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Abstract: The toxin abrin found in the seeds of Abrus precatorius has attracted much attention
regarding criminal and terroristic misuse over the past decade. Progress in analytical methods for a
rapid and unambiguous identification of low abrin concentrations in complex matrices is essential.
Here, we report on the development and evaluation of a MALDI-TOF mass spectrometry approach
for the fast, sensitive and robust abrin isolectin identification, differentiation and quantification
in complex food matrices. The method combines immunoaffinity-enrichment with specific abrin
antibodies, accelerated trypsin digestion and the subsequent MALDI-TOF analysis of abrin peptides
using labeled peptides for quantification purposes. Following the optimization of the workflow,
common and isoform-specific peptides were detected resulting in a ~38% sequence coverage of abrin
when testing ng-amounts of the toxin. The lower limit of detection was established at 40 ng/mL in
milk and apple juice. Isotope-labeled versions of abundant peptides with high ionization efficiency
were added. The quantitative evaluation demonstrated an assay variability at or below 22% with a
linear range up to 800 ng/mL. MALDI-TOF mass spectrometry allows for a simple and fast (<5 min)
analysis of abrin peptides, without a time-consuming peptide chromatographic separation, thus
constituting a relevant alternative to liquid chromatography-tandem mass spectrometry.

Keywords: abrin; MALDI-TOF; mass spectrometry; immunoaffinity; quantification; food matrices

Key Contribution: Evaluation of bottom-up proteomics with immuno-MALDI-TOF MS for the fast
and efficient abrin toxin quantification in complex food matrices, without a time-consuming peptide
chromatographic separation.

1. Introduction

Abrin is a protein toxin contained in the seeds of the plant Abrus precatorius, found in
tropical regions [1]. Abrin belongs to the ribosomal inactivating protein class II (RIP II),
similarly to the related toxin ricin from Ricinus communis [2,3]. Abrin and ricin toxins are
both composed of A and B-polypeptide chains, which are approximately 30–32 kDa each,
resulting in a molecular weight of approximately 60–64 kDa with several N-glycosylation
sites. Both toxins occur in many isoforms in plants, e.g., abrin-a, abrin-b, abrin-c and
abrin-d (sequence similarity ≈78%) or ricin D and ricin E (sequence similarity ≈97%),
respectively [4,5]. Because of their high toxicity in humans, both toxins are considered as
relevant agents for potential criminal and terroristic misuse [6]. In such a scenario, a reliable
and fast identification of toxins in potentially contaminated environmental samples at low
level is of great importance. The identification of toxins is based either on antigen recogni-
tion by antibodies, e.g., ELISA, and on-site detection methods such as lateral flow assays, or

Toxins 2021, 13, 52. https://doi.org/10.3390/toxins13010052 https://www.mdpi.com/journal/toxins

https://www.mdpi.com/journal/toxins
https://www.mdpi.com
https://orcid.org/0000-0001-7966-5379
https://orcid.org/0000-0002-6071-8255
https://orcid.org/0000-0002-8176-797X
https://orcid.org/0000-0001-6787-4149
https://orcid.org/0000-0002-5100-2546
https://orcid.org/0000-0002-1075-9980
https://doi.org/10.3390/toxins13010052
https://doi.org/10.3390/toxins13010052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/toxins13010052
https://www.mdpi.com/journal/toxins
https://www.mdpi.com/2072-6651/13/1/52?type=check_update&version=1


Toxins 2021, 13, 52 2 of 9

on sequence characterization by mass spectrometry. Pure antibody-based methods are most
sensitive but may generate false-positive or false-negative results [7]. On the other hand,
mass spectrometry (MS)-based methods, optionally combined with enrichment by anti-
bodies for improved detection sensitivity and matrix compatibility, provide a precise mass
measurement of protein sequences for specific toxin identification, differentiation from
proteins with high sequence homology and robust quantification. Mass spectrometry-based
proteomic identification of toxins involves digestion into peptides by trypsin, eventually
detected by MS either using electrospray ionization (ESI) or matrix-assisted laser desorp-
tion/ionization (MALDI) [8]. Liquid chromatography coupled with ESI and tandem mass
spectrometry (LC-ESI-MS/MS) was mostly reported for ricin, enabling the identification in
several environmental or food matrices at low ng/mL concentrations [8–14]. Along this
line, abrin detection and quantification by tandem mass spectrometry at high resolution
(LC-ESI-MS/HRMS) was recently reported by our group [5]. As an alternative, MALDI-
time-of-flight (TOF) MS has some advantages over ESI-MS, notably the speed of analysis
and the simplicity, with the absence of a prior chromatographic separation. Nevertheless,
only few MALDI-TOF MS assays have been described for ricin [12,15–17], and none for
abrin.

