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ABSTRACT

Metabolome profiling in biological fluids is an inter-
esting approach for exploring markers of methane emis-
sions in ruminants. In this study, a multiplatform me-
tabolomics approach was used for investigating changes 
in milk metabolic profiles related to methanogenesis in 
dairy cows. For this purpose, 25 primiparous Holstein 
cows at similar lactation stage were fed the same diet 
supplemented with (treated, n = 12) or without (con-
trol, n = 13) a specific antimethanogenic additive that 
reduced enteric methane production by 23% with no 
changes in intake, milk production, and health status. 
The study lasted 6 wk, with sampling and measures 
performed in wk 5 and 6. Milk samples were analyzed 
using 4 complementary analytical methods, including 
2 untargeted (nuclear magnetic resonance and liquid 
chromatography coupled to a quadrupole-time-of-flight 
mass spectrometer) and 2 targeted (liquid chromatog-
raphy-tandem mass spectrometry and gas chromatogra-
phy coupled to a flame ionization detector) approaches. 
After filtration, variable selection and normalization 
data from each analytical platform were then analyzed 
using multivariate orthogonal partial least square dis-
criminant analysis. All 4 analytical methods were able 
to differentiate cows from treated and control groups. 
Overall, 38 discriminant metabolites were identi-
fied, which affected 10 metabolic pathways including 
methane metabolism. Some of these metabolites such 
as dimethylsulfoxide, dimethylsulfone, and citramalic 
acid, detected by nuclear magnetic resonance or liquid 
chromatography-mass spectrometry methods, origi-
nated from the rumen microbiota or had a microbial-

host animal co-metabolism that could be associated 
with methanogenesis. Also, discriminant milk fatty 
acids detected by targeted gas chromatography were 
mostly of ruminal microbial origin. Other metabolites 
and metabolic pathways significantly affected were as-
sociated with AA metabolism. These findings provide 
new insight on the potential role of milk metabolites 
as indicators of enteric methane modifications in dairy 
cows.
Key words: multiplatform metabolomics, methane 
biomarker, microbial metabolite, milk, dairy cow

INTRODUCTION

Reduction of enteric methane emissions is an area of 
interest due to the increased awareness of the necessity 
of lowering the carbon footprint of ruminant produc-
tion (Gerber et al., 2013). Methane measurement is 
performed with techniques such as respiratory cham-
bers, the use of a tracer gas, or automated emissions 
monitoring such as the GreenFeed system that are not 
adapted to a large number of animals (Hammond et 
al., 2016). This is a barrier for the implementation of 
reliable measurement, reporting, and verification of 
emissions from the sector and for the assessment and 
development of mitigation strategies (OECD, 2019). 
The use of high-throughput indirect methods, although 
not as precise as direct measurements, can bring ben-
efits for implementing breeding options and testing 
mitigation approaches on farms (Negussie et al., 2017). 
The search for alternative indicators of enteric meth-
ane emissions has expanded to compounds present in 
biological matrices, including, in particular, fatty acids 
(FA) in milk. The rationale of using milk FA is based 
on the known relation existing between the ruminal 
production of methane and that of VFA, in particular 
acetate and butyrate (Morgavi et al., 2010), which are 
precursors of milk FA in the mammary gland (Ferlay 
et al., 2017). Also, the presence of odd- and branched-
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chain fatty acids (OBCFA) in milk is due to microbial 
synthesis and can be associated with rumen functions, 
including VFA and methane production (Vlaeminck et 
al., 2006; Fievez et al., 2012). Based on this, numerous 
studies were performed to identify discriminant FA and 
link their concentration to enteric methane production 
(e.g., Chilliard et al., 2009; Dijkstra et al., 2011; Mo-
hammed et al., 2011; Rico et al., 2016; Engelke et al., 
2019). The identification and quantification of milk FA 
is done using GC coupled to a flame ionization detec-
tor (GC-FID), although the ability of mid-infrared 
spectroscopy to predict the quantity of certain milk FA 
(and other compounds in the mid-infrared spectrum) 
in a rapid and economic way (De Marchi et al., 2014) 
has also prompted researchers to test its application as 
a predictor of methane emissions in dairy cows (e.g., 
Dehareng et al., 2012; Vanlierde et al., 2015; Shetty et 
al., 2017; van Gastelen et al., 2018b).

An extended body of information has been collected 
worldwide on the relationship between milk FA and 
methane that consolidates a variety of production con-
ditions and hundreds of individual cow measurements. 
Notwithstanding, the general consensus is that milk FA 
have, at best, a moderate predictive power for methane 
emissions (Mohammed et al., 2011; van Gastelen et al., 
2018b; Bougouin et al., 2019a). The prediction power 
of models can be improved when other parameters are 
included such as intake and when they are applied to 
the diets on which they were validated (Mohammed 
et al., 2011; Rico et al., 2016; Engelke et al., 2019). A 
probable reason for this lack of universality of predic-
tion models is that milk FA are highly influenced by 
diet (Newbold and Ramos-Morales, 2020). It is also 
important that the composition of the diet is known to 
affect methane emissions (Martin et al., 2010; Knapp 
et al., 2014).

