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Abstract 22 

Free-Comment (FC) and Check-All-That-Apply (CATA) provide a contingency table 23 

containing citation counts of descriptors by products. The analyses performed on this 24 

table are most often related to the chi-square statistic. However, such practices are 25 
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not well suited because they consider experimental units as being the citations (one 26 

descriptor for one product by one subject) while the evaluations (vector of citations 27 

for one product by one subject) should be considered instead. This results in 28 

incorrect expected frequencies under the null hypothesis of independence between 29 

products and descriptors and thus in an incorrect chi-square statistic. Thus, analyses 30 

related to this incorrect chi-square statistic, which include Correspondence Analysis, 31 

can lead to wrong interpretations. This paper presents a modified chi-square square 32 

framework dedicated to the analysis of multiple-response data in which experimental 33 

units are the evaluations and which is, therefore, better suited to FC and CATA data. 34 

This new framework includes a multiple-response dimensionality test of dependence, 35 

a multiple-response Correspondence Analysis, and a multiple-response test per cell 36 

to investigate which descriptors are significantly associated with which product. The 37 

benefits of the multiple-response chi-square framework over the usual chi-square 38 

framework are exhibited on real CATA data. An R package called “MultiResponseR” 39 

is available upon request to the authors and on GitHub to perform the multiple-40 

response chi-square analyses. 41 
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1. Introduction 48 

Free-Comment (FC) (ten Kleij & Musters, 2003) and Check-All-That-Apply (CATA) 49 

(Adams, Williams, Lancaster, & Foley, 2007) are word citation occurrence-based 50 

methods that aim at collecting product descriptions from consumers using either their 51 

own words or a mutual predefined list of descriptors. These descriptions are collected 52 

without any quantification or product comparison. At the panel level, the collected 53 

data constitute count data that are usually stored in a contingency table that contains 54 



the number of times each descriptor (in columns) was cited for each product (in 55 

rows).  56 

The analysis of these data starts by testing whether overall differences exist between 57 

the products. Two approaches can be distinguished to do so. The first one consists of 58 

performing a chi-square test while the second one is based on a combination of 59 

Cochran's Q statistics (Meyners, Castura, & Carr, 2013). Pursuing the analyses 60 

further is only recommended if the existence of overall differences between products 61 

is established. In this case, these differences can be visualized using 62 

Correspondence Analysis (CA). CA enables to represent the structure of the 63 

dependence between products and descriptors on a factorial map that decomposes 64 

the whole dependence into axes of maximal and decreasing dependence. As a final 65 

step of the analysis, it is important to determine which descriptors are significantly 66 

associated with which product. Again, two approaches can be distinguished to do so. 67 

The first one is multidimensional alignment (Meyners et al., 2013) that consists of 68 

considering a descriptor significantly positively (resp. negatively) associated to a 69 

product when their vectors in the sensory space depicted by the CA form an angle 70 

lower than or equal to 45° (resp. higher than or equal to 135°). The second approach 71 

consists of testing each cell of the contingency table against the null hypothesis of 72 

independence using a chi-square test or a Fisher’s exact test (Mahieu, Visalli, & 73 

Schlich, 2020a; Symoneaux, Galmarini, & Mehinagic, 2012). 74 

All of these approaches but the combination of Cochran's Q statistics are based on 75 

the chi-square statistic. The chi-square statistic can be directly used to test for overall 76 

differences between the products before performing the CA. The total inertia of CA is 77 

the chi-square statistic divided by the grand sum of the contingency table, also called 78 

phi-square index. Since multidimensional alignment relies on the CA, it depends also 79 

on the chi-square statistic. Finally, the tests per cell approach directly rely on the chi-80 

square statistic since Fisher’s exact test can, roughly speaking, be seen as an exact 81 

chi-square test.  82 

These common practices assume that all citations are independent experimental 83 

units within an evaluation, which is not the case since citations of descriptors by a 84 

given subject for a given product are not independent. Instead, one evaluation, i.e. 85 

the entire set of descriptors cited by one subject for one product, should be 86 

considered as an experimental unit (Loughin & Scherer, 1998). Indeed, considering 87 



citations as experimental units implies computing incorrect expected values under the 88 

null hypothesis of independence between products and descriptors (Loughin & 89 

Scherer, 1998), resulting in an incorrect chi-square statistic. Subsequent analyses of 90 

FC and CATA data based on this chi-square statistic are thus also incorrect and can 91 

sometimes lead to wrong interpretations. 92 

The present paper aims to overcome the previous limitations by introducing the 93 

multiple-response chi-square framework based on the multiple-response chi-square 94 

statistic of Loughin and Scherer (1998). This new framework considers experimental 95 

units as being the evaluations rather than the citations. First, some notations are 96 

introduced and the multiple-response chi-square test of Loughin and Scherer (1998) 97 

is presented and adapted to the context of FC and CATA data. Second, the multiple-98 

response Correspondence Analysis (MR-CA) is introduced. Third, the transposition of 99 

the methodologies presented in Mahieu et al. (2020a) to the multiple-response chi-100 

square framework is established. Fourth, examples of the benefits of the new 101 

framework are given on real CATA data. Finally, an overall discussion and a 102 

conclusion are given. 103 

2. Material and methods 104 

2.1. Notations and multiple-response chi-square test of homogeneity 105 

Let us consider an FC or a CATA experiment where � subjects evaluated � products 106 

on � descriptors. Each product � ∈ �1, … , �
 has been evaluated �� times and the 107 

total number of evaluations is equal to � = ∑ ������ . Note that in the particular case of 108 

balanced experimental design, i.e. when all subjects evaluated all products, then � =109 

