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Abstract: The aims of this study were to investigate (i) the influence of aging grassland in the
recovery of soil state by the comparison of permanent grassland, two restored grasslands, two
temporary grasslands, and a continuous crop in the same pedoclimatic conditions, (ii) the extent and
the persistence of the potential changes following a grassland/or cropland phase. We hypothesized
that the level of microbial communities and enzyme activities could achieve a profile close to that
of permanent grassland after the introduction of grassland for a few years in crop rotations. Soil
biophysicochemical properties were studied. Our results indicated that the abundance of microbial
communities and enzyme activities were positively correlated to soil C and N contents and negatively
correlated to soil pH. The changes in microbial abundance level were strongly linked to the changes
in functional level when grasslands are introduced into crop rotations. We also showed that a
continuous crop regime had a stronger legacy on the soil biota and functions. By contrast, the legacy
of a grassland regime changed quickly when the grassland regime is interrupted by recent culture
events. A grassland regime enabled the restoration of functions after more than five cumulative years
in the grassland regime.

Keywords: enzyme activities; microbial communities restoration; crop rotation; grassland; function
level; grassland/cropland legacy

1. Introduction

During the last decade, nutrients deficiency has been considered as the main cause of
poor productivity and crop failure. A study of the current trends in agronomic practices
has suggested that the soil nutrients deficiency is further aggravated by continued use of
high-yielding crop varieties, intensive cropping patterns, and the use of relatively poor
fertilizers [1]. Soils are a non-renewable resource at a human time scale, and some adverse
effects of degradative processes on soil quality are irreversible [2]. Thus, soils need to be
recognized and valued for their productive capacities as well as their contribution to food
security and the maintenance of key ecosystem services driven by soil biodiversity [3].
Among soil biodiversity, microorganisms are particularly abundant, given that just one
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gram of soil contains as many as 1010–1011 bacteria, including 6000–bacterial species and
up to 200 m of fungal hyphae [4]. They represent the unseen majority and comprise a
large portion of the genetic diversity of soil [4,5]. Bacteria and fungi communities play key
roles in soil ecosystems because they constitute a major part of the biomass contributing
to various biogeochemical cycles [6–8]. These soil microorganisms play a key role in the
decomposition and mineralization of organic matter (OM) [9,10]. Indeed, they control and
produce most of the enzymes involved in the breakdown of OM and influence soil carbon
(C), nitrogen (N), phosphorus (P), and sulfur (S) cycling. The abundance and the diversity
of soil microbial communities are also important in plant health, soil fertility, and wider
ecosystem functioning [11–15].

Agricultural practices can affect directly and indirectly soil microbial communities
and their functions [16,17]. Amongst these impacts, reduction in microbial diversity is often
viewed as major threats to the future [18,19]. Today, agricultural practices should tend to
sustainable agriculture to guarantee or improve crop yields and soil quality, thus limiting
greenhouse gases emissions [20]. Among sustainable practices, farmers are reconsidering
an old method of adding grasslands within arable crop rotations. This type of farming
may be a way to reconcile agricultural productivity with concerns about environmental
quality [21,22] by integrating crop-livestock farming systems [23]. Alternation of grassland
and cropland has been indicated as more efficient than permanent cropping systems in
terms of organic C sequestration, nutrient availability, and increasing biodiversity of the
agrosystems [24–26]. Grasslands have been described as resilient soils, although soil
cultivation results in well-documented losses of OM and soil structure [27–29].

The establishment of grasslands on previously cultivated soils can result in the re-
covery of some key soil properties and might act positively on soil microbial communi-
ties [30–34]. The analysis of soil microbial communities in cultivated soil and grassland
found higher bacterial diversity in grassland as compared to highly disturbed cultivated
soils [34–36]. McKinley et al. [37], Bach et al. [38] also documented that stress Phospholipid
Fatty Acids (PLFAs) ratios indicators (saturated: monounsaturated and iso: anteiso) were
highest in cultivated soils and decreased in restored grasslands. Authors explained that
the reductions in these ratios during soil restoration by the alleviation of nutrient stress
as grassland established on formerly cultivated soils, likely as a result of increased C
substrate availability in the soil. The analysis of microbial communities showed differences
in microbial abundance and diversity in response to time since grassland implementa-
tion [34,36,39,40]. Plassart et al. [41] also documented that a strong relationship was found
between fungal genetic diversity and the aging of grasslands. Furthermore, various studies
have reported changes in the soil functions on sites with an arable cropping history after
which a grassland was established [32,41–43]. In fact, adding grasslands within arable
crop rotations increase C mineralization, potential catabolic activity, microbial respiration,
and soil N transformations (i.e., net N mineralization rates and net nitrification rates),
indicating a strong activity of microorganisms [30,41–43].

The intimate connection between soil state, microbial communities, and enzyme
activities emphasizes the importance of considering the role of microbial communities
during soil restoration by the introduction of grasslands into crop rotations. Therefore,
the objectives of this study were to investigate (i) the influence of aging grassland in the
recovery of soil state by the comparison of different grassland regimes between permanent
grassland and conventional crop in the same pedoclimatic context, (ii) the extent and
the persistence of the potential changes of microbial communities and enzyme activities
following a grassland/or cropland phase. We hypothesized that microbial communities
could achieve an abundance level and functional state close to that of permanent grassland
after the introduction of grassland for a few years into crop rotations. To achieve our
objective, we analyzed (i) physicochemical properties, (ii) microbial community (indicators
of total, bacterial and fungal abundance), and (iii) soil functions (14 enzyme activities
involved in C, N, P, and S cycles) during the adding of grassland into crop rotations.
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2. Materials and Methods
2.1. Soil Samples

The experimental site is located in northwestern France, in the Normandy area (at
Yvetot, 35 km northwest from Rouen), under temperate oceanic climate (+10 ◦C mean
annual temperature and 850 mm annual precipitation). This site was used in several
previous studies and is considered as a reference site in the Normandy area [41,44–47] as
well as in France [48–50].