In contrast, the use of other milk compounds as indi-
cators of enteric methane emissions has received less at-
tention. Metabolomics, using analytical methods based 
on untargeted or targeted approaches, has the potential 
to provide the large-scale information on milk metabo-
lites that is required for this purpose. The metabolic 
profile of milk was already analyzed for this purpose by 
using nuclear magnetic resonance (NMR) and GC-MS 
(Antunes-Fernandes et al., 2016), in which several me-
tabolites appeared to be positively or negatively related 
to methane intensity in cows fed 4 diets differing in the 
type and proportion of the forage source. In contrast, 
when using a larger data set based on 6 studies and 
27 dietary treatments, there was a weak relation be-
tween milk metabolome and methane emissions (van 
Gastelen et al., 2018a). Similar to the studies on milk 
FA cited above, reported work on milk metabolites and 
methane was done using diet as the variation factor 

influencing emission. Additionally, similar to milk FA, 
the metabolome of milk is strongly influenced by the 
diet (Boiani et al., 2019). In contrast, it is not known 
where the milk metabolome can inform of differences in 
enteric methane emissions that are not related to diets. 
Gastrointestinal microbes largely contribute to the pool 
of metabolites present in the blood of the host animal 
(Wikoff et al., 2009) and, as a consequence, on other 
body fluids including milk. We hypothesized that me-
tabolites other than FA originated from, or influenced 
by, the microbial activity in the rumen can be used to 
appraise enteric methanogenesis.

The aim of the present study was to explore changes 
in milk metabolic profiles associated with the reduc-
tion of methane emissions. For a wide coverage of the 
milk metabolome, we used a multiplatform approach 
that included untargeted and targeted approaches. 
To circumvent the confounding effect of diet on milk 
metabolome, we used a single diet that only differed 
by the presence or not of 3-nitrooxypropanol to induce 
variation in methane emissions. This antimethanogenic 
compound was chosen as a model because it specifically 
inhibits the last step of the methanogenesis pathway 
and has minimal effect on animal metabolism (Duin et 
al., 2016; Thiel et al., 2019a).

MATERIALS AND METHODS

Animals, Experimental Design,  
Diets, and Procedures

The study was conducted at the animal facilities of 
the Herbipole Unit (Herbipole, INRAE; low mountain 
ruminant experimental facility). Procedures were evalu-
ated and approved by the French Ministry of Educa-
tion and Research (APAFIS #2015073116475330) and 
carried out in accordance with French and European 
guidelines and regulations for animal experimentation.

The experimental design was previously described 
(Yanibada et al., 2020). Briefly, 25 Holstein primiparous 
dairy cows in the same lactation stage (55 ± 10 DIM; 
mean ± SD) were paired according to calving, DMI and 
milk yield, and split into 2 balanced groups (control, n 
= 13; treated, n = 12). At the start of the study, cows 
had an average DMI of 18 ± 1.2 kg, an average milk 
yield of 25 ± 3.3 L, and an average BW of 608 ± 36 kg. 
Cows were housed in a tiestall barn and individually 
fed ad libitum a TMR diet composed of a DM basis of 
35% corn silage, 30% grass hay, and 35% concentrate 
and premix (Table 1). The diet of the treated group was 
supplemented with an antimethanogenic additive (60 
mg of 3-nitrooxypropanol/kg of DM) that was mixed 
with the TMR, whereas the control group received a 
placebo premix. Cows were fed twice daily at 900 and 
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1600 h, and milking was done at 0730 and 1530 h. The 
study lasted 6 wk, with 4 wk of adaptation followed by 
2 wk for sampling and measurements.

The effects of the treatment on methane emissions 
and animal performance were reported elsewhere (Ya-
nibada et al., 2020) and are discussed here in relation 
to milk metabolites. Briefly, enteric methane emission 
decreased ~23% in treated cows, whereas no differences 
in DMI, milk production, or BW were observed.

Measurements and Sampling Procedures

Cows were milked twice per day (0730 and 1530 h) 
and daily production was recorded throughout the 
study. Milk from each cow was analyzed twice per week 
for fat, protein, and lactose contents using MilkoScan 
FT (Foss Electric A/S), and SCC was analyzed using 
FOSS FC (Foss Electric A/S). Individual milk samples 
(30 mL) were collected from the morning and afternoon 
milking, mixed with potassium bichromate (Merck), 
and stored at 4°C until analysis within 24 h (Lial). For 
metabolomics analysis, milk samples were collected on 
2 consecutive days in wk 5 using the sampling device 
incorporated in milk meter (DeLaval MM15). Milk col-
lected in the morning and afternoon of the same day 
were mixed at a 70:30 ratio, reflecting the approximate 
interval between morning and afternoon milking. Then, 
samples from d 1 and 2 were pooled in equal parts, 
aliquoted in fractions of 500 µL, and stored at −80°C 
until analysis (Figure 1).

Milk Metabolite Profile Analysis

Milk samples were analyzed using 4 complemen-
tary analytical platforms: 2 untargeted and 2 targeted 
methods. Untargeted NMR analyses were performed as 
described (Yanibada et al., 2018). For untargeted ultra-
performance liquid chromatography-quadrupole-time of 

flight (UPLC-QToF)/MS analysis, a sample extraction 
method was optimized following data quality assess-
ments at each step of the preparation including sonica-
tion, protein precipitation, skimming, evaporation, and 
dissolution in injection solvents. Briefly, in the devel-
oped method, milk samples (500 µL) were thawed on 
ice, sonicated for 10 min, and centrifuged at 3,000 × g 
for 15 min at 4 °C. The top layer was removed and 100 
µL of milk were transferred to a 1.5-mL polypropylene 
tube containing 200 µL of cold methanol. The mixture 
was vortexed and kept at −20°C for 30 min. Then, 
tubes were centrifuged at 14,000 × g for 10 min at 
4°C. Supernatants were transferred into glass vials and 
evaporated to dryness using a Genevac EZ-2 evapora-
tor (Genevac SP Scientific) for 25 min. Dried extracts 
were resolubilized in a 500-µL mixture of MilliQ water/
acetonitrile (50/50, vol/vol) in 0.1% of formic acid, and 
10 µL were injected into the liquid chromatography 
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Table 1. Ingredients and chemical composition of experimental diets