� × �. Let us denote by ��� the number of citations of descriptor � ∈ �1, … , �
 for 110 

product � during the �� evaluations and by �� the number of citations of descriptor � 111 

during all the � evaluations.  112 

Let us denote by ��� the probability of descriptor � to be cited for product �. What is 113 

under investigation is whether ��� differs from one product to another. Using the 114 

above notations, the following hypotheses are considered: 115 

��: ��� = ⋯ = ��� = �� , ∀� ∈  �1, … , �
 116 



��: �  !"#$ $ � ∈  �1, … , �
 %�� �, �& ∈ �1, … , �
 '# ℎ � ≠ �&$*+ℎ %$ ��� ≠ ���,   117 

Note that this does not correspond to a classical test of homogeneity since, for each 118 

product �, multiple descriptors can be selected. Under the null hypothesis, the 119 

expected number of citations of descriptors � for product �, denoted by -.���/, is 120 

equal to �� × �� and can be estimated by �� × �� �0 . The following test statistic, 121 

called multiple-response chi-square statistic, is thus introduced: 122 

1234 = 5 5 6��� − �� × �� �0 84

�� × �� �0
9
���

�
���  123 

As �� × �� �0 = � × :�� �0 × �� �0 ;, 1234  can also be expressed as: 124 

1234 = 5 5 <��� − � × :�� �0 × �� �0 ;=4

� × :�� �0 × �� �0 ;
9
���

�
���  125 

As in Loughin and Scherer (1998), it can be shown that the asymptotic distribution of 126 

this test statistic under the null hypothesis is complicated because descriptors might 127 

not be selected independently. A reasonable option for estimating the distribution of 128 

1234  under the null hypothesis is to consider a Monte-Carlo approach (see Section 129 

2.3.1.2). 130 

2.2. The multiple-response Correspondence Analysis 131 

2.2.1. Conceptual difference with the usual Correspondence Analysis for Free-132 

Comment and Check-All-That-Apply data 133 

In usual CA, the products are compared to each other according to their profile. The 134 

profile of each product is defined as the proportion of citations of each descriptor for 135 

this product relatively to the total number of citations (all descriptors combined) 136 

elicited by this same product. Thus, in the context of FC and CATA data, when 137 

products elicit different average citation rates (all descriptors combined) then 138 

absolute differences in descriptors’ citation rates between products are distorted due 139 

to this “citation rescaling”. The degree of distortion depends on the degree of 140 



differences in citation rates between products. For more details on the usual CA, one 141 

can refer e.g. to Greenacre (2007). The previous assertions are also applicable to 142 

Hellinger-distance-based CA (Rao, 1995; Vidal, Tárrega, Antúnez, Ares, & Jaeger, 143 

2015) because this latter is also based on the products’ profiles.  144 

MR-CA overcomes the above limitation by scaling products according to their number 145 

of evaluations instead of their number of received citations. It results in comparing 146 

products based on their average proportions of citations for each descriptor. This 147 

“evaluation scaling” only has importance in the case of unbalanced design. Indeed, 148 

products that are more evaluated are likely to elicit more citations of all descriptors 149 

and it is necessary to put products on an equal footing before comparing them. To 150 

summarize, the propensity of some products to elicit more citations than others does 151 

not affect MR-CA while it does with usual CA. 152 

When applied to FC and CATA data, MR-CA can be seen as standing at the frontier 153 

between the usual CA of the descriptor by product contingency table and the PCA of 154 

the products’ average profiles depicted by the descriptors’ proportions of citations. 155 

MR-CA performs the PCA of the products’ average proportions of citations but 156 

weighting the descriptors proportionally to their citation rate as in usual CA.  157 

2.2.2. Definition 158 

Similarly, to the usual CA based on the singular value decomposition of the matrix of 159 

standardized residuals defined by the usual chi-square statistic, the MR-CA is based 160 

on the singular value decomposition of the matrix of standardized residuals defined 161 

by the multiple-response chi-square statistic. Using the notations defined in the 162 

previous section, let us consider: 163 

- > a column matrix of size � × 1 whose elements equals 
�� �0 , � ∈ �1, … , �
 164 

- ? a column matrix of size � × 1 whose elements equals 
�� �0 , � ∈ �1, … , �
 165 

- @3 a diagonal matrix of size � × � whose diagonal elements equal 
�� �0 , � ∈166 

�1, … , �
 167 

- @A a diagonal matrix of size � × � whose diagonal elements equal 
�� �0 , � ∈168 

�1, … , �
 169 

- B a matrix of size � × � whose general term equal 
��� �0 , � ∈ �1, … , �
, � ∈170 



�1, … , �
 171 

Using these notations, the MR-CA is based on the singular value decomposition of 172 

the matrix C defined as: 173 

C = @3D�4EB − >?FG@AD�4 174 

Let us denote by H the matrix of left singular vectors of C, I the diagonal matrix of 175 

singular values of C and J the matrix of right singular vectors of C such that C =176 