In this report, we describe a fast, sensitive and robust method for abrin identification
and quantification by combining immunoaffinity-enrichment and MALDI-TOF MS analysis
(iMALDI) with isotope dilution [18,19]. The assay enabled the detection of abrin in the low
ng/mL range in milk and apple juice, and provided a quantitative performance similar to
that of LC-ESI-MS/HRMS methods.

2. Results

The objective of this work was to widen the scope of the application of the LC-ESI-
MS/HRMS assay previously reported by our group for abrin identification and quantifi-
cation in complex matrices [5], taking advantage of MALDI-TOF MS’s simplicity, time
efficiency and broader availability. The MS detection of toxins in different matrices at high
sensitivity requires selective sample preparation strategies to reduce ionization suppression.
Sample preparation is even more crucial with MALDI-TOF MS, because this technique is
most frequently not combined with prior liquid chromatography separation. In this context,
the enrichment by antibodies targeting the protein in a specific manner was considered as
most appropriate, and was implemented first, before further assay evaluations.

2.1. Assay Development

We reported previously an immuno-enrichment protocol based on the immobilization
of four different monoclonal antibodies (mAbs) directed against abrin [5], namely antibod-
ies AP430, AP3659, AP3808 and AP476 [Worbs et al., manuscript in preparation]. Rapid
on-beads trypsin digestion combined with LC-ESI-MS/HRMS was found to be efficient for
the release of unique peptides of the toxin following enrichment [13,20]. When applying
the on-beads protocol to the MALDI-TOF MS detection of abrin spiked at 250 ng/mL in
a simple bovine serum albumin (BSA) buffer, a low or no signal was observed for abrin
peptides in the MS spectrum (Figure S1). We assumed that the ionization of abrin peptides
was suppressed by peptides released by the trypsin from BSA (i.e., the albumin buffer
or coated on beads), from abrin antibodies or by polymers (i.e., from magnetic beads
conditioning medium or washing buffers).

The protocol optimization included the evaluation of additional beads washes [21] for
getting rid of polymeric contaminants and the determination of the best conditions for the
elution of abrin from the beads before the digestion of eluted abrin by trypsin (Figure S2).
The best signal of abrin peptides was obtained using a low percentage of organic solvent,
i.e., 10% acetonitrile, in acid elution conditions (Figure S2). The final protocol for abrin
determination by immuno-MALDI-TOF MS is illustrated in Figure 1, including abrin
elution from the beads and rapid digestion by trypsin within 60 min [5] of eluted abrin
resulting in a total assay time of ≈2.5 h. Under these conditions, abrin peptides dominated
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the MS spectrum even when the capture was performed from milk samples spiked with
abrin at 250 ng/mL (Figure 2).

Toxins 2021, 13, x FOR PEER REVIEW 3 of 10 
 

 

S2). The best signal of abrin peptides was obtained using a low percentage of organic sol-
vent, i.e., 10% acetonitrile, in acid elution conditions (Figure S2). The final protocol for 
abrin determination by immuno-MALDI-TOF MS is illustrated in Figure 1, including 
abrin elution from the beads and rapid digestion by trypsin within 60 min [5] of eluted 
abrin resulting in a total assay time of ≈2.5 h. Under these conditions, abrin peptides dom-
inated the MS spectrum even when the capture was performed from milk samples spiked 
with abrin at 250 ng/mL (Figure 2).  

 
Figure 1. Workflow for abrin detection by immuno-MALDI-TOF mass spectrometry (MS). The workflow includes immu-
noenrichment with four different abrin-specific mAbs, several beads washes, acid-elution of abrin from the beads before 
digestion by trypsin and MALDI-TOF quantification of abrin specific peptides. 