Item Control Treated

Ingredient, % of DM   
 Corn silage 35 35
 Grassland hay 30 30
 Soybean meal 12 12
 Concentrate1 21 21
 Premix2 2 2
Chemical composition, % of DM   
 OM 94.3 94.3
 CP 15.0 15.0
 NDF 43.5 43.5
 ADF 21.5 21.5
 Starch 17.8 17.8
 Ether extract 2.8 2.8
1Concentrate (g/kg of DM): cracked corn (134), barley (65), wheat 
gluten (120), wheat middlings (250), wheat bran (200) soybean meal 
(138), dehydrated alfalfa (300), molassed cane (20), carbonate flour 
(38.6), salt (4), flavoring (4).
2The premix contained beet syrup (6%), sunflower oil (16%), maize 
flour (75%), and (3%) SiO2 in the control group or (3%) SiO2 contain-
ing 10% 3-nitrooxypropanol in the treated group.

Figure 1. Workflow for preparing milk samples for metabolomics analyses. LC-QToF/MS = liquid chromatography coupled to quadrupole 
time-of-flight MS; NMR = nuclear magnetic resonance; GC-FID = GC coupled to flame ionization detector; LC-MS/MS = liquid chromatog-
raphy with tandem MS.
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(LC) system. Analytical conditions were as previously 
described (Pujos-Guillot et al., 2017). The injection se-
quence of samples was double randomized using a Wil-
liam’s Latin square design with treatment and cows’ 
parameters (weight, DMI, and milk yield) as factors. 
Each series run had a maximum of 25 samples to ensure 
the stability of the analytical conditions. In each LC-
MS run, blank solvent samples (n = 3) were analyzed 
at the start, followed by sequences consisting of 2 qual-
ity control (QC) samples and 5 milk samples. Each run 
had 10 QC samples. For NMR runs, sequences were 
of 8 milk samples and 2 QC (n = 6). The QC were 
prepared by mixing equal parts of all milk samples. For 
targeted methods, milk samples were analyzed by LC-
MS/MS using the Absolute IDQ p180 kit (Biocrates 
Life Sciences AG). The kit measures 188 metabolites 
belonging to 7 different biochemical families (AA, bio-
genic amines, acylcarnitines, lysophosphatidylcholines, 
phosphatidylcholines, sphingolipids, and monosaccha-
rides; see Supplemental Table S1, https: / / doi .org/ 10 
.15454/ UUZIGD; Yanibada et al., 2021) and GC-FID 
that characterize specific FA as previously described 
(Bougouin et al., 2019b).

Data Processing and Statistical Analysis

The NMR spectra were manually phased and the 
baseline was corrected using TopSpin 3.2 software 
(Bruker, GMBH). All spectra were referenced to so-
dium trimethylsilyl propionate signals at 0 ppm, and 
data were imported in the Amix Software (version 3.9, 
Bruker) for data reduction. The bucketing was per-
formed in the region [10.0–0.5] ppm with a bucket width 
of 0.01 ppm. Regions in the [5.1–4.5] ppm correspond-
ing to water signal were excluded, as well as those in 
[5.27–5.21], [5.095–4.41], [4.015–3.53], [3.33–3.27] ppm, 
corresponding to lactose signals, and [3.39–3.36] ppm, 
corresponding to methanol signals. A table was gener-
ated containing buckets, their chemical shifts, and in-
tensities (n = 814, Supplemental Table S2, https: / / doi 
.org/ 10 .15454/ UUZIGD; Yanibada et al., 2021). Before 
multivariate analyses, buckets were normalized to the 
total intensity of the spectra to avoid any concentration 
problems.

Mass spectrometry data were processed using Bruker 
Data Analysis software (Bruker Daltonik) and con-
verted into NetCDF. Features were extracted using a 
Galaxy open web-based platform (Guitton et al., 2017). 
Ions were extracted using the centWave algorithm 
(peak picking) provided by the XCMS tool (Smith et 
al., 2006). Noisy signals contained in blank solvent 
samples as well as those outside retention times of 
<0.4 min and >22 min were removed. Signal drift and 

batch effect were corrected using linear modeling based 
on the QC samples (van der Kloet et al., 2009). As 
for NMR data, a matrix containing masses, retention 
times, and intensities was generated (n = 991, Supple-
mental Table S3, https: / / doi .org/ 10 .15454/ UUZIGD; 
Yanibada et al., 2021). For targeted methods, the Ab-
solute IDQ p180 kit based on LC-MS/MS was able to 
identify 188 metabolites, of which we selected 126 that 
had concentrations above the limit of quantification 
(Supplemental Table S1), whereas 75 FA were detected 
by GC-FID (Supplemental Table S4, https: / / doi .org/ 
10 .15454/ UUZIGD; Yanibada et al., 2021).