HIJF. Similarly to the usual CA, the principal coordinates of the products are defined 177 

as @3DKLHI and the so-called contribution coordinates (Greenacre, 2013) of the 178 

descriptors are defined as J. Note that since this system of coordinates defines a 179 

strict biplot as defined in (Gabriel, 1971), it is suggested to use arrows rather than 180 

points to display the descriptors' coordinates. This could help practitioners to 181 

remember to interpret relations between products and descriptors as scalar products 182 

(orthogonal projection) and not “proximities”. Different systems of coordinates could 183 

be used for displaying results of MR-CA similarly to usual CA (Greenacre, 2006). 184 

However, the one proposed here has two benefits: it enables interpreting maps 185 

similarly to Principal Component Analysis (PCA) biplots and the coordinates of the 186 

columns (descriptors) reflect their respective contribution to the inertia and to the 187 

distances between rows (products) (Greenacre, 2006).  188 

Equivalently, the MR-CA can be defined as the PCA of the matrix @3D�B@ADKL. This 189 

latter definition of MR-CA better highlights that the distance between two products 190 

� ≠ �′ ∈ �1, … , �
 in the sensory space depicted by MR-CA called multiple-response 191 

chi-square distance is equal to: 192 

�NOPL E�, �&G = Q5 ��� <����� − ��,���, =49
���  193 

From the definition of the multiple-response chi-square distance, one can see that the 194 

weight given to each product is proportional to its number of evaluations rather than 195 

its number of received citations as it is in usual CA. Finally, it should be noted that the 196 

number of axes obtained by MR-CA is equal to the minimum between � − 1 and �, 197 

as in a PCA in which descriptors act as variables and products as individuals, while in 198 

usual CA it is equal to the minimum between � − 1 and � − 1. This difference in the 199 



number of axes is because usual CA centers both rows (products) and columns 200 

(descriptors) while MR-CA centers only rows. 201 

2.3. Statistical inference for multiple-response chi-square framework 202 

This section transposes the methodologies from Mahieu et al. (2020a) to the multiple 203 

chi-square framework.  204 

2.3.1. The dimensionality test of the dependence 205 

2.3.1.1. Conceptual aims for Free-Comment and Check-All-That-Apply data 206 

The aim of this test is twofold. First, it investigates if at least one axis of the MR-CA is 207 

significant, that is if some overall differences exist between the products. If no axis is 208 

significant, interpreting subsequent analyses including the outputs from MR-CA might 209 

lead to over-interpretations. If at least one axis is significant, the second aim of the 210 

test is to determine the number of axes that can be considered significant and thus 211 

interpreted. Because drawing sensory conclusions based on more than three or four 212 

axes can be difficult visually, the number of significant axes is taken into account in 213 

subsequent proposed analyses, which are simpler to interpret from a sensory point of 214 

view. 215 

2.3.1.2. Technical aspects 216 

It is possible to test if the dependence of each MR-CA axis is significant with a 217 

stepwise procedure similarly as for the usual CA (Mahieu et al., 2020a). The idea is 218 

to test, at each step R ER > 1G, whether the hypothesis of independence between 219 

products and descriptors is still rejected while the dependence captured by the axes 220 

1 to R − 1 was removed. In other words, it is tested if the strength of the dependence 221 

is still large enough to be considered significant. 222 

As seen in the previous section, the total number of MR-CA axes, denoted T, is 223 

equal to the minimum between � − 1 and �. Let us consider HU the matrix of the  T −224 

R + 1 last left singular vectors of C, IU the diagonal matrix of the T − R + 1  last 225 

singular values of C and JU the matrix of the T − R + 1 last right singular vectors of C 226 

such that CU = HUIUJUF. Let us denote by 1234 U the multiple-response chi-square 227 

statistic of the derived contingency table corresponding to the T − R + 1 last axes of 228 

the MR-CA denoted WU and defined following the reconstitution formula as: 229 



WU = :@3�4CU@A�4 + >?F; × � 230 

The multiple-response chi-square test associated with the test statistic 1234 U enables 231 

testing if the k-th axis of the MR-CA captures a significant dependence between 232 

products and descriptors. Note that if R = 1 then this test corresponds to the multiple-233 

response chi-square test defined in section 2.1. 234 

The multiple-response chi-square statistic of the products by descriptors contingency 235 

table is related to the eigenvalues of the MR-CA by the following equation: 236 

1234 = � × 5 XY
Z
Y��  237 

where 1234  is the multiple-response chi-square statistic of the contingency table, � is 238 

the total number of evaluations and XY is the i-th eigenvalue of the MR-CA. This 239 

relation enables to compute each 1234 U as: 240 

∀R, 1234 U = � × 5 XY
Z
Y�U  241 

To estimate the distribution of each 1234 U under the null hypothesis, it is proposed to 242 

randomly permute the response vectors along products within each subject (Mahieu 243 

et al., 2020a; Meyners et al., 2013; Meyners & Pineau, 2010; Wakeling, Raats, & 244 