 
Figure 2. MALDI-TOF spectra of abrin at 250 ng/mL in milk 20% in final optimized assay conditions. The most intense 
abrin peptides and isoform specificity are indicated. The residual signal from casein peptides is shown. 

2.2. Evaluation of Immuno-MALDI-TOF MS for the Detection and Quantification of Abrin in 
Food Matrices 

The sequence coverage in the final assay conditions was determined at a mid-con-
centration range of 250 ng/mL in buffer. Based on the amino-acid sequence of abrin-a, the 
sequence coverage was determined at ~38%, including five peptides shared by the four 
isoforms and eight unique peptides to abrin-a (Table 1, Figure S3). In addition, 3 peptides 
unique to abrin-b and two unique to abrin-c,-d were detected (Table 1). As expected, ar-
ginine-containing peptides dominated in the mass spectrum (23 peptides) over those that 
contained lysine (two peptides) due to their superior detection/ionization efficiency [22]. 
Two long peptides previously undetected by LC-ESI-MS/HRMS operated in data-depend-
ent acquisition [5], i.e., VSIQTGTAFQPDAAMISLENNWDNLSR and SALVLSAESSS-
MGGTLTVQTNEYLMR, were well detected and identified by MALDI-TOF MS, thus 

Figure 1. Workflow for abrin detection by immuno-MALDI-TOF mass spectrometry (MS). The workflow includes immu-
noenrichment with four different abrin-specific mAbs, several beads washes, acid-elution of abrin from the beads before
digestion by trypsin and MALDI-TOF quantification of abrin specific peptides.

Toxins 2021, 13, x FOR PEER REVIEW 3 of 10 
 

 

S2). The best signal of abrin peptides was obtained using a low percentage of organic sol-
vent, i.e., 10% acetonitrile, in acid elution conditions (Figure S2). The final protocol for 
abrin determination by immuno-MALDI-TOF MS is illustrated in Figure 1, including 
abrin elution from the beads and rapid digestion by trypsin within 60 min [5] of eluted 
abrin resulting in a total assay time of ≈2.5 h. Under these conditions, abrin peptides dom-
inated the MS spectrum even when the capture was performed from milk samples spiked 
with abrin at 250 ng/mL (Figure 2).  

 
Figure 1. Workflow for abrin detection by immuno-MALDI-TOF mass spectrometry (MS). The workflow includes immu-
noenrichment with four different abrin-specific mAbs, several beads washes, acid-elution of abrin from the beads before 
digestion by trypsin and MALDI-TOF quantification of abrin specific peptides. 

 
Figure 2. MALDI-TOF spectra of abrin at 250 ng/mL in milk 20% in final optimized assay conditions. The most intense 
abrin peptides and isoform specificity are indicated. The residual signal from casein peptides is shown. 

2.2. Evaluation of Immuno-MALDI-TOF MS for the Detection and Quantification of Abrin in 
Food Matrices 

The sequence coverage in the final assay conditions was determined at a mid-con-
centration range of 250 ng/mL in buffer. Based on the amino-acid sequence of abrin-a, the 
sequence coverage was determined at ~38%, including five peptides shared by the four 
isoforms and eight unique peptides to abrin-a (Table 1, Figure S3). In addition, 3 peptides 
unique to abrin-b and two unique to abrin-c,-d were detected (Table 1). As expected, ar-
ginine-containing peptides dominated in the mass spectrum (23 peptides) over those that 
contained lysine (two peptides) due to their superior detection/ionization efficiency [22]. 
Two long peptides previously undetected by LC-ESI-MS/HRMS operated in data-depend-
ent acquisition [5], i.e., VSIQTGTAFQPDAAMISLENNWDNLSR and SALVLSAESSS-
MGGTLTVQTNEYLMR, were well detected and identified by MALDI-TOF MS, thus 

Figure 2. MALDI-TOF spectra of abrin at 250 ng/mL in milk 20% in final optimized assay conditions. The most intense
abrin peptides and isoform specificity are indicated. The residual signal from casein peptides is shown.