Data from untargeted and targeted methods were an-
alyzed using SIMCA-P+ software (V13, Umetrics AB). 
Unsupervised principal component analysis was first 
used for identifying trends and outliers (Supplemental 
Figure S1, https: / / doi .org/ 10 .15454/ UUZIGD; Yani-
bada et al., 2021). A tight cluster of QC samples in the 
principal component analysis score plots was obtained 
in both untargeted methods, indicating stable analytical 
conditions over the time of measurements (Supplemen-
tal Figure S1A and S1B). Supervised orthogonal partial 
least square (OPLS)-discriminant analysis (DA) was 
performed to highlight variables that discriminate the 
2 groups (control vs. treated). All OPLS models were 
tested for overfitting with a 200-time permutation test. 
When needed, variable selection was applied for reduc-
ing noise issued from not related information (Ander-
sen and Bro, 2010; Galindo-Prieto et al., 2014). For 
the NMR, an orthogonal signal correction filtering was 
used to remove the main systematic variability in the 
data set that was not related to the variability between 
groups, then a partial least square DA was performed 
on the obtained data set. For the LC-QToF/MS data, 
the OPLS-DA model was built using 673 variables out 
of the 991 original ones, selected by removing those 
with a variable important in the projection (VIP) 
value lower than 0.5 on the predictive component of a 
first overall OPLS-DA model. Discriminant metabolites 
with VIP values superior to 1.2 for both NMR and MS 
untargeted methods were selected for further identifica-
tion. Further, discriminant metabolites were analyzed 
using univariate analysis (t-test, P-value threshold set 
to 0.05, XlStat-Biomed, Addinsoft) to identify the most 
significant ones.

Metabolite Identification for Untargeted Methods

For NMR, annotation of chemical structures was per-
formed using 2 orthogonal acquisition sequences; that 
is, 1-dimensional and 2-dimensional NMR J-resolved 
spectroscopy (Jres), correlated spectroscopy (COSY) 
and heteronuclear single quantum coherence (HSQC) 
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on a pooled sample and compared against pure stan-
dards (level 1 of annotation). Chemical shifts in the 
regions 0.97 to 0.84 ppm and 1.31 to 1.26 ppm suggest 
that lipids were part of the discriminant compounds, 
but they could not be identified because this platform 
is not suitable to accurately characterize lipids. Also, 
the predominance of lactose signals make the valida-
tion of metabolites presents in this area of the NMR 
2-dimensional spectra difficult. Indeed, homonuclear 
(COSY) and heteronuclear (HSQC) lactose correla-
tion signal (Supplemental Figure S2, https: / / doi .org/ 
10 .15454/ UUZIGD; Yanibada et al., 2021) hampers 
the visualization of metabolites resonating in this area, 
affecting their identification. Level 2 of annotation 
was obtained for metabolites unidentified at level 1 
by comparing chemical shifts and coupling constants 
of signals against those of pure standards that were 
obtained under the same NMR conditions (internal da-
tabase), the literature (Klein et al., 2010; Sundekilde et 
al., 2013; Yang et al., 2016; Li et al., 2017), and public 
databases such as the Livestock Metabolome Database 
(Goldansaz et al., 2017; http: / / lmdb .ca/ ) or the Bio-
logical Magnetic Resonance Data Bank (Ulrich et al., 
2008; https: / / bmrb .io/ metabolomics/ ).

For untargeted LC-QToF/MS data, discriminant 
metabolites were annotated in a first instance by com-
paring masses and retention times with data provided 
by an in-house database containing more than 1,000 
metabolites acquired under the same chromatographic 
conditions. The identity of these metabolites was con-
firmed by comparing their fragmentation spectra with 
those of standards acquired under the same conditions 
(level 1). For the remaining unidentified metabolites, 
putative annotation of level 2 was achieved by compar-
ing their exact masses or their fragmentation spectra 
with those provided in public databases (Human Me-
tabolome Database, www .hmdb .ca; Bovine Metabolome 
Database, https: / / bovinedb .ca/ ; Milk Metabolome Da-
tabase https: / / mcdb .ca/ ) and the Kyoto Encyclopedia 
of Genes and Genomes (KEGG; http: / / www .genome 
.jp/ kegg/ ).

Pathway Analyses

Network and pathway analyses were performed using 
discriminant metabolites identified by the 4 analytical 
platforms that had KEGG identifiers (24 out of 38, 
Supplemental Table S5, https: / / doi .org/ 10 .15454/ 
UUZIGD; Yanibada et al., 2021). These metabolites 
were implemented in Metaboanalyst 4.0 (Chong et al., 
2018; http: / / www .metaboanalyst .ca) for metabolic 
pathways analysis.

Discriminant metabolites and pathways were also an-
alyzed using Metexplore (https: / / metexplore .toulouse 

.inra .fr/ metexplore2/ ; Cottret et al., 2018). Metabo-
lites with KEGG identification numbers were mapped 
on Bos taurus KEGG metabolic network (MetExplore 
Biosource ID 2952). This network is built by assembling 
all reactions in KEGG for which at least 1 gene coding 
for an enzyme is found in the annotated Bos taurus 
genome. Metexplore extracts the reactions connecting 
the metabolites of interest from the entire metabolic 
network and produces a reduced metabolic network 
containing core discriminant reactions (Supplemental 
Tables S6 and S7, https: / / doi .org/ 10 .15454/ UUZIGD; 
Yanibada et al., 2021). It uses an algorithm looking for 
the lightest path between each pair of nodes (weight 
of the path is the sum of the degree to the square of 
each metabolite along the path; Chazalviel et al., 2018; 
Frainay and Jourdan, 2017).