Six plots with different land use and grassland regimes were studied. Their land uses,
cropping history, and cumulative years under grasslands are presented, respectively, in
Tables 1 and 2 for the 20 years before the sampling date in 2010. The permanent grassland
(PG) is considered as a reference plot and has not been changed during at least the last
20 years. In contrast, continuous crop (CC) has a history of long-term cropping (wheat,
maize, flax, or beet) with intensive management (plowing/fertilization). Two restored
grasslands (RGI and RGII) characterized by grassland establishment after a cropping
period of at least 8 years. These 2 restored grasslands differed significantly in the number
of cumulative years under grassland. RGII cumulated 11 years of grassland, while RGI
cumulated 5 years under grassland. We can also note that these 2 plots were replanted at
the same time and have been managed in the same way since 2008. Temporary grasslands
(TG and TC) were characterized by an alternating grassland period of 4 to 8 years and a
corn/wheat rotation. In 2010, TC was sown with wheat after a previous corn crop, which is
often used in the region as the head of rotation. The 2 temporary grasslands were managed
differently in 2010. The plot TG is the oldest grassland after plot PG. The 6 plots were
developed on the same native Luvisol, silty loam soil, within similar pedological and
climatic contexts (Table 2).

Table 1. Description of the studied plots.

Plots Abbreviations Clay
(g/kg)

Silt
(g/kg)

Sand
(g/kg) Agricultural Practices Land Use at the

Sampling Time
Plots

Area (ha)
Cumulative Years under
Grassland since 20 Years

Permanent grassland PG 1 163 633 204 Permanent grassland no
tillage Grassland 3 20 years

Restored grasslands RGI 2 141 665 194 Restored grassland Grassland 2 5.5 years
RGII 3 126 665 210 Restored grassland Grassland 3 11 years

Temporary grasslands TC 4 141 656 203 Temporary grassland,
switched to crop in 2010 Wheat crop 3 14 years

TG 5 147 651 202 Temporary grassland Grassland 3 14 years

Continuous crop CC 6 133 671 196 Continuous crop and
fertilization Wheat crop 4 0 year

1 Permanent Grassland (PG): 20 years of pasture, permanent cover and no tillage. 2 Continuous Crop (CC): permanent arable cropping.
3 Restored Grassland I (RGI): cumulate 5.5 years under grassland over a period of 20 years. 4 Restored Grassland II (RGII): cumulate
11 years under grassland over a period of 20 years. 5 Temporary Grassland (TG): cumulate 14 years under grassland over a period of
20 years. 6 Temporary crop (TC): this treatment is comparable to TG, but it switched to culture in the year of sampling.

Table 2. Description of the cropping history of the plots since 1991.

Plots Permanent
Grassland Restored Grasslands Temporary Grasslands Continuous Crop

Years PG RGI RGII TC TG CC

2010 grassland grassland grassland Triticum aestivum grassland Triticum aestivum
2009 grassland grassland grassland Zea mays grassland Zea mays
2008 grassland Triticum aestivum Triticum aestivum grassland grassland Triticum aestivum
2007 grassland Zea mays Vicia faba grassland grassland Zea mays
2006 grassland Triticum aestivum Linum usitatissimum grassland grassland Triticum aestivum
2005 grassland Zea mays Triticum aestivum grassland Triticum aestivum Linum usitatissimum
2004 grassland Triticum aestivum Zea mays grassland Zea mays Triticum aestivum
2003 grassland Zea mays grassland Triticum aestivum grassland Beta vulgaris
2002 grassland grassland grassland Zea mays grassland Triticum aestivum
2001 grassland grassland grassland grassland grassland Zea mays
2000 grassland grassland grassland grassland Triticum aestivum Triticum aestivum



Agriculture 2021, 11, 909 4 of 19

Table 2. Cont.

Plots Permanent
Grassland Restored Grasslands Temporary Grasslands Continuous Crop

Years PG RGI RGII TC TG CC

1999 grassland Pisum sativum grassland grassland Zea mays Beta vulgaris
1998 grassland Triticum aestivum grassland grassland grassland Triticum aestivum
1997 grassland Zea mays grassland grassland grassland Linum usitatissimum
1996 grassland Triticum aestivum grassland grassland grassland -
1995 grassland Zea mays grassland grassland grassland -
1994 grassland Linum usitatissimum Triticum aestivum grassland grassland -
1993 grassland Zea mays Zea mays Triticum aestivum grassland -
1992 grassland Triticum aestivum Triticum aestivum Zea mays Triticum aestivum -
1991 grassland Zea mays Pisum sativum grassland Zea mays -

The sampling protocol followed the recommendations of the RMQS BioDiv national
program [51], as described in Peres et al. [48] and Trap et al. [49]. For each plot, we designed
a square with 10-m sides (10 m × 10 m) subdivided into 4 equal squares (5 m × 5 m) [49].
In March 2010, 12 soil cores were randomly collected in each sampling area, using an 8 cm
diameter auger on the first 15 cm soil depth to form one composite sample. Four composite
soil samples were, therefore, available for each plot (Figure S1). The soil samples were
sieved at 2 mm and stored at 4 ◦C prior to analysis. Biological analyses were performed
on the freshly sieved soils within 24 h after sampling, except for PLFAs and ergosterol.
Indeed, for these 2 parameters, fresh soil samples were homogenized, sieved at 2 mm, and
frozen at−80 ◦C until analyses. The main physicochemical characteristics (i.e., total carbon,
total nitrogen, pH water, CEC, and P2O5) were measured on each individual air-dried soil
sample, according to the normalized methods by the Soil Analysis Laboratory (LAS, INRA,
Arras, France).

2.2. Microbial Biomass C Measurement

Soil total microbial biomass C (MBC) was determined using the chloroform fumigation
extraction method according to Wu et al. [52] and Jenkinson et al. [53]. Briefly, soluble
organic carbon was extracted with a 0.05 N K2SO4 solution from chloroform-fumigated
(16 h) and non-fumigated soil samples (30 g, with 4 replicates). After centrifugation
(10 min 3000× g), the soluble organic carbon in the extracts was measured by persulfate-UV
oxidation with a Dohrman DC-80 Total Organic Carbon Analyzer (Rosemount Analyti-
cal, Santa Clara, California, USA). MBC was calculated as a difference in the C content in
the fumigated and non-fumigated samples (EC) using the kEC coefficient (MBC = EC/kEC).
kEC = 0.45 was used to calculate MBC.