2.2. Evaluation of Immuno-MALDI-TOF MS for the Detection and Quantification of Abrin in
Food Matrices

The sequence coverage in the final assay conditions was determined at a mid-concentration
range of 250 ng/mL in buffer. Based on the amino-acid sequence of abrin-a, the sequence
coverage was determined at ~38%, including five peptides shared by the four isoforms and
eight unique peptides to abrin-a (Table 1, Figure S3). In addition, 3 peptides unique to abrin-
b and two unique to abrin-c,-d were detected (Table 1). As expected, arginine-containing
peptides dominated in the mass spectrum (23 peptides) over those that contained lysine
(two peptides) due to their superior detection/ionization efficiency [22]. Two long peptides
previously undetected by LC-ESI-MS/HRMS operated in data-dependent acquisition [5], i.e.,
VSIQTGTAFQPDAAMISLENNWDNLSR and SALVLSAESSSMGGTLTVQTNEYLMR, were
well detected and identified by MALDI-TOF MS, thus providing a complementary sequence
coverage. Interestingly, the peptide SALVLSAESSSMGGTLTVQTNEYLMR is common to the
four abrin isoforms.
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Table 1. Abrin peptides identified by immuno-MALDI-TOF at 250 ng/mL in buffer. Masses (m/z) were determined after
the internal calibration of the mass spectrum using trypsin peptides at m/z 842.5094, 1774.8975, 2211.1040 and 2283.1802 Da.
Amino-acid residues surrounding each peptide are indicated in brackets. Matching proteins: a is abrin-a (uniprot P11140), b
is abrin-b (uniprot Q06077), c is abrin-c (uniprot P28590), d is abrin-d (uniprot Q06076), agg is Abrus precatorius agglutinin
(uniprot Q9M6E9).

Peptides
m/z

[M + H]+

Theo

m/z
[M + H]+

Obs

Difference
(ppm)

Matching
Protein Modifications

(R) YEPTVR (I) 764.3937 764.39 −1 a,b,c,d
(R) WAHQSR (Q) 784.3849 784.38 −1 a, agg
(K) QFIEALR (E) 859.4672 859.47 −1 a,b,c,d Pyroglutamate
(K) QFIEALR (E) 876.4938 876.49 −4 a,b,c,d

(R) AGTQSYFLR (D) 1042.5316 1042.53 −2 a
(K) QFIEALRER (L) 1144.6109 1144.60 −10 a Pyroglutamate; Miscleavage

(R) QQIPLGLQALR (H) 1236.7423 1236.75 2 b
(R) YLFTGTQQYSLR (F) 1476.7482 1476.75 1 b
(K) DRLEENQLWTLK (S) 1544.8067 1544.81 5 a,b,c,d Miscleavage
(K) EQQWALYTDGSIR (S) 1566.7547 1566.76 0 a,b,c,d

(R) DAPASASTYLFPGTQR (Y) 1681.8180 1681.82 1 c,d
(K) QGSPIVLMACSNGWASQR (W) 1887.8840 1887.93 23 b,c,d Pyroglutamate
(R) NDGSIYNLHDDMVMDVK (R) 1965.8681 1965.89 10 b,c

(R) QQIPLGLQALTHGISFFR (S) 2009.0967 2009.10 −1 a Pyroglutamate
(R) QQIPLGLQALTHGISFFR (S) 2026.1233 2026.12 −1 a
(R) GGLIHDIPVLPDPTTLQER (N) 2071.1182 2071.12 −1 a

(R) NDGSIYNLHDDMVMDVKR (S) 2121.9692 2121.96 −3 b,c Miscleavage
(R) LTGGLIHGIPVLPDPTTLQER (N) 2227.2445 2227.24 −2 b

(R) GVQESVQDTFPNQVTLTNIR (N) 2246.1412 2246.14 −1 a
(R) LTGGLIHDIPVLPDPTTVEER (N) 2272.2183 2272.23 3 c,d

(K) EIILHPYHGKPNQIWLTLF (-) 2319.2648 2319.29 9 b,c
(R) LRGGLIHDIPVLPDPTTLQER (N) 2340.3034 2340.31 2 a Miscleavage

(K) SALVLSAESSSMGGTLTVQTNEYLMR (Q) 2745.3434 2745.35 1 a,b,c,d
(K) SALVLSAESSSMGGTLTVQTNEYLMR (Q) 2761.3383 2761.34 1 a,b,c,d Oxidation

(R) VSIQTGTAFQPDAAMISLENNWDNLSR (G) 2978.4313 2978.44 3 a
(R) DAPSSASDYLFTGTDQHSLPFYGTYGDLER (W) 3310.4811 3310.50 5 a

In bold: most intense peptides in the MS spectrum.