MacFie, 1992; Winkler, Webster, Vidaurre, Nichols, & Smith, 2015), a response 245 

vector referring to all citations given for one product by one subject. 246 

To summarize, the dependence between products and descriptors captured by each 247 

MR-CA axis can be tested following these steps: 248 

(i) Simulate a large number of contingency tables by randomly permuting the 249 

response vectors along products within each subject 250 

(ii) Perform MR-CA on each of the simulated contingency tables 251 

(iii) Compute all 1234 UE∗G statistics, R = 1, … , T, as 1234 UE∗G = � × ∑ XYE∗GZY�U  for each 252 

of the simulated contingency tables 253 



(iv) Compute the p-value of each 1234 U as the proportion of 1234 UE∗G
 under 254 

permutation having an equal or a larger value than the observed 1234 U. 255 

2.3.2. Confidence ellipses and discrimination of the products 256 

In MR-CA, as well as in every multivariate analysis providing a product map, 257 

superimposing confidence ellipses on product coordinates is crucial to estimate if 258 

products are well discriminated. A total bootstrap procedure (Cadoret & Husson, 259 

2013) is proposed to achieve this objective. This procedure consists of generating 260 

virtual panels by randomly resampling with replacement the subjects of the actual 261 

panel. Then, the product configurations of the virtual panels are rotated on the 262 

product configuration of the actual panel thanks to Procrustes rotations. A confidence 263 

ellipse is then constructed for each product based on the coordinates of its rotated 264 

bootstrap replicates. It is proposed to rely on the significant axes, indicated by the 265 

test of dependence presented in section 2.3.1, to determine the number of axes to 266 

account for the Procrustes rotations in the total bootstrap procedure. 267 

For each pair of products, to determine if the two products are significantly different, it 268 

is proposed to rely on the total bootstrap test (Mahieu, Visalli, Thomas, & Schlich, 269 

2020b) considering the null hypothesis that the two products are not different. For 270 

each pair of products, a canonical discriminant analysis based on the rotated 271 

bootstrap replicates of the two products is performed. The rotated bootstrap 272 

replicates of the two products are then projected on the axis resulting from the 273 

canonical discriminant analysis. The distribution of the paired differences of the 274 

projected bootstrap replicates is estimated. Finally, the probability of zero to belong to 275 

this distribution is estimated and used as a p-value of the test. It is proposed to 276 

perform the total bootstrap tests on the significant axes.  277 

2.3.3. Determination of the significant associations between products and 278 

descriptors: multiple-response tests per cell 279 

2.3.3.1. Conceptual aims for Free-Comment and Check-All-That-Apply data 280 

These tests aim to investigate the relations between descriptors and products. In 281 

particular, they investigate for a given descriptor and a given product if this descriptor 282 

is cited for this product in a proportion that significantly differs from the overall 283 



average citation proportion of this descriptor all products combined. The tests can be 284 

one-sided (positive differences) or two-sided (both positive and negative differences): 285 

this choice is up to the discretion of the practitioner. A discussion is given about this 286 

choice in Mahieu et al. (2020a). 287 

2.3.3.2. Technical aspects 288 

It is proposed to define a multiple-response test per cell to test the following 289 

hypotheses for a given  � ∈ �1, … , �
 and a given � ∈ �1, … , �
: 290 

��: ��� = ��   291 

��: ��� ≠ �� 292 

The multiple-response test per cell is based on a Monte-Carlo procedure. In this 293 

procedure, for each product � ∈ �1, … , �
, �� evaluations are randomly drawn among 294 

the subjects having evaluated � and only one evaluation is randomly drawn among 295 

each of these subjects. This enables constructing a virtual contingency table under 296 

the null hypothesis accounting for both the subject structure of the data and the non-297 

independence of the citations. Indeed, one evaluation is randomly drawn from each 298 

subject having evaluated � and one randomly drawn evaluation (that respect the joint 299 

distributions of citations of the descriptors) contributes to several cells in the virtual 300 

contingency table. 301 

A large number of virtual contingency tables under the null hypothesis can be 302 

generated by repeating this procedure. Then, for each cell, the proportion of ���E∗G
 303 

under the null hypothesis having an equal or a more extreme value than the 304 

observed ��� constitute a p-value of the test. The multiple-response tests per cell can 305 

be performed with a two-sided alternative hypothesis or a one-sided greater 306 

alternative hypothesis. 307 

Finally, it is proposed to perform the multiple-response tests per cell on the derived 308 

contingency table corresponding to the significant axes (Mahieu et al., 2020a), 309 

denoted WaYb, and defined following the reconstitution formula as: 310 

WaYb = :@3�4CaYb@A�4 + >?F; × � 311 



Where CaYb = HaYbIaYbJaYbF with HaYb the matrix of left singular vectors of C 312 

corresponding to the significant axes, IaYb the diagonal matrix of singular values of C 313 

corresponding to the significant axes and JaYb the matrix of right singular vectors of C 314 

corresponding to the significant axes. 315 

To perform the multiple-response tests per cell on WaYb rather than on the observed 316 

contingency table results in a gain of power without any inflation of the type I error as 317 

suggested by the simulation results presented in the Appendix. The simulation results 318 

also suggest that the smaller the number of significant axes and the intensity of the 319 

