D 242 
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morphological information was conrained withing the 2D images on plane XZ (Fig5c) and YZ 243 

around the stem apex (Fig5d). Hence, the database consisted of 320 slices for 160 samples.  244 

If the plant apex was perfectly in coil center during MRI acquisition, the two middle slices 245 

on plane XZ and YZ were the best illustration. However, when the plant apex was not 246 

perfectly in coil center, the cauliflower meristem was missed or occluded in middle slice (Fig. 247 

6a,b) Therefore, a manual selection was required in order to find one best slice on each plane 248 

which illustrated the meristem as clearly and entirely as possible (Figure 6c,d). 249 

Aliasing artifacts of MRI acquisition happened when one leave exceeding scanner’s field of 250 

view was partially projected onto the other side of image, (Fig. 6e). Aliasing is an artifact that 251 

can occur in MRI images acquisition when the scanned object is larger than the square image 252 

area that is to be measured, which is called the field of view (FOV). As a consequence of 253 

sampling issues, portions of the object outside of the desired FOV get mapped to an incorrect 254 

location inside the FOV. For our 2D slices, this artefact reproject leaves with much higher 255 

contrast than the rest of the stem. In order to work properly on the stem, beside the presence of 256 

this artefact, we improve the local contrast and enhance the definitions of edges everywhere in 257 

the slice by using histogram equalization. Hence, a contrast limited adaptative histogram 258 

equalization (CLAHE) that enhance contrast by using information in the vicinity of each pixel 259 

while puting limitations (i.e. maxima) to the extent of said constrast augmentation (Gonzalez 260 

and Woods, 2008) was applied on this kind of slices (Fig. 6f). 261 

 262 

To focus on cauliflower stem apex morphology, and remove unnecessary plant leaves and 263 

petioles, an extraction of region of interest (ROI) was performed as follows Fig. 7a to 7c). A 264 

contour extraction method based on Otsu’s thresholding (Otsu, 1979; Gonzalez and Woods, 265 

2006) was firstly used to find object of interest, generating an image called mask in this paper 266 

(Fig. 7b). The slice on the mask was scaled to a higher resolution, from 192×96 to 384×192 267 
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pixels. To improve contrast inside ROI, the Contrast Limited Adaptive Histogram 268 

Equalization algorithm (CLAHE) (Pizer et al., 1987) was carried out on scaled image. This 269 

final ROI image (Fig. 7c), was ready for further feature extraction.  270 

2.2.2  Image of contour 271 

To extract morphological features on cauliflower stem apex, the same contour method 272 

(Gonzalez and Woods, 2006) was again applied on the ROI image. Only the contour with the 273 

largest area was considered as the final object of interest (Fig. 7d), called image of contour in 274 

this paper. Five categories of features were calculated: contour marked in green, rectangle in 275 

blue, hull, ellipse in red and intensity (Fig. 7d). For each category, 3 or 5 features were 276 

computed (Table 1), chosen in a way that the features’ value was invariant to object position in 277 

the image.  278 

2.2.3  Image of skeleton 279 

To extract morphological features on cauliflower main stem, an image of skeleton was 280 

produced as follows. From a ROI image (Fig. 8a), the corresponding mask (Fig. 8b) was first 281 

morphologically thinned with a maximum iteration of 10 by (Zhang and Suen, 1984), (Fig. 8c). 282 

It was then skeletonized to 1 pixel (Fig. 8d). The difference between the thinned and 283 

skeletonized image was the image of skeleton (Fig. 8e), having a similar form to plant main 284 

stem. Three categories of features were calculated on image of skeleton: contour marked in 285 

green, rectangle in blue and hull (Table 1).  286 

2.3  Binary classification with discriminant analysis 287 

The classification issue was binary, with the two groups of cauliflower either healthy or 288 

stressed. The database consisted of 160 plants, with 320 images, distributed on 4 stages (Table 289 

2, see columns Stage, Size, H, S) with nearly half of plants in stage 4,. Due to this limited data 290 

size, a leave-one-out cross-validation (Devijver and Kittler, 1982) was applied to assess the 291 

predictive capability of the classifiers.  292 
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Several supervised algorithms were tested for learning and validation steps based on 293 

features extracted from image of contour or/and image of skeleton: Linear Discriminant 294 