Peptides were selected for the quantitative assay based on the usual recommenda-
tions [23] among the most intense peaks in the MS spectrum. The peptides observed in
the MALDI-TOF spectrum with pyroglutamate formation from N-terminal glutamine,
oxidation or miscleavage were excluded, as well as all peptides containing amino-acids
prone to chemical modification like methionine or cysteine residues (Table 1). The peptides
AGTQSYFLR and GVQESVQDTFPNQVTLTNIR of abrin-a were selected for the quantita-
tive experiments. Additionally, the peptide YLFTGTQQYSLR, representative of abrin-b,
was included. Because abrin-a accounts for ~75% of the total abrin content in the lactosyl-
purified material from Abrus precatorius seeds (whereas abrin-b amounts to ~15%) [5], the
quantitative value of the protocol was assessed with the two abrin-a peptides. For the
same reason, peptides from the minor isoforms abrin-c or abrin-d were not included in the
quantitative evaluation. To ensure assay specificity and improve the quantitative accuracy,
the selected peptides were obtained in labeled form with [13C6;15N4]-arginine. The limit of
detection (LOD) of the immuno-MALDI-TOF MS detection was determined by spiking
increasing concentrations of purified abrin in 20% milk. LOD was determined as the lowest
spiked concentration, resulting in a signal to noise ratio around 3 for the 2 abrin-a peptides.
In this condition, LOD was found at 40 ng/mL in a 20% milk sample, as illustrated in
Figure 3, with the signal of the peptides AGTQSYFLR and GVQESVQDTFPNQVTLTNIR,
which corresponds to approximately 400 pg/6.5 fmol abrin, deposited on each spot of
the MALDI plate. At the LOD level, four additional abrin peptides were also detected,
including the long peptide SALVLSAESSSMGGTLTVQTNEYLMR common to the four
isoforms. Linearity was determined up to 800 ng/mL resulting in a linear range of around
50-fold (Figure 4). Most importantly, our method demonstrated adequate sensitivity for
the detection of abrin in food samples, considering the estimated lethal doses of abrin
after oral administration at approximately 5 to 20 mg/kg of body weight [24]. Regarding
quantification precision, intra-assay variability was evaluated in milk, as a representative
protein-rich matrix, and apple juice, by spiking low and medium concentrations at 75 and
250 ng/mL, respectively, in five independent replicates each. Assay precisions (CV%) were
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determined, ranging between 6.9 and 22% in milk or between 8.4 and 16.5% in apple juice,
for the peptides AGTQSYFLR and GVQESVQDTFPNQVTLTNIR (Table 2), respectively.
Taking all these results together, the protocol proved efficient for the detection and quan-
tification of abrin in milk and apple juice (Table 2). A further evaluation could be done
in a diversity of food matrices, including solid and other sugar-rich matrices where abrin
enrichment could be impacted.
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Figure 3. Determination of the limit of detection (LOD) for abrin in 20% milk by immuno-MALDI-
TOF MS. MS Signal of peptides (a) GVQESVQDTFPNQVTLTNIR and (b) AGTQSYFLR in a blank
sample (top), at 40 ng/mL abrin (middle) and at 250 ng/mL abrin (bottom). The signal of the labeled
peptides is indicated on the MS spectra.
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Table 2. Evaluation of the immuno-MALDI-TOF assay performances for abrin measurement in food
matrices.