dependence between products and descriptors, the higher the gain of power. 320 

2.4. Examples 321 

These examples from two CATA datasets aim to compare outputs obtained from 322 

analyses belonging to the usual chi-square framework to those obtained from 323 

analyses belonging to the multiple-response chi-square framework. Although these 324 

examples deal with CATA datasets, note that the multiple-response chi-square 325 

framework is also appropriate to analyze FC data. 326 

2.4.1. Datasets 327 

The datasets are the same from Mahieu, Visalli, Thomas, and Schlich (2021). 328 

The study took place at the Barry Callebaut© Company, Belgium. Seventy regular 329 

consumers of milk chocolates (at least once every two weeks) were recruited among 330 

the employees of the Barry Callebaut© Company (not implied in sensory and 331 

consumer research). They performed a CATA task on four milk chocolates having 332 

different recipes: a standard Belgian milk chocolate, a Swiss milk chocolate, a milk 333 

compound chocolate, and a protein base milk chocolate. The four products were 334 

presented according to a Williams Latin square design. For each product, the CATA 335 

task was carried out according to two sensory modalities: texture in the mouth 336 

followed by flavor in the mouth. All the CATA descriptors were selected thanks to the 337 

expertise of sensory experts from the Barry Callebaut© Company. The collected data 338 

were then stored in two contingency tables, one per sensory modality, by cross 339 

tabulating the citation counts of the descriptors (columns) by the products (rows). 340 



Since sensory interpretation is out of the scope of this paper dedicated to the 341 

comparison of the two chi-square frameworks, the descriptors were renamed D1, D2, 342 

etc. and the products were renamed P1, P2, P3, and P4. Finally, for the texture 343 

dataset, an additional product called P5 was artificially created. This product is 344 

exactly P4 except that for P5 the number of received citations for every descriptor 345 

has been divided by two as compared to P4. This was made to illustrate the 346 

differences between the multiple-response chi-square framework and the usual chi-347 

square framework. 348 

2.4.2. Analyses 349 

All analyses were performed using R 4.0.2 (R Core Team, 2020). The analyses 350 

belonging to the multiple-response chi-square framework were performed using the R 351 

package “MultiResponseR” developed for this purpose by the authors. 352 

The two contingency tables were analyzed using the following procedure. An alpha 353 

risk (Type I error) of 10% was considered as the significance level. 354 

The dimensionality of the dependence between products and descriptors was 355 

determined within each chi-square framework using the dimensionality test (2000 356 

simulations) presented in Mahieu et al. (2020a) for the usual chi-square framework 357 

and using the dimensionality test (2000 simulations) presented in section 2.3.1 for the 358 

multiple-response chi-square framework. 359 

When at least one axis was significant, the corresponding CA (usual or multiple-360 

response) was performed on the contingency table. Outputs of each CA were 361 

displayed using a standard biplot (Greenacre, 2013). For each CA, confidence 362 

ellipses for the products’ coordinates in the sensory space were computed with a 363 

total bootstrap procedure using 2000 bootstrap samples. The Procrustes rotations 364 

were performed on the significant axes. For each pair of products, a total bootstrap 365 

test was performed on the significant axes for assessing the significance of product 366 

difference. 367 

For each pair of product and descriptor (cell), a Fisher’s exact test was performed for 368 

the usual chi-square framework and a multiple-response test per cell as described in 369 

section 2.3.3 (2000 simulations) was performed for the multiple-response chi-square 370 

framework. All tests per cell were performed with a one-sided greater alternative 371 



hypothesis and conducted on the derived contingency table corresponding to the 372 

significant axes. 373 

3. Results 374 

Sensory 
modality 

Chi-square 
framework 

Axis 1 Axis 2 Axis 3 Axis 4 

Texture 
Usual 0.447 (<0.001) 0.162 (<0.001) 0.001 (0.9970) 0 (1) 

Multiple-response 0.907 (<0.001) 0.323 (<0.001) 0.079 (<0.001) 0.002 (0.6146) 

Flavor 
Usual 0.243 (<0.001) 0.012 (0.0154) 0.003 (0.0914) / 

Multiple-response 0.557 (<0.001) 0.089 (<0.001) 0.013 (0.0054) / 

Table 1: Eigenvalues of Correspondence Analysis and corresponding p-values (in 375 

brackets) for testing the number of significant axes in the usual and multiple-376 

response frameworks for the two datasets 377 

Table 1 shows that whatever the sensory modality and the axis considered, the 378 

eigenvalues of the CA are higher in the multiple-response framework than in the 379 

usual one. This suggests that the usual framework underestimates the dependence 380 

between products and descriptors. This line of reasoning is reinforced by the 381 

example treated by Loughin and Scherer (1998) as they obtained a lower p-value 382 

(which is partly a function of the effect size) for their chi-square test in the multiple-383 

response framework than in the usual one. On the dimensionality of the dependence, 384 

Table 1 shows that similar conclusions are provided between products and 385 

descriptors by the two chi-square frameworks concerning the flavor dataset: three 386 

axes capture significant dependence. However, the dependence on the third axis 387 

appears more certain (p=0.0054) in the multiple-response chi-square framework than 388 

in the usual one (p=0.0914). Concerning the texture dataset, only two axes capture 389 

significant dependence within the usual chi-square framework while three axes 390 

capture significant dependence within the multiple-response chi-square framework. 391 