2.3. Phospholipid Fatty Acids (PLFAs) Analysis

After freeze-drying, PLFA were extracted using a modified method of Bligh and
Dyer [54–56]. Fatty acids were extracted from 2 g of soil by a single-phase mixture of
chloroform-methanol-pH 4 citrate buffer (1:2:0.8, v/v/v) shaken at 300 rpm for 1.5 h
and centrifuged 15 min at 1500 rpm. The supernatant was retained, and the soil was
re-extracted as before. Phase splitting in the combined supernatants was obtained by
adding citrate buffer and chloroform (overnight separation). The CHCl3 layer was dried
under N2 at ambient temperature, re-dissolved with chloroform, and purified on silica
cartridges (chromabond® 3 mL/500 mg SiOH, Macherey and Nagel, Düren, Germany). The
methanolic fraction containing phospholipids was evaporated under N2. Before analysis by
gas chromatography-mass spectrometry (GC-MS), PLFAs had to be transformed into their
less polar fatty acid methyl ester (FAME) derivatives. The derivatization was performed
online in GC injector by tri methyl sulfonium hydroxide (TMSH) [57]. FAMEs were
analyzed with GC/MS (4000 GC/MS, Varian, Inc., Walnut Creek, CA, USA) equipped
with a BPX70 column (60 m, 0.25 mm i.d., 0.25 mm df., SGE). The FAME identification and
quantification were performed using as standards: 37 component FAME mix from Supelco,
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methyl nonadecanoate (19:0, used as internal standard) from Fluka and Br1 Mix, methyl-
13-methyl tetradecanoate (i15:0), methyl 15-methyl hexadecanoate (i17:0), methyl vaccinate
(18:1w7c), methyl cis-9, 10-methyleneoctadecanoate (cy19:0) from Larodan, Solna, Sweden.
The PLFAs i14:0, i15:0, a15:0, i16:0, i17:0 and a17:0 were chosen to represent Gram-positive
bacteria while 16:1ω7c, 17:1ω7c and cy19:0 were used as an indicator of Gram-negative
bacteria [58,59]. The PLFAs 18:1ω9c and 18:2ω6c were designated as representatives of
fungi [56,60].

2.4. Ergosterol Analysis

Two extraction methods were used for the determination of ergosterol. A modified
method of Montgomery et al. [61] was used for the alkaline ergosterol extraction (total
ergosterol, i.e., free and esterified ergosterol). Briefly, 1 g of fresh soil was mixed with 8 mL
of methanol and 2 mL of 2 M NaOH. The extraction was assisted by a microwave oven
(MarsX®,CEM, Mathews, NC, USA), under the following conditions: 2 × 15 s with 15 min
cooling intermission (2450 MHz, 495 W output). After the treatment, the soils and solvents
of each reactor were recovered by 2 × 4 mL of MeOH. For the step of liquid extraction, we
added 3 × 4 mL of pentane, and each addition was shaken by vortex for 10 s and allowed
to separate the 2 layers. The combined pentane extracts were evaporated and taken to
dryness under a stream of N2 gas. The residues were then made up to 2 mL in methanol,
vortexed, and filtered at 0.2 µm nylon Acrodisc® filter (Gelman Sciences, Ann Arbour, MI,
USA). The second ergosterol extraction method consisted of the non-alkaline ergosterol
extraction (free ergosterol) using the Gong et al. [62] modified protocol. Briefly, 4 g of fresh
soil was combined with acid-washed glass beads (4 g of 400–800 µm) and 6 mL methanol.
After shaking (10 s and then shaken for 1 h at 320 rpm), the soil-methanol mixture was
centrifuged (10 min at 8000 rpm) and the supernatant was then filtered (0.2 µm nylon
Acrodisc® filter. For both extraction methods, 4 replicates were performed for each plot.
Prior to HPLC quantification, ergosterol was separated by a RP using Lichrospher C18,
connected to a Varian Prostar 230 pump and a Prostar 330 PAD detector, Merck KGaA,
Darmstadt, Germany). Samples (20 µL) were injected and eluted (with 90% acetonitrile 10%
MeOH at a flow rate of 1.2 mL mn−1). Ergosterol was detected at 282 nm with a retention
time of 3.2 min.

Ergosterol and PLFA could be both considered as bioindicators of fungal biomass
but since they corresponded to different lipid classes, they could be affected variously
by agricultural practices [63]. Moreover, the 18S rDNA amplification was also used to
address the abundance of fungi in soils. These 3 methods might seem redundant, but
since they each have their own strengths and weakness, they should be considered as
complementary [64].

2.5. Total DNA Extraction and Quantification

Nucleic acids were extracted from 0.5 g of soil using a FastDNA SPIN Kit for soil
(MP-Biomedicals, Santa Ana, CA, USA) according to the instructions of the manufacturer.
Four replicates were performed for each plot. DNA was quantified by a fluorimetric mea-
surement using Hoeschst fluorochrome at 360/460 nm excitation/emission wavelengths
with a Fluorescent DNA Quantitation Kit (Biorad, Hercules, CA, USA).

2.6. Real-Time PCR Amplification

The 18S rDNA amplifications for fungal biomass estimation by 18S rDNA real-
time qPCR were carried out with a total volume of 50 µL. The qPCR mix was pre-
pared as follows: 10 ng of soil microbial DNA, 25 pmol of each primer [FU18S1 5′-
GGAAACTCACCAGGTCCAGA-3′ and Nu-SSU-1536 5′-ATTGCAATGCYCTATCCCCA-
3′ [65]], 25 µL of qPCR Mastermix for SYBR Green I Master mix (Roche, Basel, Switzerland)
and 2.5 mg mL−1 BSA (GeneON Bioscience, Ludwigshafen, Germany). A dilution series
containing known amounts of Fusarium graminearum genomic DNA (assuming that it was
representative of the total fungal genomes) was used as the standard for the quantification
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of the sample dsDNA. The amplification protocol (40 cycles of PCR, 20 s at 95 ◦C, 30 s
at 62 ◦C, and 30 s at 72 ◦C) was performed using LightCycler 480 real-time PCR system
(Roche, Basel, Switzerland). The efficiency of the qPCR ranged from 93% to 98%.