Peptides

Matrix GVQESVQDTFPNQVTLTNIR AGTQSYFLR

Milk
LOD (ng/mL) 40.0 40.0

CV% 75 ng/mL 13.0 6.9
CV% 250 ng/mL 17.3 22.0

Apple juice
LOD (ng/mL) 40.0 40.0

CV% 75 ng/mL 8.4 16.5
CV% 250 ng/mL 15.5 11.0

3. Discussion

We previously reported a quantitative mass spectrometry-based assay for abrin in
complex matrices. After the immuno-affinity enrichment of the toxin and on-beads trypsin
digestion, both shared and isoform-specific peptides were monitored by multiplex LC-
ESI-MS/HRMS on a quadrupole-Orbitrap high-resolution mass spectrometer [5]. With
the objective of widening the scope of the application of our assay, we evaluated here the
relevance of detecting and quantifying abrin peptides by immuno-MALDI-TOF MS as
an alternative to LC-ESI-MS/HRMS. When the on-beads digestion protocol [5,13,20] was
first tested with MALDI-TOF MS, we observed high background interferences in the MS
spectrum and signal suppression due to peptides released by proteins from the matrix
and/or proteins coated on the beads. Additional washes and the elution of abrin from
the beads were necessary. In the final conditions, linear calibration curves were obtained
down to 40 ng/mL. These modifications to the workflow were key for the successful
implementation of the MALDI-TOF MS detection of abrin.

This work is, to our knowledge, the first development and evaluation of an immuno-
MALDI-TOF MS approach for abrin identification in complex matrices. In the final assay
conditions, the LOD was determined at ~40 ng/mL in milk or apple juice. The sensitivity
of the new protocol is in line with previous immuno-MALDI-TOF MS methods reported
for ricin identification [16,17,25], considering that ricin has minimum lethal doses similar
to abrin [6,24]. Of note, a time consuming ZipTip separation was necessary in those
ricin assays, to purify and concentrate ricin before the MALDI-TOF MS analysis. In our
protocol, abrin eluted from the beads was directly spotted onto the MALDI plate, greatly
simplifying and shortening the workflow. In addition, the quantitative value of MALDI-
TOF MS was not evaluated for abrin or ricin toxins in previous studies, regarding CV%
or linearity in complex matrices. Our protocol was found to be quantitative, with an
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intra-day variability between 6.9% and 22% in milk or apple juice and a linear response
between 40 and 800 ng/mL in both matrices. Interestingly, we found roughly similar
quantitative performance of immuno-MALDI-TOF MS compared to the LC-ESI-MS/HRMS
assay previously reported, which showed a variability between 2.6% and 17.3% [5]. The
sensitivity of LC-ESI-MS/HRMS was superior by a factor of five, inherent to the higher
sample volume injected onto the LC column, i.e., 20 µL, in comparison to only 1 µL as
usually deposited on each MALDI spot. Therefore, the detection sensitivity of the MALDI
method can be further improved by minimizing as much as possible the sample volume
before analysis.

We have shown here that the careful selection of quantitative peptides, the addition
of the labeled version of those peptides and the optimization of the sample preparation
allowed for a precise quantitative determination of abrin by MALDI-TOF MS. The sim-
plification and speed-up of the assay procedure makes the immuno-MALDI-TOF MS
procedure an attractive alternative for expert laboratories when performing real sample
analyses. Moreover, the immuno-MALDI-TOF MS approach delivers additional peptides
not detectable by LC-ESI-MS/HRMS [5], thus complementing the sequence coverage.

4. Conclusions

The new method is intended to be implemented in regulatory laboratories where
LC-ESI-MS/MS instruments are not available and also for fast risk assessment, providing a
first response in advance to the LC-ESI-MS/HRMS measurements. To this aim, we showed
that MALDI-TOF MS can constitute an efficient alternative to LC-ESI-MS/HRMS. More
research would be needed to better evaluate the specificity and LOD in the diverse matrices
that may be investigated in a biodefense scenario. The assay could also be combined with
efficient enzymatic assays where substrates depurinated by abrin or ricin after incubation
might be detected by MALDI-TOF MS [9,21,26].

5. Materials and Methods
5.1. Safety Precaution

Due to its high toxicity, experiments using abrin were performed in a biosafety level-2
cabinet equipped with a HEPA filter. Only trained personnel were allowed to handle
the toxin while wearing personal protection equipment and following specified safety
protocols. Abrin-contaminated solutions and consumables were inactivated overnight
using 2 M NaOH.