RESULTS AND DISCUSSION

The study was designed to assess the hypothesis 
that milk metabolites can reveal ruminal metabolic 
processes associated with methane production. We 
adjusted the experimental conditions in a way that 
minimized the effect of confounding factors known to 
affect the metabolome. As such, age, parity, lactation 
stage, and diet were equivalent between the control and 
treated groups. To modify enteric methane emissions, 
we used the inhibitor 3-nitrooxypropanol that blocks 
methyl-coenzyme M reductase (Duin et al., 2016), an 
enzyme that is found only in methanogenic archaea 
(Thauer, 2019) and is associated with methane pro-
duction in the rumen. 3-Nitrooxypropanol, as well as 
other inhibitors specifically blocking this enzyme, do 
not have a direct effect on other microbes or on host 
cells (Zhou et al., 2011; Duin et al., 2016; Webster et 
al., 2016). In addition, the metabolism and innocuity 
of 3-nitrooxypropanol has been documented (Thiel et 
al., 2019a,b), making it a good model compound for de-
tecting metabolic changes when methane production is 
reduced. As expected, there were no major differences 
between groups in DMI, milk production, and milk 
gross composition. In contrast, we observed a reduction 
of ~23% in enteric methane emissions (g of CH4/d) in 
the treated group (reported in Yanibada et al., 2020).

Milk FA Profile

Seventy-five FA were quantified in milk. No signifi-
cant differences (P > 0.05) were observed on sums of 
saturated, monounsaturated, and polyunsaturated FA, 
as well as on other distinctive groups such as CLA, 
but a few individual FA were altered between the 2 
groups of cows (Supplemental Table S8, https: / / doi 
.org/ 10 .15454/ UUZIGD; Yanibada et al., 2021). We 
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applied variable selection to reduce noise and used 38 
FA to build the OPLS-DA model. The model showed a 
separation between the 2 groups with a moderate pre-
dictive power (Q2 = 0.40; Figure 2C). Seven FA had a 
VIP threshold higher than 1.2. All these FA decreased 
in the treated group (Table 2). Notably, OBCFA iso 
C14, iso C15, iso C16, and C23:0, known to be pro-
duced by microbial activity in the rumen (Vlaeminck 
et al., 2006), decreased by 29%, 7%, 26%, and 14%, 
respectively. These OBCFA, particularly the iso forms, 
had already been linked to methane reduction and have 
been used for predicting methane emissions based on 
milk FA models (Dijkstra et al., 2011; Bougouin et al., 

2019a). Odd and branched-chain FA are synthetized by 
ruminal bacteria and incorporated into their cell mem-
branes, with their variations in milk associated with 
modifications in bacterial biomass and abundance of 
bacterial groups (Fievez et al., 2012). Ruminal bacteria 
produce iso FA from branched-chain AA Leu and Val 
and their fermentation products (Massart-Leën and 
Massart, 1981; Vlaeminck et al., 2006). A reduction 
of the relative concentration of these essential AA was 
detected in plasma (Yanibada et al., 2020) and milk 
of treated cows (see below), and it may be the reason 
for the lower proportion of OBCFA. Additional mea-
sures on the ruminal metabolome and microbiome of 
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Figure 2. Score plots of orthogonal projection to latent structures-discriminant analysis of untargeted (A) nuclear magnetic resonance (R2X 
= 0.27; Q2 = 0.82), (B) liquid chromatography coupled to a quadrupole-time-of-flight mass spectrometry (R2X = 0.36; Q2 = 0.51) and targeted 
(C) gas chromatography coupled to a flame ionization detector (R2X = 0.40; Q2 = 0.40) and (D) liquid chromatography-tandem mass spec-
trometry (R2X = 0.42; Q2 = 0.40) methods. R2X represents the explained variance in both predictive (t[1]) and orthogonal (t0[1]) components, 
and Q2 represents the predictive capacity of the model. Control cows: gray circles (n = 13, A and B; n = 12, C and D) and treated cows: red 
circles (n = 12).
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these cows would be needed to explain these changes. 
In addition to the apparent changes in OBCFA, we 
observed additional differences in a few MUFA (C24:1 
cis-15) and PUFA (C22: 3n -3; C18:2 trans-9,trans-12, 

and C22:2 n-6) that were not identified in other works 
(reviewed in van Gastelen and Dijkstra, 2016).

With the exception of the OBCFA discussed above, 
none of the milk FA commonly used in prediction 
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Table 2. Discriminant milk metabolites in lactating dairy cows with reduced (treated, n = 12) or unchanged 
(control, n = 13) enteric methane emissions identified by 4 complementary analytical methods1,2