The 16S rDNA amplifications for bacterial biomass estimation by 16S rDNA real-
time PCR were carried out under the same conditions of the 18S rDNA PCR except for the
primers [63f 5′-CAGGCCTAACA CATGCAAGTC-3′ [66] and BU16S4 5′

CTGCTGCCTCCCGTAGG-3′ derived from 341F [67]] and the amplification protocol (40 s
at 95 ◦C, 45 s at 64 ◦C and 30 s at 72 ◦C). The efficiency of the qPCR ranged from 98% to
102%. A dilution series of Pseudomonas aeruginosa (assuming that it is representative of the
bacterial genomes). DNA was used as the standard, and the results were expressed in µg
of bacterial and or fungal dsDNA per µg of dry soil. Two independent qPCR assays were
performed for the bacterial and fungal dsDNA estimation. Four replicates were performed
for each plot.

2.7. Enzyme Assays

A total of 14 enzyme activities involved in C, N, P, and S nutrient cycling: Deshydroge-
nase (DEH) [68], Fluorescein diacetate hydrolase (FDA) [69], β-Glalactosidase (GAL) [70],
β-Glucosidase (GLU) [49], Cellulase (CEL) [49], Laccase (LAC) [71], Lipase (LIP) [72],
Xylanase (XYL) [73], Arylamidase (ARYLN) [74], N-acetylglusosaminidase (NAG) [49],
Urease (URE) [70], Arylsulphatase (ARYLS) [70], Acid phosphatase (ACP), and Alkalin
phosphatse (AKP) [49], were quantified by spectrophotometry, using commercial substrate
analogs for each enzyme (Table 3). Four replicates were performed for each plot. Enzyme
activities were expressed as an international enzyme unit (nmole of hydrolyzed or oxidized
substrate min−1 g dry soil

−1).

Table 3. Enzymes and substrates used for enzyme activity assays.

Enzymes Abbreviations E.C. Numbers Substrates (Buffer pH and Concentration)

Global enzymatic activities
Dehydrogenase DEH 1.1.1.1 2,3,5 triphenyltetrazolium chloride (pH 7; 0.12 M)

Fluorescein diacetate hydrolase FDA Fluorescein diacetate (pH 7.6; 1000 µg mL−1)

C cycle enzymatic activities
β-galactosidase GAL 3.2.1.23 p-NP-β-D-galactopyranoside (pH 7; 0.02 M)
β-glucosidase GLU 3.2.1.21 p-NP-β-D-glucopyranoside (pH 6; 50 mM)

Cellulase CEL 3.2.1.4 p-NP-β-D-cellobioside (pH 6; 10 mM)
Laccase LAC 1.10.3.2 2,2′-azino-bis-(3 ethylbenzothiazoline-6-sulfonate) (pH 5; 0.5 mM)
Lipase LIP 3.1.1.3 p-NP-palmitate (pH 6.5; 1 mM)

N-acetylglucosaminidase NAG 3.2.1.30 p-NP-N-acetylglucosaminide (pH 6; 10 mM)
Xylanase XYL 3.2.1.8 Xylan (pH 5.5, 12 g L−1)

N cycle enzymatic activities
Arylamidase ARYLN 3.4.11.2 L-leucine b-naphtylamide (pH 8; 2 mM)

Urease URE 3.5.1.5 Urea (pH 7; 0.05 mM)

S cycle enzymatic activities
Arylsulfatase ARYLS 3.1.6.1 p-NP-sulfate (pH7; 25 mM)

P cycle enzymatic activities
Acid phosphatase ACP 3.1.3.2 p-NP-phosphate (pH 5; 50 mM)

Alkaline phosphatase AKP 3.1.3.1 p-NP-phosphate (pH 9; 50 mM)

E.C: Enzyme Commission numbers.NP: nitrophenyl.

2.8. Statistical Data Analysis

Statistical differences among the plots on physicochemical parameters (total C, total
N, pHwater, CEC, P2O5), microbial abundance (MBC, total, bacterial and fungal PLFAs,
total and free ergosterol, total dsDNA, bacterial and fungal dsDNA) and enzyme activities
(GAL, GLU, CEL, LAC, LIP, XYL, ARYLN, NAG, URE, ARYLS, ACP, AKP, DEH, and FDA)
were compared by multiple comparisons of means using the non-parametric post hoc
test (“nparcomp” package in R), with a significance level of p < 0.05. The calculations of
the correlations between the different parameters were carried out using a Spearman’s
rank correlation procedure, and the significance level of these correlations were tested
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using a pairwise t-test. To examine the relationships between different physicochemical
characteristics and both microbial abundance and enzyme activities, multiple linear re-
gression was carried out. Two principal component analyses (PCAs) were performed on
the data of abundance of microbial communities and enzyme activities. For each PCA,
we collected the coordinates on the first and second axes for each sample and calculated
Euclidean distances. Euclidean distances were calculated using the permanent grassland
(PG) as the reference of the more abundant and highest diversified microbial communities.
The Euclidean distances are commonly used to analyze the magnitude of modification of
abundance/composition and functional profiles of soil microbial communities [17,75–78].
The significance of the difference between plots was evaluated using the Kruskal–Wallis
test. The calculations were performed using R [79].

3. Results
3.1. Soil Physicochemical Characteristics

The different plots of the field experiment showed the same texture of silty loam soil
but showed different physicochemical characteristics (Table 4). Across the six plots, the
total C and N contents ranged between 10.76–15.74 g kg−1 DW soil and 1.08–2.46 g kg−1

DW soil, respectively. The total C and N contents differed significantly between PG and CC
plots; the highest values were obtained for PG plot when the lowest ones were obtained for
CC plot. PG plot also differed from the other plots.

Table 4. Physicochemical characteristics of plots.

