Resilience from perturbation of architectural scheme through planting varies largely in Pinus pinaster
Frédéric Danjon, Antoine Danquechin Dorval, Céline Meredieu, Tiphaine Archereau, Raphaël Ségura, Bernard Issenhuth, Chantal Giroux, Pascal Barla, Ambre Leferrec, Sébastien Cavaignac, et al.

To cite this version:
Frédéric Danjon, Antoine Danquechin Dorval, Céline Meredieu, Tiphaine Archereau, Raphaël Ségura, et al.. Resilience from perturbation of architectural scheme through planting varies largely in Pinus pinaster. 11. ISRR meeting, 24-28 may 2021, May 2021, Missouri, United States. hal-03352220

HAL Id: hal-03352220
https://hal.inrae.fr/hal-03352220
Submitted on 23 Sep 2021
Resilience from perturbation of architectural scheme through planting varies largely in Pinus pinaster
Frédéric Danjon, Antoine Danquechin Dorval, Céline Meredieu

INRAE, Univ. Bordeaux, BIDJEGEO, F-33810 Cestas. France Email: frederic.danjon@inrae.fr

Keywords: Root architecture, Pinus pinaster, planting, root deformation, 3D digitizing, coarse root architecture

Technical support: Tiphaine Archereau, Raphaeli Séguera, Bernard Isamoutch, Chantal Giroux, Pascal Barra, Ambre Leterreac, Sédaine Calvignac, Guillaume Blinde, Cédric Sedillot-Gasmi

Research project supported by Caisse des Dépots et Consignation, the Ministry of Agriculture, SERFOB and Aquitaine Regional Council, Diademe and Fortius projects

11th ISRR meeting, 24-28 may 2021

Introduction: Planting is a widespread propagation technique for woody plants. Container-grown and plantation is likely to heavily alter root architecture and thus modify anchorage. The Landes forest is located South-West France and produces 20% of french wood, it is mainly composed of extensively managed even-aged stands of P. pinaster (Ad). Most reforestation is made by planting genetically improved varieties, from seeded nursery stock. Soils are eritic to albic spodosols which are acidic, sandy, and lenses of cemented spodic horizon can occur. Root system architecture is a key component in mechanical stability of trees. In their first 15 years, pines are mainly anchored by a rigid vertical and deep taproot (Danquechin Dorval 2016). Older trees are anchored by a rigid caje mainly composed of regularly spaced shallow shallow roots from which branch secondary sinkers (Dungan et al. 2005). The main framework of the central part of the root system is established at 4-years-old with a clear identification of root types (Saint Cast et al. 2020).

In this study, we characterize the deformations of root systems of P. pinaster saplings grown in containers and planted in the field. Incidence on root system architecture is analysed.

MATERIAL AND METHODS

Three hundred 3 to 5-years-old P. pinaster saplings planted in 16 forest stands were uprooted with hand tool and digitized using a magnetic field Polhemus 3D digitizer (Danjon & Reubens 2008). They were compared to 30 direct seeded stands from one stand. The resulting database contained 67000 segments and 102506. We set up and used an original architectural analysis to characterize deformations and thus root type modifications in order to examine the resulting root architecture and potential stability.

RESULTS

Stump-taproot axis: The root system of planted trees was 1.8 cm deeper on average than seeded trees, few plugs showed on the soil surface or were crushed. Plug tortuosity averaged 14% in the planted trees and 5% in the seeded trees, below plug and soil zone tortuosity was weak. In the below-plug zone, vertical deviation of the first order root peaked at a 40° average vs. 20° in the seeded trees (fig 5). Overall, 57% of planted trees have a non vertical taproot vs. 1.5% for the seeded (fig 6). When the taproot was not vertical in the 4 cm long below-plug zone, 30% of the taproots did not recover their verticality. Conversely, only 7% lost it when the below plug zone was vertical (fig 7).

Potential shallow roots: The distribution of these roots along the first order root was not modified by container planting and the largest ones grew from the upper plug zone. Heavy deformations of laterals due to nursery growth in grilled and vertically grooved containers and by planting were located within 6 cm radial distance from the taproot (fig 8). When the 6 first cm of a lateral root was maintained in a non-horizontal position, 27% of these originally vertical roots remained shallow (fig 9). Conversely, when horizontal at base, 89% of the lateral roots remained shallow (fig 9). The largest azimuth angle between shallow roots (LABS) is mainly determined by their number at 12 cm radial distance from the first order root (ρ = 0.7), which is lowered when shallow roots lose their plagiogravitropism (fig 10). The planted stand showed significantly larger azimuth of their shallow roots resulting in significantly larger angle between shallow roots (p = 0.84).

Conclusions: The studied planted stands showed low mortality and a number of badly planted seedlings. They displayed a very large variability in type and degree of deformations which could not be related to variables like the planting season or the type of soil preparation. About half the planted trees showed a good resilience as they were able to grow a root system which is likely to provide a good anchorage, other trees posses a non-vertical or weak taproot or show large LABS, except in planted stands b3, e3 and f3 where less than 20% of the root systems has no acceptable defect. We concluded that change in root tropism through nursery growth, planting and initial root regrowth is likely to weaken the anchorage of the trees both in juvenile or mature stage. Thus orientation of root ends at interface of the plug and the soil, just after plantation is a major issue for tree anchorage.