Metabolites
Annotation 

level VIP3
Fold 

change4 P-value

Untargeted NMR     
 Leucine5 1 1.83 0.74 <0.001
 Isoleucine5 1 2.71 0.70 0.002
 Valine5 2 1.45 0.77 0.002
 Glutamic acid5 1 2.17 0.77 0.002
 Creatine/phosphate 2 5.26 1.15 0.002
 Glutathione 2 1.49 0.78 <0.001
 Beta-hydroxybutyric acid 1 2.45 0.83 0.016
 Citramalic acid 2 2.71 1.99 <0.001
 Citric acid 1 9.08 1.41 0.016
 N-Acetylglucosamine 2 5.24 0.90 0.094
 Dimethylsulfone 1 5.92 1.70 0.003
 Phosphocholine 2 4.74 1.13 0.141
Untargeted LC-QToF/MS    
 Pyrrolidine 1 1.50 0.70 0.001
 Dimethylsulfoxide 2 1.77 6.27 <0.001
 Leucine/isoleucine5 1 1.41 0.76 0.014
 Acetyl-l-carnitine 1 1.21 0.88 0.020
 Phenylalanine 1 1.31 0.81 0.016
Targeted LC-MS/MS     
 Glutamic acid5  NA5 1.29 0.84 0.086
 Isoleucine5 NA 2.14 0.65 0.001
 Leucine5 NA 2.15 0.66 0.007
 Lysine NA 2.17 0.61 0.012
 Serine NA 1.95 1.33 0.014
 Tyrosine NA 1.39 0.72 0.090
 Valine5 NA 2.62 0.61 <0.001
 α-Amino adipic acid NA 1.66 0.75 0.028
 Putrescine NA 1.34 0.72 0.133
 Spermidine NA 1.80 1.29 0.023
 Spermine NA 1.32 1.15 0.188
 Sphingomyelin C22:3 NA 1.41 1.23 0.241
 Acylcarnitine (C3) NA 1.23 0.87 0.063
 Acylcarnitine (C14:1) NA 1.25 1.08 0.570
 Acylcarnitine (C16: 2 -OH) NA 1.21 1.07 0.523
 Lysophosphatidylcholine acyl (C16:0) NA 1.22 1.07 0.706
 Phosphatidylcholine diacyl C36:6 NA 2.55 0.60 0.060
 Phosphatidylcholine diacyl C36:0 NA 1.27 1.17 0.037
 Phosphatidylcholine diacyl C38:0 NA 1.29 1.18 0.048
 Phosphatidylcholine acyl-alkyl C30:0 NA 1.29 1.10 0.511
Targeted GC-FID for milk fatty acids    
 iso C14:0 NA 1.47 0.71 0.001
 iso C15:0 NA 1.53 0.93 0.019
 iso C16:0 NA 1.61 0.74 <0.001
 C18:2 trans-9,trans-12 NA 1.30 0.79 0.102
 C22:0 NA 1.21 0.92 0.131
 C23:0 NA 1.36 0.86 0.004
 C22: 2n -6 NA 1.20 0.84 0.061
1Methods: untargeted nuclear magnetic resonance (NMR); untargeted liquid chromatography coupled to quad-
rupole time-of-flight MS (LC-QToF/MS); targeted LC-tandem MS (LC-MS/MS); targeted GC coupled to 
flame ionization detection (GC-FID),
2Cows were fed a TMR with (treated) or without (control) an antimethanogenic compound.
3VIP = variable importance in the projection.
4Fold change was calculated by the average value of the treated group to that of the control.
5Metabolite identified by other analytical platforms.
6NA = not applicable.
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equations (review of van Gastelen and Dijkstra, 2016; 
Bougouin et al., 2019a) were discriminant in this study. 
This suggested that many of the FA that are reportedly 
associated with methane emissions reflect differences 
in diets that are more or less methanogenic. This also 
explains why prediction equations based exclusively on 
milk FA perform poorly when tested outside the condi-
tions under which they were created (Bougouin et al., 
2019a). Diet is a major driver of milk FA composition 
and, because we used the same diet in both groups of 
cows, we did not expect to observe great changes in 
this study. Milk FA synthesized de novo by the mam-
mary gland (C4:0 to C16:0) and those whose origin can 
be traced mainly to feeds (C16:0 and longer including 
unsaturated) (Månsson, 2008) were not discriminant. 
Contrasting with this result, an increase in short-chain 
milk FA was reported in cows receiving 3-nitrooxypro-
panol (van Gastelen et al., 2020; Melgar et al., 2021). 
The reason of this discrepancy is not obvious; a dif-
ference with other works is that in our study all cows 
were primiparous with a moderate milk yield. Although 
the predictive power of the OPLS-DA model was only 
moderate, the results showed that milk FA associated 
with enteric methane emissions were those directly re-
lated to microbial activity in the rumen and none of 
endogenous or dietary origin FA that are often reported 
in the literature.

Milk Metabolic Profile Differs Between  
Control and Treated Cows

All analytical methods were able to differentiate the 
2 groups of animals. The OPLS models showed a clear 
separation on the first component (Figure 2) with an 
acceptable predictive ability parameter (Q2) of 0.83 
for NMR, 0.51 for untargeted LC-QToF/MS, and 0.40 
for targeted LC-MS/MS analyses. The combined use 
of different analytical platforms improved the cover-
age of milk metabolome with identification of a greater 
number of discriminant metabolites. Table 2 shows the 
metabolites (n = 38) driving the separation between 
groups that were identified in this work (more informa-
tion on these metabolites is available in Supplemental 
Tables S9 and S10, https: / / doi .org/ 10 .15454/ UUZIGD; 
Yanibada et al., 2021). Five of these discriminant me-
tabolites (leucine, isoleucine, valine, glutamic acid and 
acetyl carnitine) were identified with at least 2 analyti-
cal methods.

Among discriminant metabolites found in this work, 
up to a quarter were free AA and derivatives that gen-
erally decreased in the treated group (9 out of 10). Free 
AA in milk constitute a small fraction of the total pool 
of AA, and their concentration is affected by diet, stage 

of lactation, and mastitis (Csapó et al., 1995; Lind-
mark-Månsson et al., 2003; McDermott et al., 2016). 
These factors can be discarded in this study as cows 
were fed the same diet, had similar DMI, and no health 
issues. Also, digestibility can have an effect on nutrient 
supply, but it is either positively modified or generally 
not affected by the feed additive (Jayanegara et al., 
2018; van Gastelen et al., 2020). In contrast, the micro-
bial activity in the rumen can influence the amount of 
free AA in milk (Lindmark-Månsson et al., 2003). Also, 
of microbial origin, several biogenic amine derivatives 
of AA were discriminant between control and treated 
groups. Putrescine decreased, whereas spermidine and 
spermine increased in treated cows. These biogenic 
amines are formed from Orn and Arg by decarboxyl-
ases, with putrescine being an intermediary of sper-
midine and spermine synthesis (Benkerroum, 2016). 
Another discriminant biogenic amine that decreased in 
treated cows was α-aminoadipic acid, a derivative from 
endogenous Lys degradation. Both lower concentra-
tion of α-aminoadipic acid and greater concentration 
of spermidine were correlated with higher milk protein 
content in Holstein dairy cows (Melzer et al., 2013). 
This is in agreement with the tendency for greater milk 
protein content in treated cows (Yanibada et al., 2020).