Plots Permanent Grassland Restored Grasslands Temporary Grasslands Continuous Crop

PG RGI RGII TC TG CC

Total C (g kg−1) 25.74 ± (0.96) a 11.11 ± (0.34) d 14.30 ± (0.22) c 13.89 ± (0.53) c 18.60 ± (0.81) b 10.67 ± (0.34) d

Total N (g kg−1) 2.46 ± (0.07) a 1.14 ± (0.03) d 1.41 ± (0.02) c 1.44 ± (0.06) c 1.81 ± (0.06) b 1.08 ± (0.04) d

C/N ratio 10.47 ± (0.18) a 9.76 ± (0.06) b 10.15 ± (0.11) a 9.61 ± (0.18) b 10.25 ± (0.09) a 9.85 ± (0.13) b

Moisture (%) 13.83 ± (0.55) a 10.53 ± (0.29) c 9.58 ± (0.19) d 10.45 ± (0.25) b 11.78 ± (0.56) b 9.35 ± (0.25) d

pHwater 5.46 ± (0.05) b 5.57 ± (0.05) b 6.04 ± (0.05) c 6.27 ± (0.05) a 5.51 ± (0.05) b 6.43 ± (0.05) a

CEC (cmol+ kg−1) 8.08 ± (0.26) a 5.46 ± (0.37) d 6.92 ± (0.31) b 7.76 ± (0.05) c 7.29 ± (0.20) b 7.04 ± (0.30) b

P2O5 (g kg−1) 0.13 ± (0.03) bc 0.09 ± (0.01) d 0.13 ± (0.01) c 0.15 ± (0.01) ab 0.19 ± (0.02) ab 0.20 ± (0.02) a

Mean ± (SD). Different letters indicate significant differences among plots (p < 0.05, n = 4).

Based on the total C and N contents, plots can be classified in the following order PG
> TG > RGII ≈ TC > RGI ≈ CC. The C/N ratio of the six plots was roughly the same, with
an average of ten. Concerning moisture, the mean value observed was about 10 g kg−1

(Table 4). Moisture differed significantly between the PG plot, which was the most humid
soil and CC plot, which was the less humid plot. PG and CC plots differed significantly
from other plots. For pHwater, only a slight effect was observed, and three groups can be
distinguished from less to greater acid plot: TC ≈ CC > RGII > PG ≈ RGI ≈ TG. Cation
Exchange Capacity (CEC) was higher for PG, while the lowest was obtained for RGI. The
P2O5 was partly affected by land uses, the highest value was obtained for CC, which was
not different from the temporary grasslands (TG and TC) while the lowest value was
obtained for PG.

3.2. Microbial Communities’ Abundance

For the study of microbial communities, we have chosen to analyze total, bacterial, and
fungal abundances by using different and complementary methods through the analysis of
MBC, cell-bound lipid (total, bacterial and fungal PLFAs), total, and free ergosterol and
nucleic acids (total ds DNA, bacterial, and fungal ds DNA). The results are presented in
Table 5. Considering all these parameters, the highest values were recorded for the PG plot,
which was significantly different from the other plots, except for the free ergosterol content,
which was not different between PG and TG. Conversely, the lowest values were observed
for the CC and, in most cases, in the TC Plot.
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Table 5. Total, bacterial, and fungal biomasses of plots.

Plots Permanent Grassland Restored Grasslands Temporary Grasslands Continuous Crop

Abundance of Microbial
Communities PG RGI RGII TC TG CC

Total microbial biomass
Total dsDNA (µg g−1) 25.82 ± (4.37) a 12.22 ± (3.24) c 16.49 ± (0.28) b 9.76 ± (1.79) b 15.70 ± (3.62) bc 13.24 ± (3.11) b

Total microbial PLFA (nmol g−1) 717.05 ± (70.2) a 184.26 ± (4.00) c 259.41 ± (29.1) b 102.66 ± (31.3) d 262.33 ± (84.5) bcd 141.33 ± (26.8) d

Microbial biomass carbon (mg C
kg−1) 987.78 ± (88.4) a 250.52 ± (13.4) d 348.50 ± (6.03) c 339.32 ± (23.3) c 570.32 ± (63.1) b 234.39 ± (16.8) d

Bacterial biomass
Bacterial dsDNA (µg g−1) 6.91 ± (1.70) a 3.30 ± (1.12) bc 3.96 ± (0.50) b 2.91 ± (0.39) c 3.28 ± (1.7) abc 2.93 ± (1.20) bc

Total bacterial PLFA (nmol g−1) 348.88 ± (29.7) a 72.66 ± (0.82) c 105.34 ± (13.4) b 41.62 ± (17.0) d 110.76 ± (41.7) bcd 53.78 ± (9.79) d

Fungal biomass
Fungal dsDNA (µg g−1) 1.78 ± (0.25) a 1.55 ± (0.84) abc 1.34 ± (0.19) ab 0.65 ± (0.12) c 1.13 ± (0.58) abc 0.84 ± (0.29) bc

Total fungal PLFA (nmol g−1) 22.68 ± (5.21) a 9.95 ± (0.33) c 13.10 ± (1.57) b 1.95 ± (0.72) e 12.04 ± (4.44) bc 5.12 ± (1.10) d

Total ergosterol (µg g−1) 2.08 ± (0.60) a 0.99 ± (0.22) b 1.21 ± (0.21) b 0.82 ± (0.06) b 3.12 ± (0.68) a 0.65 ± (0.22) b

Free ergosterol (µg g−1) 1.28 ± (0.23) a 0.77 ± (0.08) b 0.75 ± (0.45) abc 0.48 ± (0.04) c 1.06 ± (0.10) a 0.51 ± (0.04) c

Mean ± (SD). Different letters indicate significant differences among plots (p < 0.05, n = 4).