Analysis (LDA) (Fisher, 1936), Quadratic Discriminant Analysis (QDA) (Hastie et al., 2009) 295 

and Partial Least Squares Discriminant Analysis (PLSDA) (Barker and Rayens, 2003). Simple 296 

classifiers were chosen because of covariates multicollinearity, small samples and unbalance 297 

in our dataset can be troublesome to highly non-linear and/or complex classifiers. 298 

The application had significant ratios of feature number to sample size. For example, the 299 

number of features for the chosen classifiers on image of contour and skeleton on stage 3 is 34 300 

versus 26 slices from 13 samples. In order to avoid overfitting and multicollinearity problems 301 

in marchine learning (Burnham and Anderson, 2002), LDA was used with automatic 302 

shrinkage by Ledoit-Wolf lemma (Ledoit and Wolf, 2004), QDA with regularized covariance 303 

(Friedman,1989) and we used PLSDA.  304 

The regularization parameter for QDA and the adaptive component number for PLSDA 305 

were automatically chosen by a nested leave-one-out cross-validation with the inner layer to 306 

find hyper-parameters giving best F1 score on subsamples and the outer layer to evaluate 307 

algorithm performance on the whole cross-validated data.  308 

F1 score (F1) (Rijsbergen, 1979) Matthews Correlation Coefficient (MCC) (Matthews, 309 

1975) and Jaccard Index (JI) (Jaccard, 1912) were used to evaluate the classifiers performance. 310 

The MCC was a balanced measure of the quality of binary classification with +1 a perfect 311 

prediction, 0 no better than random prediction and -1 a total disagreement between prediction 312 

and observation. The JI was defined as the size of the intersection divided by the size of the 313 

union of two label sets which are here the predicted set of labels and the observed set of labels. 314 

These metrics are adapted to the situation where two classes were of very different size 315 

(Chicco and Jurman, 2020) (Table 2, see different size between "H" and "S")). 316 

 317 
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2,4 Binary classifications with deep learning 318 

To complement our classifications based on selected features, deep learning was implemented, 319 

a class of computational models composed of multiple processing layers learning 320 

representations of data with multiple levels of abstraction (LeCun et al., 2015). Those 321 

algorithms have proved to be very efficient in a wide variety of domains, most notably 322 

computer vision (Emmert-Streib et al., 2020). Among those algorithms, Convolutional Neural 323 

Networks (CNNs) are well known for their success in many computer vision tasks such as 324 

image classification (Krizhevsky et al., 2012) and objects recognition (Li et al., 2015). Deep 325 

learning was used to explore two main questions. First, could a CNN, using slices, lead to 326 

higher scoring than our classifications based on selected features on said slices? Second, could 327 

a CNN, using directly the 3D volumes, lead to good scoring?  328 

To explore the ability of a CNN to outperform other classifiers, on selected slices, transfer 329 

learning was used, a technique to re-purpose a previously trained model (Yosinski et al., 2014). 330 

A classical Xception architecture (Chollet et al, 2017) was used as base model, pretrained on 331 

the large generalist ImageNet dataset (Deng et al., 2009) with more than 14 million images of 332 

thousands of categories. The fully connected layers were removed (and associated multiclass 333 

problem) and the rest of the convolutional layers were used as fixed feature extractors to feed 334 

a new neural network of two fully connected layers of 512 neurons. From here on, this CNN 335 

will be referred to as the 2D CNN. After the first transfer-learning step, subsequent fine-tuning 336 

i.e. training also the convolutional layers was also tried. In both cases, given our small datasets, 337 

on-the-fly data augmentation with rotations and axial symmetries was used.  338 

To assess the properties of a CNN using 3D volumes, a readily available architecture 339 

previously used on CT Scans for binary classification in human epidemiology (Zunair et al., 340 

2020) was adapted. From here on, this CNN will be referred to as the 3D CNN. Due to the 341 

relative scarcity of volumic datasets and their divergence from our use case, transfer learning 342 
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was not chosen and the 3D CNN was trained from scratch. Again, on-the-fly data 343 

augmentation with rotations was used. All deep learnings were performed by dividing our 344 

dataset into training (70%) and validation (30%) sets. 345 

 346 

2.5  Hardware and librairies used 347 

The codes in the application were written in python using library OpenCV (Bradski, 2014), 348 

skimage (van der Walt et al., 2014), scikit-learn (Pedregosa et al. 2011) and tensorflow (Abadi 349 

et al., 2015). The calculation was carried out on a common desktop Dell Precision Tower 3420 350 

with Intel Xeon E3-1225 v6, 8192KB cache and an NVIDIA Tesla K80. 351 

The processing time for feature extraction was quite negligible, no more than several 352 

millisecond per image. The computation time for supervised learning and validation depended 353 

on sample and feature size. For example, it took less than 1 second for a cross-validation by 354 