In addition, we observed higher levels of creatine 
and its phosphorylated derivative phosphocreatine in 
the treated group. Creatine in ruminants is mainly of 
endogenous origin synthetized from Gly and Arg in 
kidneys and liver with a final step in the liver requiring 
methionine (Mato and Lu, 2007). These metabolites 
are implicated in intracellular energy metabolism (Wal-
limann et al., 2011). We also identified phosphocholine, 
glycerophosphocholines, and acylcarnitines among dis-
criminant metabolites. These metabolites are normal 
constituents in cow milk and have important functions 
in cellular metabolism associated with FA oxidation 
and energy balance (Erfle et al., 1970; Pinotti et al., 
2002; Sundekilde et al., 2011). For instance, decreased 
levels of β-hydroxybutyric acid and acetyl carnitine, 
and increased levels of glycerophosphocholine in 
treated cows have been linked also to better energy 
balance (Erfle et al., 1970; Klein et al., 2012). In con-
trast, acetyl carnitine in milk was negatively associated 
with methane emissions by van Gastelen et al. (2017). 
This contradictory result needs clarification, but it is 
possible that all these metabolites, mainly produced 
by mammalian tissues and requiring active transport 
mechanisms (Shennan and Peaker, 2000), do not spe-
cifically signal the methane-emission status but rather 
a general status of the host animal. This is probably the 
case for citric acid that is secreted by the epithelial cells 
of the mammary gland by exocytosis and reflects this 
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organ activity (Shennan and Peaker, 2000). Citric acid 
increased by 41% in treated cows, similar to previously 
reported (van Gastelen et al., 2018a).

Pathways Analysis and Relationships  
Between Metabolites

Metabolic pathways analysis of discriminant me-
tabolites highlighted 10 affected pathways (P > 0.05, 
impact-value threshold ≥ 0.2) including methane me-
tabolism and 9 pathways of AA metabolism (Figure 3). 
These different pathways may have interactions, with 
changes in 1 pathway affecting others. To obtain an 
integrative view, we used MetExplore, a tool that is 
able to highlight these interactions between pathways. 
MetExplore, when applied to the Bos taurus KEGG 
metabolic network, produced a subnetwork linking 19 
discriminant metabolites and 6 pathways (Figure 4, 
subnetwork data are available on Supplemental Table 
S7, https: / / doi .org/ 10 .15454/ UUZIGD; Yanibada et 
al., 2021). This subnetwork showed how the affected 
pathways were related and that they shared common 
metabolites. Notably, glutamic acid played a central 
role in several linked pathways, suggesting an impor-
tant role for this metabolite. This approach can be 
used for selecting key metabolites in affected pathways 
to be used for refinement of biomarkers and future 
validation studies. Five metabolites (with KEGG IDs) 
could not be mapped on the subnetwork. These were 
citramalic acid, acetylcarnitine, and docosanoic acid, 
which were not captured probably because the network 
needs to be better curated. Nonetheless, citramalic acid 
is also associated with microbial metabolism (Zheng 
et al., 2011). The other 2 metabolites were dimethyl-
sulfone and dimethylsulfoxide, which are known to be 
produced by the microbiota (He and Slupsky, 2014). 
Interestingly, these microbial metabolites can be linked 
to methanogenesis (see subheading below).

Milk Metabolites as Potential Proxies of Reduced 
Enteric Methane Production

The use of milk metabolites as indirect indicators of 
methane emissions in dairy cattle has undeniable ad-
vantages for application in the field, but the accuracy 
of the predictions is still not robust enough (Negussie 
et al., 2017). This is because the mammary gland is 
distal from the rumen, where most of the enteric meth-
ane is produced; additionally, there are intermediate 
organs such as the liver and the intravascular blood 
compartment that further modulate the metabolome. 
Furthermore, the mammary gland is a dynamic organ 
that synthesizes most major milk components and ac-
tively uptakes or blocks metabolites from blood. For 

this reason, and as a result of the use of the same diet, 
we essentially expected changes in minor metabolites 
and of a modest nature. Despite these imposed con-
straints, we showed that the metabolic profile in milk 
can discriminate cows that had a moderate reduction in 
methane emission of ~20%.