To reduce the dimensionality of the data set, a PCA was performed to compare the
plots (Figure 1). The first axis (PC1) and the second axis (PC2) explained 54.8% and 17.5%
of the total variability, respectively. PCA clearly illustrated how the data set of the microbial
communities classified the plots. The distribution of the plots along the first axis showed
that the RGI, RGII, and TG plots were clustered and occupied an intermediate position
between the two contrasted land uses. Indeed, this cluster was placed in the middle
between grassland (PG) and croplands (CC and TC), which occupied the most extreme
positions of this “PCA gradient”.
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3.3. Enzyme Activities

To evaluate the functions of microbial communities, 14 enzyme activities involved in
different biogeochemical cycles were measured: for C cycle (GAL, GLU, CEL, LAC, LIP
and XYL), for N cycle (ARYLN, NAG, and URE), for S cycle (ARYLS), for P cycle (ACP and
AKP), and two global enzymes (DEH and FDA). The PG plot showed the highest values
of all studied enzyme activities, and it was in most cases significantly different from the
other plots except for AKP and GLU (Table 6). CC plot showed weak values of enzyme
activities in comparison to the others plots. Overall, the enzyme activity values of the other
treatments were intermediate and ranged between the PG and CC activity values. The
pattern of variation of enzyme activities in the TG plot was similar to that of PG, while in



Agriculture 2021, 11, 909 9 of 19

most cases, enzyme activities values in the CC plot were very close to those observed in
RGI and TC.

Table 6. Enzyme activities of plots.

Plots Permanent Grassland Restored Grasslands Temporary Grasslands Continuous Crop

Enzyme Activities (nmole
min−1 g dry soil−1) PG RGI RGII TC TG CC

Global enzyme
DEH 0.20 ± (0.10) a 0.04 ± (0.02) b 0.04 ± (0.03) bc 0.04 ± (0.03) bc 0.08 ± (0.04) ab 0.00 ± (0.01) c

FDA 3.00 ± (0.30) a 1.56 ± (0.04) b 2.56 ± (0.54) a 1.30 ± (0.84) b 2.12 ± (0.46) a 1.08 ± (0.25) b

C cycle enzymes
GAL 4.65 ± (0.28) a 2.07 ± (0.28) b 2.20 ± (0.36) b 1.48 ± (0.12) c 3.42 ± (0.36) d 1.35 ± (0.16) e

GLU 9.65 ± (0.81) b 3.36 ± (0.52) e 7.97 ± (0.44) c 5.94 ± (0.67) d 12.10 ± (0.94) a 5.36 ± (0.65) d

CEL 1.96 ± (0.24) a 0.77 ± (0.23) b 0.94 ± (0.14) b 0.81 ± (0.16) b 1.75 ± (0.26) a 0.65 ± (0.09) b

LAC 8.03 ± (1.35) a 5.80 ± (1.47) ab 2.57 ± (1.30) c 1.41 ± (0.58) c 3.53 ± (1.88) bc 2.73 ± (0.63) c

LIP 2.82 ± (0.26) a 1.68 ± (0.16) b 1.46 ± (0.32) b 1.06 ± (0.16) c 1.72 ± (0.17) b 0.74 ± (0.19) c

XYL 0.08 ± (0.01) a 0.01 ± (0.01) c 0.01 ± (0.00) c 0.02 ± (0.01) bc 0.04 ± (0.01) b 0.00 ± (0.01) c

N cycle enzymes
ARYLN 3.94 ± (0.39) a 1.32 ± (0.09) c 1.66 ± (0.08) b 1.49 ± (0.11) c 1.90 ± (0.32) b 2.04 ± (0.24) b

NAG 5.78 ± (0.72) a 2.03 ± (0.41) cd 2.70 ± (0.20) d 1.97 ± (0.64) cd 4.20 ± (0.46) b 1.36 ± (0.31) c

URE 79.43 ± (10.03) a 25.84 ± (2.46) d 34.63 ± (2.01) c 30.01 ± (3.57) cd 54.71 ± (3.32) b 21.18 ± (0.36) e

S cycle enzyme
ARYLS 7.27 ± (0.23) a 2.70 ± (0.11) b 3.32 ± (0.22) c 2.70 ± (0.10) b 5.48 ± (0.33) d 1.83 ± (0.24) e

P cycle enzymes
ACP 42.72 ± (1.25) a 10.73 ± (7.23) e 20.86 ± (1.92) c 17.74 ± (0.91) d 30.60 ± (2.29) b 10.81 ± (0.90) e

AKP 4.30 ± (1.13) c 2.65 ± (0.39) d 7.90 ± (0.56) a 3.52 ± (1.11) cd 5.24 ± (1.17) cb 6.15 ± (0.48) b

Mean ± (SD). Different letters indicate significant differences among plots (p < 0.05, n = 4).

The comparison of the enzyme activities among the plots using PCA is presented
in Figure 2. The first axis (PC1) and the second axis (PC2) explained 73.2% and 11.6% of
the total variability, respectively. The plots were ranked as follows: PG > TG > RGII >
TC ≈ RGI > CC based on the first axis. The distribution of the plots along the first axis
reflects the duration in numbers of years cumulated under grassland. The RGI, TC, and
CC plots were almost aggregated. Interestingly, the plots CC and TC were under culture at
the time of sampling, while RGI was under a grassland regime but had a history of five
years of continuous crop. Conversely, TC, which was closed to CC on the “PCA gradient”,
was under continuous crop at the time of sampling but after 14 years cumulated under
grassland. In this Figure, the separation of the plots is slightly different in comparison to
those observed in Figure 1 for abundance parameters of microbial communities.
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3.4. Relationship between Soil Physicochemical Characteristics, Microbial Communities, and
Enzyme Activities

To test which physicochemical characteristics (total C, total N, pHwater, CEC, P2O5)
shape microbial community and enzyme activities, Spearman’s rank correlation was used
(Figure 3). The results showed that with the exception of bacterial dsDNA and fungal
PLFA, all the variables were positively correlated with the total C (r ≥ 0.58, p < 0.001) and
N (r ≥ 0.51, p < 0.01) contents and were negatively correlated with pHwater (r ≥ −0.55,
p < 0.001). There was significant correlation between the CEC and total biomass (r ≥ 0.66,
p < 0.0001) and bacterial biomass (r = 0.43, p < 0.01), while fungal PLFA was strongly
negatively correlated with CEC (r ≥ −0.81, p < 0.0001) and in lesser extent with P2O5
(r ≥ −0.48, p < 0.01). Concerning enzyme activities, except for LAC and AKP activities,
all enzyme activities were positively correlated with the total C (r ≥ 0.55, p < 0.001) and
total N (r ≥ 0.51, p < 0.001) contents (except for ARYLN and AKP). In most cases, enzyme
activities were highly negatively correlated with pHwater, (r ≥ −0.53, p < 0.001, except for
ARYLN and AKP). A positive relationship was shown between enzyme activities and CEC
(r ≥ 0.50, p < 0.01), except for GAL, LAC, LIP, and AKP. Beyond LIP and ARYLN activities,
which were positively correlated to P2O5, no correlations were shown between P2O5 and
any of the measured enzymes.
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Figure 3. Correlation matrix between physicochemical parameters, microbial abundance, and enzyme activities. Red and
blue color indicate statistically significant negative and positive correlations, respectively.