LDA with features of image contour and skeleton (34 features) on stage 234 (232 images for 355 

116 samples). Computation time for CNNs were up to an hour for 3D CNN over 200 epochs. 356 

For all our application, from pre-processing steps to deep learning, codes and a sample dataset 357 

are available upon request to the corresponding author. 358 

3  Results 359 

In order to decide from which stage the classifiers can distinguish healthy from stressed 360 

cauliflower apex, the classifiers were firstly learned and validated on samples of the year 2018 361 

and 2019 together, but on separate individual stages, 1, 2, 3 or 4 (Table 2 upper lines). On all 362 

the individual stages except on stage 1 (when cauliflower meristem was still on vegetative 363 

state), one or several classifiers could reach expectation (Boughorbel et al., 2017) with F1 364 

above 85% and MCC above 65% (Table 2, marked in italics; see below for the rationale 365 

behind our expectation threshold). Therefore, the classifiers could distinguish healthy from 366 

stressed cauliflower as early as from curd-induction stage. 367 
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 368 

One or 2 classifiers with best performance on every stage are marked with an asterisk. LDA 369 

gives most of the best performance (marked with an asterisk) compared to QDA and PLSDA 370 

(Table 2). Besides, most of the best performance by LDA are computed by features from 371 

image of contour (Table 2). As the computation of the JI do not lead to significantly different 372 

conclusions than the ones based on F1 and MCC, in order to keep Table 2 comprehensible, we 373 

made JI scores available in Table 1 of the Appendix. 374 

 375 

All the results reaching expectation are marked in italics, with F1 above 85% and MCC above 376 

65% (Boughorbel et al., 2017). In the referenced article (Boughorbel et al, 2017), there are 377 

classifiers built on many different data sets (Table 5; 46 data sets). For a generalist classifier 378 

(in their case, the « SVM.imb » column), the average MCC obtained is 67.76%. We rounded 379 

roughly to 65% and considered that a good result would be strictly above this approximated 380 

mean score. For the F1-score, under the assumption of a class-balanced dataset, the score for a 381 

naïve classifier, that always predict the same class whatever the covariate values, is 66 %. If 382 

we consider such score as the least we can do and given the different levels of inbalance in our 383 

different data sets, which affect such minimal F1-score, we took a higher threshold, namely at 384 

85%. 385 

 386 

Based on the previous observation, classifiers on mixed stage 234 were computed in order 387 

to test whether features were sufficiently different to predict cauliflower healthy state without 388 

prior knowledge on meristem stage. The result was quite promising, with 88.67% on F1 and 389 

67.93% on MCC based on features of contour and skeleton by QDA (Table 2 middle lines). 390 

 391 
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Since the classifiers were calculated by supervised algorithms in machine learning, we 392 

wanted to know the influence of sample size on classifier performance, by comparing the 393 

largest data set to smaller ones. For this account, classifiers were computed only on samples of 394 

the year 2018 on stage 4 and 234 (Table 2, botom lines). In this comparison, the sample size is 395 

increased by about 12% and 35% compared to samples of year 2018 and 2019, respectively. 396 

With more samples, the classifier performance was improved, between 0.3% to 10.3%. 397 

Therefore, it was concluded that the sample size did have an impact on the classifiers’ 398 

performance. 399 

 400 

Concerning deep learning, both the 2D CNN and the 3D CNN were trained to solve our 401 

binary classification problem on stage ‘234’ from 2018 and 2019. This was our biggest 402 

relevant dataset even if it was still extremely small by deep learning standards. 403 

For the transfer learning of the 2D CNN, a small learning rate (1e-3) was chosen and had to 404 

stop after a few epochs (20) before overfitting appeared as assessed by visual diagnostic of the 405 

loss functions between trained and validated datasets. For the subsequent fine-tuning of the 2D 406 