Fig. 1 shows that for the texture dataset, the maps depicted by the two first axes of 392 

the usual CA (Fig. 1(a)) and the MR-CA (Fig. 1(b)) are very similar: all the products 393 

except P5 and all the descriptors have the same position on the two maps. The only 394 

difference between these maps is the location of P5 being different from P4 and 395 

closer to the origin in MR-CA (Fig. 1(b)) as compared to usual CA (Fig. 1(a)). The 396 

reason for this difference lies in the fact that P4 and P5 have the same profile 397 

(repartition of citations) in the usual CA. On the contrary, the MR-CA captures that P5 398 



received fewer citations than P4 for all the descriptors but still following the same 399 

pattern of association with the descriptors. This explains the position of P5 relative to 400 

P4: P5 deviates from independence in the same direction that P4 (same pattern of 401 

association with the descriptors) but P5 is closer to the origin of the coordinates 402 

system than P4 (received fewer citations). Concerning the third significant axis 403 

obtained with the multiple-response chi-square framework on the texture dataset 404 

(Fig. 1(c)), it mainly traduces that P5 received fewer citations than P4 for all 405 

descriptors, which is logical. Note that the usual CA is unable to capture this 406 

difference between P4 and P5, which explains the non-significance of the third axis 407 

for this CA. 408 

For the flavor dataset, Fig. 2 shows that the spaces provided by the usual CA and the 409 

MR-CA exhibit different configurations for both products and descriptors. For every 410 

descriptor, there is at least one other product that received more citations than P3. 411 

Thus, in MR-CA, it is associated with no descriptor, which explains its position: P3 412 

lies at the opposite of every descriptor loadings (Fig. 2(c) & Fig. 2(d)). On the 413 

contrary, in usual CA, P3 seems to be associated with D1, D5, and D6 and slightly 414 

with D2 (Fig. 2(a) & Fig. 2(b)). Indeed, in usual CA, the number of citations received 415 

by P3 for every descriptor is rescaled according to its total number of received 416 

citations. Thus, the fact that for every descriptor there is at least one other product 417 

that received more citations than P3 is erased in the usual CA. These features of P3 418 

are the principal explanation of the differences between the spaces provided by MR-419 

CA and usual CA, both applied on the flavor dataset. Another notable difference is 420 

between the maps depicted by the two first axes of the usual CA and of the MR-CA 421 

(Fig. 2(a) & Fig. 2(c)). On these maps, P1 and P2 appear to be more associated with 422 

D1, D4, and D6 in MR-CA as compared to the usual CA. This difference is due to the 423 

opposite phenomenon that occurred with P3: P1 and P2 received much more 424 

citations than P3 and P4 for these descriptors and the usual CA distorts this 425 

difference while the MR-CA does not. 426 

Concerning the total bootstrap tests, whatever the considered sensory modality and 427 

whatever the considered chi-square framework, the conclusions they provided were 428 

the same except when considering the pair P4/P5 and the texture dataset. In the 429 

usual chi-square framework, P4 is for sure not different from P5 (p = 1) while P4 and 430 



P5 are significantly different in the multiple-response chi-square framework (p < 431 

0.001). Of course, this is perfectly in line with Fig. 1(a), Fig. 1(b), and Fig. 1(c). 432 

For texture, Fig. 3 shows that differences in the significant associations concern the 433 

pairs: P2-D2, P5-D3, and P5-D8. The pair P2-D2 is significant in the multiple-434 

response and not in the usual chi-square framework because P2 received more 435 

citations of this descriptor than the other products except P3. Concerning the product 436 

P5, it is noticeable that in the usual framework, it is significantly associated with the 437 

same descriptors as P4 (D3, D5, and D8), which was expected since P5 has the 438 

same profile that P4 in this framework. The pair P5-D8 being significant in the usual 439 

framework with a percentage of citations (25.71%) lower than the one of product P3 440 

(28.57%) which is not significant nicely illustrates the issue of the “citation rescaling” 441 

due to considering the citations as experimental units. Since P3 and P5 were 442 

evaluated the same number of times, it is counterintuitive to have the one with the 443 

lowest proportion of citations significant and not the other. However, in the multiple-444 

response framework, both P3 and P5 are not significantly associated with D8, which 445 

is consistent. Regarding the pair P5-D3, the association is not significant in the 446 

multiple-response chi-square framework while it is in the usual chi-square framework. 447 

This difference is due to the “citation rescaling” that occurs in the usual chi-square 448 

framework and not in the multiple-response one. 449 

Concerning the flavor dataset, several differences are shown in Fig. 3 between the 450 

conclusions provided by the two chi-square frameworks on descriptor by product 451 

significant associations. As was suggested by Fig. 2, P1 and P2 are significantly 452 

associated with D1, D4, and D6 in the multiple-response chi-square framework while 453 

only P2 is significantly associated with only D4 and D6 in the usual chi-square 454 

framework. This difference is because P1 and P2 received much more citations than 455 