We further found that, except for AKP activity and in most cases LAC activity, all
enzymes involved in C, N, S, and P cycling were strongly correlated with each other. For
instance, the GAL and CEL activities were strongly correlated with the NAG, URE, ARYLS,
and ACP activities (Figure 3). Among all soil parameters, the strongest correlations were
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obtained for C and N contents and microbial biomass carbon and NAG, XYL, URE ARYLS,
and ACP activities (r ≥ 0.90, p < 0.0001)

3.5. Relationships between Abundance of Microbial Communities and Enzyme Activities Levels
Following the Introduction of Grassland into Crop Rotation

To explore the changes in abundance and functional profiles of microbial communi-
ties following the introduction of grassland into crop rotation, Euclidean distances were
calculated as described in Section 2. These distances were used to assess the magnitude
of the changes on the abundance of microbial communities and the functions profiles in
comparison to the reference plot (PG) (Figure 4).
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a significant difference in the abundance profile, and lowercase letters indicate a significant difference
in enzyme profile.

The highest the Euclidean distance is, the highest is the difference between two plots.
For example, the large distances between PG and CC (distance ≈ 10) for the functional pro-
file indicated that the cultivation had a large impact on enzyme activities. The analyses of
distances showed significant changes in the abundance and functional profiles of microbial
communities between PG and TC plot and between PG and CC plot. While these profiles
in TG are closer to those of PG. The plots TC and TG have cumulated 14 years in grassland,
but they differ in the land use at sampling day because the TC plot was re-cultivated
the year of sampling (2010). Euclidean distance results showed that cultivation led to a
significant change in soil microbial communities. The changes in the abundance and func-
tions between PG and RGI, as well as between PG and RGII, were intermediate between
those observed for PG/TC and PG/TG (Figure 4). Correlation analysis showed a positive
correlation (r = 0.74, p < 0.0001, Figure S2) between the changes of microbial abundance
profile and the changes on enzyme activities profile when grassland is introduced into crop
rotations.

4. Discussion

The restoration of the physicochemical properties and biological characteristics of
soil has become of interest to preserve the soil state and promote sustainable manage-
ment [80]. In accordance with our expectations, the sustainable soil management, including
the implementation of grassland in crop rotations, influenced the soil properties, micro-
bial communities, and enzyme activities, but the variations depended on the number of
cumulative years under grasslands of each plot and the type of land use at the time of
sampling.
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4.1. Influence of Soil Characteristics in Shaping the Whole Microbial Community and
Enzyme Activities

This study aimed to assess how agricultural managements influenced the role of
soil characteristics in shaping the belowground microbial communities and their enzyme
activities. Microbial communities were associated with soil physicochemical characteristics
determined by C and N content and soil pH. Indeed, when physicochemical characteristics
are considered together as a grouping factor (Table S1), they explained between 55% and
97% of the variation in microbial communities and between 64% and 98% of the variation
in enzyme activities (p < 0.0001), respectively. In our study, C and N contents were in
relation with the cumulative years under grassland, whereas soil pH appeared to be in
relation with land use (grassland or cropland) at the sampling time (wheat crop in TC,
CC, Figure S3). Overall, all groups of microorganisms (bacteria and fungi) assessed using
different methods were strongly related to soil properties, which help explaining the
differences observed between plots communities. This is unsurprising as many edaphic
conditions are co-correlated, and several studies are now beginning to shed light on the
composition of different microbial communities and relationships with edaphic properties
across various soils [17,81,82]. The effects of land-use change on soil conditions, which
drive microbial community composition, was particularly demonstrated through this
study, which investigated different grassland regimes between continuous grassland and
continuous crop. Continuous cropping without OM restitution is known to deplete soil
C and N contents [22,83]. On the opposite, permanent grassland contributes to C storage
through both reduced soil disturbance and slow degradation dynamics of OM [26,84,85],
with positive effects on microbial communities [17,60]. More generally, shifts in soil organic
status resulting from land use (plant residues amounts and qualities, root exudates, etc.)
induce modifications in microbial communities [86], confirming the relationships between
land use and soil biota [87]. Furthermore, a stronger effect of soil pH on the microbial
communities was already observed by Bissett et al. [88] and Kuramae et al. [89]. In our
study, soil pH was negatively correlated with all the variables that describe microbial
communities. Combining soil analyses with soil microbial communities revealed that
the microbial communities are non-randomly distributed across soils but determined by
environmental factors. More specifically, soil properties, notably the C and N contents
and pH, appeared to be the main drivers of soil microbial community composition and
distribution at the European scale [86,90–92].