CNN, an even smaller learning rate (1e-5) was used and more epochs (50). 407 

With transfer learning, the performance of the 2D CNN on the validation dataset were an F1-408 

score of 73.19 % and a MCC of 46.39 %. With subsequent fine-tuning, there were small 409 

performance improvement with an F1-score of 75.48 % and a MCC of 50.97 %. 410 

For the training of the 3D CNN, a low learning rate of 1e-5 was used for 50 epochs, afterward 411 

overfitting appeared. The performances of the 3D CNN on the validation set were an F1-score 412 

of 81.46 % and a MCC of 62.38 %. 413 

 414 
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4  Discussion 415 

In this paper, a non-invasive classification for cauliflower phenotyping by MRI images was 416 

proposed. It was an application of screening on cauliflower still at primary stage long before 417 

its physiological disorders become visible to naked eyes. More specifically, MRI images were 418 

firstly acquired on cauliflower plant with its apex diameter of about 0.5mm, on which features 419 

by contour or/and skeleton were extracted. These features were then sent for learning by 420 

several discriminant analysis, such as LDA, QDA and PLSDA. The healthy state of 421 

cauliflower meristem influenced by temperature fluctuation was then predicted. If deformation 422 

had already occurred and would be sufficiently marked, dissecting the apex could give access 423 

to deformation. However, it could be the case that the molecular processes have already 424 

occurred but the deformation is not yet visible on the apex. Contrasting the two sets of 425 

temperature enabled us to detect morphological differences prior to the meristem deformation. 426 

However, within each of the two temperature groups, there was variation in the development, 427 

making it necessary to assess the actual growth stage of each individual plant. As an 428 

alternative to discriminant analysis on selected features, deep learning methods were used to 429 

generate predictions. 430 

The classifiers could distinguish healthy or stressed cauliflower as early as from curd-431 

induction stage. Experiments showed that cauliflower meristem developed very quickly into 432 

stage 1, just in few days after the end of the vernalization period. It might even occur during 433 

vernalization if the temperature was not cold enough. Therefore in practice, there would not 434 

have many cauliflower on stage 1 for the application on screening, usually scheduled several 435 

days after vernalization. Hence, the poor performance on stage 1 of the classifiers was 436 

negligible in an industrial context.  437 

 438 
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Classifiers on mixed stage 234 were computed in order to test whether features were 439 

sufficiently different to predict cauliflower healthy state without prior knowledge on meristem 440 

stage. The result was quite promising, with 88.67% on F1 and 67.93% on MCC based on 441 

features of contour and skeleton by QDA. Mixing curd induction, forming and thickening 442 

stage together could make the application even more automatic, since the only need was to 443 

decide a starting day for screening by avoiding meristem vegetative period, e.g, 5 days after 444 

the end of vernalization. In this manner, even though cauliflower grows differently due to 445 

temperature fluctuation, whether its meristem on stage 2, 3 or 4, will not have important 446 

impact on the performance of the prediction. Deep learning results were also promising on 447 

mixed stage. Although they were not able to outperform classifiers trained on selected features, 448 

their performances were very close. Another interesting result is that the deep learning using 449 

volumic data has the best performance among the architecture we tried. It showed on our 450 

(unusual) use case the versatility of these approaches. 451 

 452 

Classifiers which were not only efficient but also with stable performance were needed. 453 

LDA gave most of the best performance (Table 2, marked with an asterisk) compared to QDA 454 

and PLSDA. In several of the experiments reported in Table 2, the F1 or MCC score was 455 

lower for the classification using image of contour and skeleton as compared to only image of 456 

contour. It could be surprising that the performance of the classifier decreases when more 457 

information becomes available to learn from. However, all of our classifiers are using 458 

mathematical regularizations (in a way or another) which leads, notably, to some features 459 

being nullified (their coefficients set to, nearly, zero) if they do not bring new information to 460 

solve the problem. This explains, in part, why the number of available features does not 461 

always lead to a high improvement in classification. Besides, most of the best performance by 462 

LDA are computed by features from image of contour. Therefore, applying classifier using 463 
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features from image of contour by LDA for the application of screening on cauliflower at 464 

primary meristem stage is suggested.  465 

Classifier performance was improved with more samples, between 0.3% to 10.3% (Table 466 