In this work, we scanned a large range of metabolites 
that were detected through targeted and untargeted 
metabolomic platforms. We also analyzed milk FA that 
included the milk constituents most commonly used 
for predicting enteric methane emissions. The purpose 
was not to provide new regression models, but rather 
to highlight novel elements for examining the systemic 
consequences and highlight potential markers of reduced 
enteric methanogenesis. We found that several discrimi-
nant metabolites were associated with pathways of AA 
and energy metabolism. Although their variation was 
less marked than in plasma (Yanibada et al., 2020), 
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Figure 3. Pathways affected by the reduction of methane emis-
sions. From the 38 discriminant metabolites, 24 could be mapped 
on the Bos taurus network using Kyoto Encyclopedia of Genes and 
Genomes (http: / / www .genome .jp/ kegg/ ) identifiers. Pathways sig-
nificantly affected were as follows: (1) valine, leucine, and isoleucine 
biosynthesis; (2) phenylalanine, tyrosine and tryptophan biosynthe-
sis; (3) d-glutamine and d-glutamate metabolism; (4) glutathione 
metabolism; (5) phenylalanine metabolism; (6) methane metabolism; 
(7) arginine and proline metabolism; (8) glycine, serine, and threo-
nine metabolism; (9) glyoxylate and dicarboxylate metabolism; and 
(10) alanine, aspartate, and glutamate metabolism. The plot was built 
based on the pathway enrichment analysis (node colors) and on the 
pathway impact values resulting from the pathway topology analysis 
(node size). The red lines correspond to a threshold of −log (P)= 1.3 
and a pathway impact = 0.2.

https://doi.org/10.15454/UUZIGD
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the result further suggests a systemic metabolic effect 
on the host animal when methane is inhibited. More 
interestingly, some discriminant metabolites can be 
associated with microbial metabolism, and more spe-
cifically to methane. In addition to OBCFA discussed 
above, in treated cows, we observed an increase of 527% 
for dimethylsulfoxide and 70% for dimethylsulfone as 
compared with the control. These 2 metabolites had 
the highest and second highest VIP in their respective 
multivariate models, indicating their importance. In the 
gastrointestinal tract, they are both synthetized from 
methanethiol, a degradation product of Met (He and 
Slupsky, 2014). Higher amount of proteins as a source 
of Met has been related to higher levels of these metab-
olites in milk (Villeneuve et al., 2013). As the amount 
of protein and nitrogen in the diet was the same, we 
hypothesize that more microbial protein is synthetized 
and recycled in the rumen (Wallace et al., 1997). This 
leads to a higher availability of AA to the host, which 
is concurrent with the higher plasmatic level of Met 
detected in the treated group (Yanibada et al., 2020). 
Dimethylsulfoxide, dimethylsulfone, Met, and some 
of their intermediate metabolites are all sulfur- and 
methyl-containing compounds that have been negative-
ly correlated with methane emissions under different 
conditions (Morgavi et al., 2010; Martinez-Fernandez 

et al., 2018; Saro et al., 2018). Other discriminant me-
tabolites that can be of bacterial origin were citramalic 
acid, a methylated analog of malic acid that increased 
in the treated group, and N-acetylglucosamine, which is 
suggested to be a byproduct metabolite of Methanobre-
vibacter gottschalkii (Islam et al., 2019) and decreased 
when methanogenesis was inhibited in this study.

It is also noted that the most discriminant metabo-
lites cannot be ascribed to the known metabolism of 
3-nitrooxypropanol that is degraded mainly into CO2 
(Thiel et al., 2019a). Some 3-nitrooxypropanol metabo-
lites can be incorporated into carbohydrates, but the 
amount of additive ingested was less than 1.2 g/cow per 
day, precluding a significant influence on the metabo-
lome. Notwithstanding, these discriminant metabolites 
should be validated with a higher number of cows for 
their capability to uncover natural emission variation 
and under various conditions, including the use of other 
methane inhibitors.

Nine discriminant metabolites found in milk are also 
discriminant in plasma (Yanibada et al., 2020). They 
are AA and derivatives (leucine, isoleucine, valine, ser-
ine, tyrosine, and pyrrolidine) that were, as expected, 
found at higher levels in plasma. However, dimethyl-
sulfone, creatine, and citric acid are higher in milk. We 
applied Pearson correlation between plasma and milk 
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Figure 4. Metabolic subnetwork created by MetExplore using Bos Taurus network, showing the link between metabolites associated with 
a reduction of enteric methane emissions (19 metabolites with Kyoto Encyclopedia of Genes and Genomes identifiers; http: / / www .genome .jp/ 
kegg/ ). The subnetwork includes 19 discriminant metabolites (orange squares) and 156 intermediary metabolites (blue circles). Pathways high-
lighted with Metaboanalyst (http: / / www .metaboanalyst .ca) that include the discriminant metabolites are colored.

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.metaboanalyst.ca
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metabolites to explore potential links not highlighted 
by the pathway analyses described above. Using a 
threshold of 0.6 for considering a correlation significant, 
we highlighted 42 correlations out of the 4855 tested for 
the 2 matrices. To be noted, we observed a cluster with 
strong positive correlation between milk and plasma di-
methylsulfone (0.96). Milk dimethylsulfone also showed 
a good correlation with plasma formic acid and stachy-
drine, 2 metabolites associated with rumen microbes 
and methane (Figure 5 and Supplemental Table S11, 
https: / / doi .org/ 10 .15454/ UUZIGD; Yanibada et al., 
2021).

CONCLUSIONS

This work showed that the milk metabolome reflected 
differences in enteric methane emissions from lactating 
dairy cows. We identified 38 discriminant metabolites, 
and up to 10 affected metabolic pathways. Many of 
these metabolites that were found at greater concentra-
tions in low-methane-emitting cows are general indica-
tors of an unimpaired metabolic status. As cows were 
under similar physiological conditions and were fed the 
same diet, this finding implies that reduced methane 

production has a nonnegative effect on the overall 
nutritional condition. Importantly, some milk metabo-
lites have the features of being of microbial origin and 
associated with methanogenesis. The results support 
the hypothesis that distant metabolites in milk reveal 
enteric methanogenesis variation in dairy cows.
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