P3 and P4 for these descriptors. On the contrary, without the “citation rescaling”, 456 

since P3 and P4 received fewer citations, they got less significance in the multiple 457 

response framework; precisely, P3-D5 and P4-D3 are no longer significant in this 458 

framework. Finally, it is noticeable that the counterintuitive conclusion in the usual 459 

chi-square framework on the significant association of D3 with P4 and not with P1 460 

and P2 while these received a higher percentage of D3 citations than P4, no longer 461 

holds in the multiple-response chi-square framework. 462 



4. Discussion 463 

To the best of our knowledge, it is the first time that a chi-square framework properly 464 

taking into account multiple-response data is introduced. The proposed analyses 465 

including the test of dimensionality, the product confidence ellipses, the pairwise 466 

product comparisons, and the product by descriptor association tests, the three of 467 

them being conducted on the significant axes, are all originals. This multiple-468 

response chi-square framework fits perfectly to FC and CATA data. However, this 469 

multiple-response chi-square framework is not restricted to be used only in sensory 470 

and consumer science and can be used to analyze any multiple-response data 471 

whatever the field they come from. 472 

The examples presented in this paper showed that the multiple-response chi-square 473 

framework is better suited than the usual chi-square framework to analyze FC and 474 

CATA data. A major benefit of using the multiple-response chi-square framework is 475 

that when the experimental design is balanced, every product is equally weighted. 476 

This is more appropriate and leads to logical outputs as opposed to the usual chi-477 

square framework that can lead to counterintuitive outputs. Indeed, it sounds more 478 

logical to weight the products equally and not rescale them according to their number 479 

of received citations when they have been evaluated the same number of times. Note 480 

that an equivalent weighting of the products using the usual chi-square framework is 481 

almost impossible since products are very unlikely to receive the same number of 482 

citations at the panel level. The multiple-response tests per cell introduced in this 483 

paper take into account all the specific aspects of FC and CATA data, especially the 484 

non-independence of citations between descriptors.  485 

The conclusions provided by the two chi-square frameworks are not always 486 

necessarily different. For example, they would have been almost the same on the 487 

texture dataset if P5 had not been artificially added to the dataset. The more different 488 

the citation rates (all descriptors combined) between products are, the more the 489 

conclusions drawn from the usual chi-square framework will differ from the multiple-490 

response one. The products likely receive different numbers of citations when some 491 

products have few sensory characteristics while some others have a lot or when 492 

some products present obvious characteristics while the characteristics of the other 493 



products are more subtle; these kinds of situations are likely to occur in sensory 494 

evaluation. 495 

Since the multiple-response chi-square framework relies heavily on Monte-Carlo and 496 

bootstrap simulations, the results of the proposed analyses are not instantaneous. 497 

For the datasets used as examples, it took around 30 seconds by dataset to obtain 498 

the results of all analyses. However, this computation time increases with the number 499 

of evaluations and thus with the number of subjects and products. For large datasets 500 

(e.g. 3000 evaluations), it takes around 5 minutes to obtain the results using the 501 

settings of this paper. 502 

5. Conclusion 503 

For the analysis of Free-Comment and Check-All-That-Apply data, the paper 504 

proposes to replace the usual chi-square framework with a new multiple-response 505 

chi-square framework taking into account dependence among citations within an 506 

evaluation. It is thus statistically valid while the former was not. The new framework 507 

includes a test of dimensionality, a Correspondence Analysis with confidence 508 

ellipses, a test for pairwise product comparison, and a test of significance of product 509 

by descriptor associations. Note that ellipses, tests of product comparisons, and tests 510 

of association with descriptors are the three of them computed on the significant axes 511 

of dependence. The basic difference introduced by this new framework is not to 512 

longer consider citations (one descriptor for one product by one subject) as 513 

experimental units, but to rely on evaluations (vector of citations for one product by 514 

one subject) as being the experimental units. Simulations showed that testing the 515 

significance of product by descriptor associations on the significant axes of 516 

dependence increased power in detecting product by descriptor associations without 517 

any inflation of the type I error. The new approaches are supported by an R package 518 

called “MultiResponseR” and available upon request to the authors and on GitHub. 519 

Appendix: Simulations 520 

To investigate the benefits and/or the downsides of performing the multiple-response 521 

tests per cell on the derived contingency table corresponding to the significant axes, 522 

simulations of sensory data were performed. For every simulation, 60 subjects, 5 523 



products, and 10 descriptors were considered. The 5 products were considered as 524 

being evaluated by the 60 consumers, as it is common in sensory evaluation. The 525 

descriptors marginal probabilities were randomly chosen and were the following: 526 

0.20, 0.56, 0.26, 0.23, 0.21, 0.30, 0.20, 0.42, 0.52, 0.75. From these marginal 527 

probabilities, the matrix of expected probabilities under the null hypothesis of 528 

independence between products and descriptors was computed. This matrix 529 

contained 50 cells (5 products × 10 descriptors). 530 

Some deviation from independence was then added iteratively to these expected 531 

probabilities such that at each step, one axis of dependence was added orthogonally 532 

to the previous axes. On the first added axis, two products were differentiated on six 533 

descriptors. On the second added axis, two products were differentiated on four 534 

descriptors. On the third added axis, two products were differentiated on two 535 

descriptors. On the fourth added axis, four products were differentiated on four 536 

descriptors. This enabled to control the true dimensionality of the dependence 537 

between products and descriptors. The cells that deviated from the null hypothesis 538 

did with equal intensity but with opposite direction to keep the marginal probabilities 539 

fixed. Two levels of deviation intensity were considered: 0.1 and 0.2. 8 matrices (4 540 

levels of dimensionality × 2 levels of deviation intensity) of probabilities were thus 541 

generated. Each of the 8 matrices contains 50 cells (5 products × 10 descriptors). 542 