2). Therefore, it was concluded that the sample size did have an impact on the classifiers’ 467 

performance. However, it is likely that discriminant classifiers performances would reach a 468 

limit lower than that of state-of the art deep learning performances if enough data were 469 

available. Given that data scarcity is a bottleneck, a way forward would be to develop transfer 470 

learning and/or fine-tuning of a 3D CNN in a future work.  471 

The experimental results showed that models had a rather promising performance on F1 472 

score and MCC, especially for the one on features of contour by LDA. The classifiers could 473 

provide breeders with elements to decide whether to remove those stressed plants before 474 

planting. The associated environmental cost from negative by-product of cultivation on 475 

unmarketable plants, such as pesticide, soil resource, water and other energy could be saved.  476 

The parameters for the classifiers were calculated completely in an automatic way. The 477 

only human intervention was during the extraction of region of interest step, that was to 478 

manually re-select slices from MRI raw images when plant did not grow straight upside and to 479 

add an histogram equalization on slices when MRI aliasing artefacts occurred. In practice, this 480 

manual selection largely depended on whether cauliflower’s main stem was strong enough to 481 

support plant weight against gravity when laying down. It might be related to meristem young 482 

stage, like vegetative and curd-induction stage, but not absolutely. For example, 45% slices 483 

were re-selected for data in 2018 versus 98% for 2019. Even with the same genetic type, the 484 

plant might grow differently between years due to variable environmental conditions. Given 485 

the experiment with 3D CNN, if its performances were to be improved, it would be a good 486 

solution to remove the few remaining human interventions. 487 
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This manual selection problem might also be solved by constructing portable MRI system 488 

because image acquisition system’s position can be adjusted to plant instead of laying down 489 

plant to adapt to fixed system. In fact, MRI bulky, costly and complex hardware limitation is 490 

the main factor which prevents it becoming a standard research tool in plant phenotype 491 

regardless of its non-invasive advantage. Nevertheless, several MRI mobile prototypes have 492 

been constructed from laboratories for potential industrial applications, such as measuring 493 

dynamic water change in living stems or fruit (Windt and Blümler, 2015). A relative low-cost 494 

wide bore MRI scanners have also been designed and constructed for rapid quality inspections 495 

of fruits and vegetables in order for an industrial food quality assurance and control 496 

(McCarthy and Zhang, 2012) (Milczarek and McCarthy, 2012). Hence, constructing mobile 497 

MRI systems is a potential research direction of future work. 498 

Depending on the plant developmental stages, cross-validated F1-score were up to 95% and 499 

on combined developmental stages, cross-validated F1-score was 88.67 % (Table 2) and 500 

81,46 % for deep learning. Yet only on one sensor (the MRI) was used for this study, another 501 

direction for improvement would be combining multi-modal acquisitions from different 502 

sensors, such as chlorophyll fluorescence (Rousseau et al., 2013), with ensemble methods 503 

(Zhou, 2012).  504 

 505 

5  Conclusion 506 

We aimed at improving the early detection of cauliflower curd deformation, the main cause for 507 

cauliflower’s later physiological disorders when reaching maturity. A non-invasive 508 

classification based on Magnetic Resonance Imaging (MRI) images for cauliflower 509 

phenotyping was proposed, with tomographic images analysed by machine learning and deep 510 

learning methods. Promising F1 score and MCC up to 95% were achieved. Therefore, the 511 

cauliflowers with deformation could be removed at the earliest, e.g., screening for plant 512 
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breeding. At the same time, the healthy cauliflowers are not destroyed and continue their life 513 

cycle.  We consider this work as another proof of the usefulness and potential of tomographic 514 

data for non-invasive plant phenotyping 515 
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Table 1: List of features extracted from image of contour or image of skeleton and 664 

corresponding line colour used in Figures 7 and 8.  665 

Circle diameter stands for diameter of the circle with same area of the category of the line; 666 

Center distance stands for the category’s center to contour center; 667 

Area ratio stands for the category’s area to contour area. 668 

 669 

Features 1 2 3 4 5 Line colour 

Contour area perimeter  circle diameter  green 
Rectangle area perimeter center distance width to length area ratio blue 
Hull area perimeter center distance circle diameter area ratio  
Ellipse area perimeter center distance angle orientation area ratio red 

Intensity max mean min       
 670 

  671 
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Table 2: The performance of classifiers based on features from image of contour or/and 672 

skeleton by Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) 673 

and Partial Least Squares Discriminant Analysis (PLSDA) evaluated by F1 score and 674 