Soil enzymes have been reported as useful bioindicators of soil-state because they
provide information on the soil’s ability to perform biogeochemical reactions [93]. The
measured enzyme activities are involved in the decomposition of different substrates with
varying complexity related to the C, N, P, and S cycles [94]. The highest enzyme activities
were recorded in PG plots and the lowest in CC plots, while intermediate activities were
observed in the plots that represented intermediate situations. We investigated enzyme
activities in connection with soil chemical properties. Overall, the majority of the enzyme
activities were negatively correlated with the soil pH but positively correlated with C and
N contents. Several studies showed the same relationships between C and N contents
and enzymes activities [95–99] because C and N cycles were also strongly coupled in
soils [100–103]. Concerning AKP activity, several authors showed a positive correlation
between C and N content and AKP activity [104,105]. This was not the case in our study
because AKP was not correlated with any of the soil characteristics. However, a large
study conducted by Margalef et al. [106] showed that climatic conditions were the first
predictive variables of AKP variation in soil and to a lesser extent N content and soil pH.
The lack of correlation between LAC activity and C and N contents could be due to that
LAC is strongly linked to OM quality than quantity [107]. This activity is also specifically
produced following exposure to xenobiotics, unlike hydrolases, which are constitutively
expressed [44,108]. Indeed, the mechanism by which soil microbial communities maintain
homeostasis in a fluctuating resource environment is based on regulating enzyme expres-
sion to optimize the responsiveness of substrate acquisition [109,110], confirming that OM
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is the most driver of enzyme activities [100,111,112]. In our study, enzymes activities were
significantly affected by soil pH; this result agrees with several studies showing that pH
is an important factor in describing enzyme activities across soils [113,114]. Various soil
enzymes have different optimal soil pH ranges. This is not always reflected by the associa-
tion between the enzyme activities and pH because soil pH can affect the enzyme activities
indirectly by changing nutrient availability, the soil OM content, and the composition of
the microbial communities [59,98,115,116].

4.2. Relationships between Microbial Communities and Soil Enzyme Activities

We further found that the enzymes involved in C, N, S, and P cycling were strongly
correlated with each other (Figure 3), which reflected the close link between soil biogeo-
chemical cycles [103,117]. The study conducted by Ullah et al. [99] showed notably that
the activities of C-cycling enzymes had a direct positive relationship with the activities
of N-cycling enzymes, and soil C availability increased N-cycling enzymes. Beyond the
relationships showed between enzyme activities involved in the different biogeochemical
cycles of C, N, P, and S, our study highlighted strong relationships between microbial
communities’ level and functional profile in soils. Indeed, the changes in the abundance
of microbial communities were strongly linked to the changes in enzymes activities pro-
file under the introduction of grassland into crop rotations. Furthermore, our study also
confirmed the strong functional redundancy of soil microbial communities [99,118,119].
Indeed, several enzymes were linked to both bacterial and fungal abundance at the same
time (Figure 3). This functional redundancy is common for basic mediated processes by
hydrolases activities and far less redundant for processes mediated by oxidase activities
(LAC). Indeed, LAC activity, which is involved in the mineralization of recalcitrant organic
pollutants, was only linked to fungal biomass underling that “rare” or “less redundant”
functions are mediated by specific groups of microorganisms [108,119]. In our study, the
variation of AKP activity was not explained by any measured parameters, and it was not
correlated to them. We suggested that this enzyme activity could be linked to stocking
density when plots are in grasslands. Indeed, some authors explained that phosphatase
activity increased with grazing intensity [120,121].

4.3. Transition of Microbial Abundance and Functional States Following the Introduction of
Grassland into Crop Rotation

Several studies have emphasized the modification in microbial communities, and
enzyme activities in soil under different land uses [17,122,123]. The analysis of the intro-
duction of grassland into crop rotation expressed by Euclidean distances revealed that the
cumulative years in grassland were the primary factor that determined the abundance and
functional states of microbial communities. Permanent grassland and continuous crop are
two types of land use that have distinct effects on the soil biota [83,85,124–126]. In our
study, the intermediate conditions between these two contrasted land uses showed that the
level of microbial abundance of TG tended to return to the level of grassland (PG). Indeed,
excluding TC plot, which was cultivated at the time of sampling, Euclidean distances
showed that microbial abundance and functional states tended to resiliency with an in-
creasing number of years cumulated in grassland. This observation is consistent with those
of Van Eekeren et al. [32], who found that soil OM, earthworm abundance, soil structure,
and major functions of the soil biota are restored after crop conversion to grassland. In our
study, the restoration of the abundance of microbial communities and enzyme activities at
a level equivalent to grassland required more than five years without disturbance (TG). In
the meantime, the restoration of the soil biota and its functions in the grassland phase was
only temporary due to the following crop phase, which can explain the behavior of RGI
and RGII. In other words, a continuous crop regime apparently imposes a stronger legacy
on microbial communities and enzyme activities (RGI), in contrast with the after-effect
of a grassland regime, which appears to be readily “labile” when a grassland regime is
interrupted by cultivation (TC). Most of the studies giving information about the poten-
tial legacy’s effects of grassland/cropland rotation systems on soil biophysicochemical
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properties and yields showed controversial findings [83,85,124,127]. Such practices, linked
to grassland or cropland phases, can have “positive or negative legacy” effects resulting
from the interactions between several factors such as (i) soil properties, (ii) the duration
and the applied management under the grassland phase, (iii) the management practices
applied for crop phase [32,83,85,125,128,129]. While most studies have focused on the
evaluation of soil biophysicochemical parameters when introducing grasslands into crop
rotations, only few studies have addressed the effect of such practices on soil ecosystem
services. Indeed, recent studies showed a stronger beneficial grassland legacy effect on soil
structure maintenance and biodiversity conservation. By contrast, water and pathogen
regulation and forage production were not affected by the legacy of grassland during the
rotation [130,131].

Our results suggest that the introduction of grassland into crop rotations can restore
the microbial communities and functional soil states. A continuous culture regime has a
stronger legacy on the abundance of microbial communities (RGI). By contrast, the legacy
of the grassland regime changes quickly when the grassland regime is interrupted by
recent culture events (TC). A grassland regime enables resilience by the restoration of
functions. However, as observed for TG, more than five cumulative years under grassland
are required to observe this resilience. Our results highlighted the strong relationships be-
tween microbial communities and enzyme activities and the strong functional redundancy
of microbial communities that could explain the observed resiliency. Finally, including
grasslands in crop rotations has strong consequences for the microbial communities and
the sustainability of their functionality. Such biological studies could help to optimize crop
rotations (e.g., frequency and duration of temporary leys) for both agricultural produc-
tivity and ecosystem services. This work confirms the potential benefits offered by the
introduction of grassland into cropping systems and could be largely used in the context of
diversification of agricultural systems.
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