For each of these 8 matrices, 1000 datasets were simulated. Each of these datasets 543 

was generated by adding 60 individual data (the subjects). Each individual data was 544 

generated by performing a random Bernoulli draw for each of the 50 cells according 545 

to the specified probability given in the matrix.  546 

For each of the 8000 datasets (8 matrices of probabilities × 1000 generated 547 

datasets), the number of significant axes was considered unknown and was 548 

determined using the dimensionality test presented in section 2.3.1. The multiple-549 

response tests per cell were then performed on either the observed table or the 550 

derived contingency table corresponding to the significant axes returned by the test. 551 

The p-values of the multiple-response tests per cell were stored. 552 

For each combination of the factors deviation intensity (0.1 or 0.2), dimensionality 553 

(one axis, two axes, etc.), and table (observed or derived) and for each of the 50 554 

cells, the proportion of test (among the 1000 datasets) rejecting the null hypothesis 555 



was computed at the following nominal alpha risks: 5%, 7.5%, and 10%. Then, the 556 

results from a given cell were assigned either to the group H0 if its probability was not 557 

modified or to the group H1 otherwise. Finally, the average proportion of rejection of 558 

the null hypothesis was computed within each group (H0 or H1), number of 559 

dimensions, and deviation intensity. The results are presented in Table 3. 560 



 561 

Deviation 
intensity 

Dimensionality Nominal alpha risk = 5% Nominal alpha risk = 7.5% Nominal alpha risk = 10% 

  
H0 

derived 
table 

H0 
observed 

table 

H1 
derived 
table 

H1 
observed 

table 

H0 
derived 
table 

H0 
observed 

table 

H1 
derived 
table 

H1 
observed 

table 

H0 
derived 
table 

H0 
observed 

table 

H1 
derived 
table 

H1 
observed 

table 

0.1 
1 0.020 0.034 0.521 0.434 0.030 0.052 0.592 0.507 0.040 0.071 0.644 0.562 
2 0.029 0.034 0.461 0.444 0.044 0.051 0.537 0.514 0.061 0.069 0.595 0.569 
3 0.032 0.032 0.451 0.450 0.049 0.049 0.523 0.519 0.069 0.069 0.582 0.577 

 4 0.034 0.032 0.532 0.536 0.052 0.049 0.594 0.599 0.070 0.068 0.643 0.646 

0.2 
1 0.018 0.032 0.987 0.955 0.027 0.050 0.991 0.969 0.037 0.069 0.994 0.978 
2 0.028 0.033 0.973 0.960 0.041 0.050 0.982 0.973 0.058 0.068 0.988 0.980 
3 0.030 0.032 0.966 0.962 0.046 0.048 0.977 0.973 0.064 0.066 0.984 0.981 

 4 0.029 0.030 0.973 0.974 0.046 0.046 0.982 0.982 0.066 0.066 0.987 0.987 

Table 3: Average proportion of rejection of the null hypothesis among the 1000 simulations depending on the deviation intensity, 562 

the dimensionality, the nominal alpha risk, the table considered, and the deviation from the null hypothesis or not.563 



Table 3 shows that the empirical type I error never exceed the nominal alpha risk in 564 

group H0 for both approaches, which suggests that both approaches are valid.  It can 565 

be seen that the empirical type I error in the H0 group was even slightly lower when 566 

considering the derived table which is a nice feature. 567 

The percentage of rejections in group H1 (estimating test power) was higher when 568 

considering the derived table as compared to the observed table whatever the 569 

combination of factors considered except with a dimensionality of 4. Therefore, 570 

performing the multiple-response tests per cell on the derived contingency table 571 

corresponding to the significant axes enables gaining power without increasing type I 572 

error. It should also be noted that the smaller the dimensionality of the dependence, 573 

the higher the gain of power. It is logical because a low dimensionality maximizes the 574 

difference between the derived table and the observed one. Finally, it should also be 575 

noted that the gain in power is higher with the lower independence deviation (0.1 vs 576 

0.2), that is with the more complex/subtle situation. This is a nice feature arguing in 577 

favor of performing the multiple-response tests per cell on the derived contingency 578 

table corresponding to the significant axes.  579 
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Fig. 1: Biplot from Correspondence Analysis of the texture dataset: (a) usual CA 

(axes 1-2), (b) MR-CA (axes 1-2) and (c) MR-CA (axes 3-2). 



Fig. 2: Biplot from Correspondence Analysis of the flavor dataset: (a) usual CA (axes 

1-2), (b) usual CA (axes 3-2), (c) MR-CA (axes 1-2) and (d) MR-CA (axes 3-2). 



Fig. 3: Descriptors by product percentages of citations across the panel. Highlighted 

cells denote a significant (α = 10%) Fisher exact tests per cell in the usual chi-square 

framework or a significant (α = 10%) multiple-response test per cell (2000 

simulations) in the MR chi-square framework 