Matthews Correlation Coefficient (MCC). It is calculated separately on samples at stage 1, 2, 675 

3, 4 or at mixed stage on 234; on samples of the year 2018 and 2019. All the results reaching 676 

expectation are marked in italics, with F1 more than 85% and MCC more than 65% 677 

(Boughorbel et al., 2017). One or 2 classifiers with best performance on every stage are 678 

marked with an asterisk. The slice distribution between H and S groups on every stage is also 679 

listed. 680 

 681 

Data Stage Features Size H S LDA F1 LDA MCC QDA F1 QDA MCC PLSDA F1 PLSDA MCC 

2018 + 2019 1 image of contour 88 22 66 47.37% 34.02% 47.06% 38.24% 84.89% 29.66% 

2018 + 2019 1 image of skeleton 88 22 66 57.14% 49.92% 48.15% 27.28% 89.36%* 49.92%* 

2018 + 2019 1 image of contour + skeleton 88 22 66 57.14% 43.84% 13.79% 2.42% 86.13% 38.22% 

2018 + 2019 2 image of contour 54 34 20 92.75%* 80.00%* 84.85% 61.28% 95.00%* 92.05%* 

2018 + 2019 2 image of skeleton 54 34 20 66.67% 0.62% 70.89% -3.43% 36.84% 2.71% 

2018 + 2019 2 image of contour + skeleton 54 34 20 83.78% 50.88% 81.16% 47.88% 73.68% 59.66% 

2018 + 2019 3 image of contour 26 20 6 92.68%* 65.92%* 84.44% -10.95% 54.54% 42.76% 

2018 + 2019 3 image of skeleton 26 20 6 80.00% 13.33% 88.37% 37.36% 40.00% 27.24% 

2018 + 2019 3 image of contour + skeleton 26 20 6 87.18% 49.08% 86.96% 0.00% 57.14% 42.60% 

2018 + 2019 4 image of contour 152 96 56 89.69%* 71.54%* 87.10% 67.04% 74.55% 60.14% 

2018 + 2019 4 image of skeleton 152 96 56 89.01% 70.43% 90.26% 72.90% 80.36% 68.90% 

2018 + 2019 4 image of contour + skeleton 152 96 56 91.10%* 76.06%* 90.82% 74.29% 85.71% 77.38% 

2018 + 2019 234 image of contour 232 150 82 87.30%* 62.64%* 86.01% 64.20% 78.21% 67.41% 

2018 + 2019 234 image of skeleton 232 150 82 83.01% 50.22% 86.69% 58.28% 65.41% 47.46% 

2018 + 2019 234 image of contour + skeleton 232 150 82 88.03% 64.46% 88.67%* 67.93%* 78.26% 66.74% 

2018 4' image of contour 136 80 56 86.59% 66.37% 83.54% 60.77% 80.00% 66.46% 

2018 4' image of skeleton 136 80 56 88.75% 72.68% 90.68%* 77.18%* 82.88% 71.09% 

2018 4' image of contour + skeleton 136 80 56 88.34% 71.00% 86.39% 64.87% 90.57%* 84.94%* 

2018 234' image of contour 172 94 78 84.38%* 64.73%* 79.10% 57.59% 77.92% 60.05% 

2018 234' image of skeleton 172 94 78 76.76% 49.76% 78.67% 47.72% 70.30% 43.32% 

2018 234' image of contour + skeleton 172 94 78 81.68% 58.85% 83.67% 62.42% 82.05% 67.16% 

 682 

  683 
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Figure 1: Examples of a healthy head versus stressed cauliflower heads with physiological 684 

disorders. The images were captured after they reach a diameter of around 10cm. A. Healthy 685 

head is tightly compact with only florets and forms one bracts; B. Open head has gaps among 686 

florets; C. Ricey head has protruding flower buds; D. Bracty head has leaves intermingled 687 

with florets. 688 

 689 

 690 

 691 

 692 

 693 

 694 

Figure 2: Example of a cauliflower plant at its primary mersitem stage. A,B. The whole plant 695 

has big leaves tightly wrapped around the apex; C. Once leaves are removed, the cauliflower 696 

apex becomes visible (circled in red); D,E. On the apex, floral primordia can be examined, 697 

here stained with carmine red for beter contrast. 698 

 699 

 700 

 701 

  702 
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Figure 3: Example of one cauliflower plant placed in the "knee receiver coil" just before an 703 