5.2. Chemicals and Materials

Abrus seeds were purchased from B & T World Seeds (Aigues-Vives, France). Abrin
was purified from Abrus precatorius seeds as described in [5]. Sequencing-grade modi-
fied trypsin was obtained from Promega Corporation (Charbonnières-les-Bains, France).
RapiGest SF Surfactant was purchased from Waters Corporation (Milford, MA, USA).
Dynabeads M-280 tosylactivated magnetic beads were obtained from Invitrogen (Life
Technologies, Oslo, Norway). Labeled peptides for quantification were synthesized in
Pepotec grade by ThermoFisher Scientific (Paisley, UK). Water (ChromaSolve LC-MS), ace-
tonitrile (ACN, HPLC-grade) and formic acid were obtained from Honeywell/Riedel-de
Haen (Seelze, Germany) and VWR chemicals (Fontenay sous Bois, France), respectively.
Trifluoroacetic acid (TFA) and all other chemicals were purchased from Sigma-Aldrich
(Saint Quentin Fallavier, France) or VWR Chemicals (Fontenay sous Bois, France). For all
reactions, LoBind Eppendorf tubes (Dutscher, Brumath, France) were used.

5.3. Preparation of mAb-Coated Beads

The four different monoclonal antibodies used for abrin capture (namely AP430,
AP3659, AP3808 and AP476) were produced in-house at RKI using a formaldehyde inacti-
vated mixture of abrin and agglutinin for immunization of mice [Worbs et al., manuscript
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in preparation]. On-beads immobilization was done according to the manufacturer’s
instruction using 120 µg of antibody coupled to 12.6 mg of tosylactivated Dynabeads.

5.4. Abrin Extraction and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Analysis

A 500 µL portion of toxin-containing samples, diluted in PBS containing 0.05% Tween,
was incubated with 0.32 mg of antibody-coated magnetic beads (corresponding to 3 µg
of antibody per reaction) for 1 h in a deep well plate on row1. The deep well plate was
then placed into a KingFisher Duo Prime magnetic particle processor (Thermo Fisher
Scientific, Waltham, MA, USA) for automated bead washing, which included two washes
with 1 mL each of PBS containing 0.05% Tween followed by two washes with 0.5 mL of
water [21]. The beads were eluted from the KingFisher Duo prime into 250 µL of water. The
beads were transferred to an Eppendorf tube, the tubes were placed on a magnet, and the
supernatant was removed. The beads were resuspended in 10 µL of 10% acetonitrile, and
0.1% TFA during 30 min for the elution of abrin. RapiGest SF (0.05% in 500 mM ammonium
bicarbonate) was added before the supernatant was transferred to a new Eppendorf tube.
The tubes were heated at 95 ◦C for 15 min to induce denaturation. After cooling to room
temperature, 0.5 µL of sequencing-grade-modified trypsin at 100 µg/µL was used for
digestion at 37 ◦C in a bath-type sonicator (Advantage Lab, Darmstadt, Germany) for 1 h.
The digestion was stopped by adding 5 µL of 1 M HCl and incubated at 37 ◦C for 45 min,
before centrifugation. A 5-µL aliquot was mixed with 5 µL of matrix solution consisting
of α-cyano-4-hydroxycinnamic acid at 5 mg/mL in 50% acetonitrile, 0.1% TFA [27] and
1.5 µL of labeled peptides AGTQSYFLR [13C6;15N4] and GVQESVQDTFPNQVTLTNIR
[13C6;15N4] at 600 nM and 400 nM, respectively. A 1-µL aliquot of this mixture was
spotted on a 96-spot MBT Biotarget 96 plate (Bruker, Wissembourg, France). Analyses
were performed using an UltrafleXtreme instrument (Bruker Daltonics, Bremen, Germany)
operating in the reflectron positive ion mode. MS spectra were acquired at a 2 kHz laser
repetition rate in the positive reflector ion mode, with a 20 kV acceleration voltage and an
extraction delay of 130 ns. The spectra were obtained by accumulating 5000 shots over the
500–5000 m/z range.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-665
1/13/1/52/s1, Figure S1: MALDI-TOF spectra of abrin at 250 ng/mL in buffer after immunocapture
with on-beads digestion conditions, Figure S2: Optimization of abrin elution conditions, Figure S3:
Sequence coverage of abrin at 250 ng/mL by MALDI-TOF.
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