MRI acquisition. 704 

 705 

 706 

  707 
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Figure 4: Floral induction at cauliflower apex illustrated by 4 developmental stages. Top line: 708 

schematic representation; middle line: examples in group H; bottom line: examples in group S. 709 

A,E,I: vegetative stage with only leaf scales (green/dark grey, plain line); B,F,J: curd-710 

induction stage with enlargement of meristem center (blue/light grey, dashed line); C,G,K: 711 

curd-forming stage with round floral primordia (yellow/light grey, dashed line) initiated at the 712 

axil of each bract scale; D,H,L: curd-thickening stage with center only consisting of round 713 

floral primordia. 714 

 715 

 716 
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Figure 5: Examples of raw images in 2D planes and corresponding 3D reconstruction. A. raw 720 

image from a sample on plane XY; B. 3D reconstruction with this sample’s raw images by Fiji 721 

[Schindelin et al. 2012]; C,D. middle slice on plane XZ and YZ. See Fig. 3 for a description of 722 

the planes. 723 

 724 

 725 

 726 

 727 

 728 

Figure 6: Illustrations for manual slice selection and histogram equalization A,B. missed 729 

meristem in middle slices of a sample on plane XZ and YZ; C,D. best illustrative slices of the 730 

same sample on plane XZ and YZ; E. best slice before histogram equalization; F. after 731 

Histogram Equalization. 732 
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Figure 7: Extraction of the region of interest and resulting contour. A,B,C. illustration on 735 

extraction of region of interest. D. image of contour where contour is marked in green, 736 

rectangle in blue and ellipse in red. 737 

 738 

 739 

 740 

 741 

Figure 8: Extraction of the image of skeleton from a ROI image, from A. to E. 742 
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Appendix 746 

 747 

Table 1: The Jaccard Index (JI) of classifiers based on features from image of contour or/and 748 

skeleton by Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), 749 

Partial Least Squares Discriminant Analysis (PLSDA).  For comparison, on stage 234, the 2D 750 

CNN JI was 64,26 % and the 3D CNN JI was 45.52 %. 751 

 752 

Data Stage Features Size H S LDA JI QDA JI PLSDA JI 

2018 + 2019 1 image of contour 88 22 66 77.27% 79.55% 76.14 % 

2018 + 2019 1 image of skeleton 88 22 66 82.95% 67.05% 82.95 % 

2018 + 2019 1 image of contour + skeleton 88 22 66 79.55% 71.59% 78.41 % 

2018 + 2019 2 image of contour 54 34 20 90.74% 83.33% 96.30 % 

2018 + 2019 2 image of skeleton 54 34 20 55.56% 57.41% 55.55 % 

2018 + 2019 2 image of contour + skeleton 54 34 20 77.78% 75.93% 81.48 % 

2018 + 2019 3 image of contour 26 20 6 88.46% 73.08% 80.77 % 

2018 + 2019 3 image of skeleton 26 20 6 69.23% 80.77% 76.92 % 

2018 + 2019 3 image of contour + skeleton 26 20 6 80.77% 76.92% 76.92 % 

2018 + 2019 4 image of contour 152 96 56 86.84% 82.89% 81.58 % 

2018 + 2019 4 image of skeleton 152 96 56 86.18% 87.50% 85.53 % 

2018 + 2019 4 image of contour + skeleton 152 96 56 88.82% 88.16% 89.47 % 

2018 + 2019 234 image of contour 232 150 82 83.19% 82.76% 85.34 % 

2018 + 2019 234 image of skeleton 232 150 82 77.59% 79.74% 76.293 % 

2018 + 2019 234 image of contour + skeleton 232 150 82 84.05% 85.34% 84.91 % 

2018 4' image of contour 136 80 56 86.03% 85.29% 83.82 % 

2018 4' image of skeleton 136 80 56 83.82% 86.03% 86.03 % 

2018 4' image of contour + skeleton 136 80 56 88.24% 85.29% 92.65 % 

2018 234' image of contour 172 94 78 82.56% 78.49% 80.23 % 

2018 234' image of skeleton 172 94 78 75.00% 73.26% 71.51 % 

2018 234' image of contour + skeleton 172 94 78 79.65% 81.98% 83.72% 
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