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• A satellite-based surface pCO2 model
with good performance is proposed.

• Six sub-regions in study area were di-
vided according to pCO2 spatial hetero-
geneity.

• The specific control variables for differ-
ent regional pCO2 were identified.

• Variable changes and correlations were
used to explain pCO2 seasonal variation.
⁎ Corresponding author at: School of Earth Sciences, Zh
E-mail address: zfcarnation@zju.edu.cn (F. Zhang).

https://doi.org/10.1016/j.scitotenv.2020.140965
0048-9697/© 2020 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 24 March 2020
Received in revised form 9 July 2020
Accepted 12 July 2020
Available online 19 July 2020

Editor: Christian Herrera

Keywords:
Surface pCO2

Remote sensing
Gulf of Mexico
Data mining
Research on the carbon cycle of coastal marine systems has been of wide concern recently. Accurate
knowledge of the temporal and spatial distributions of sea-surface partial pressure (pCO2) can reflect
the seasonal and spatial heterogeneity of CO2 flux and is, therefore, essential for quantifying the ocean's
role in carbon cycling. However, it is difficult to use one model to estimate pCO2 and determine its con-
trolling variables for an entire region due to the prominent spatiotemporal heterogeneity of pCO2 in
coastal areas. Cubist is a commonly-used model for zoning; thus, it can be applied to the estimation
and regional analysis of pCO2 in the Gulf of Mexico (GOM). A cubist model integrated with satellite im-
ages was used here to estimate pCO2 in the GOM, a river-dominated coastal area, using satellite products,
including chlorophyll-a concentration (Chl-a), sea-surface temperature (SST) and salinity (SSS), and the
diffuse attenuation coefficient at 490 nm (Kd-490). The model was based on a semi-mechanistic model
and integrated the high-accuracy advantages of machine learning methods. The overall performance
showed a root mean square error (RMSE) of 8.42 μatm with a coefficient of determination (R2) of 0.87.
Based on the heterogeneity of environmental factors, the GOM area was divided into 6 sub-regions,
consisting estuaries, near-shores, and open seas, reflecting a gradient distribution of pCO2. Factor impor-
tance and correlation analyses showed that salinity, chlorophyll-a, and temperature are the main control-
ling environmental variables of pCO2, corresponding to both biological and physical effects. Seasonal
changes in the GOM region were also analyzed and explained by changes in the environmental variables.
ejiang University, Hangzhou 310027, China.
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Therefore, considering both high accuracy and interpretability, the cubist-based model was an ideal
method for pCO2 estimation and spatiotemporal heterogeneity analysis.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coastal carbon fluxes account for 25–50% of the ocean's absorption
of anthropogenic carbon dioxide (Sarmiento, 1993), playing a signifi-
cant role in the global carbon cycle (Thomas et al., 2004; Laruelle
et al., 2010; Lee et al., 2011). However, due to the complexity of its eco-
system, the current estimation of air-sea CO2 flux in coastal areas is bi-
ased and inaccurate (Shim et al., 2007). Unlike the atmospheric pCO2,
which is fairly uniform, oceanic pCO2 varies both spatially and
temporally (Mahadevan et al., 2004). Physical and biogeochemical fac-
tors, including surface temperature-driven solubility, biological processes,
fall-to-winter vertical mixing, ocean circulation, river runoff, and shelf-
ocean exchange will influence the temporal and spatial variability of the
surface-ocean pCO2 on coastal areas (Sergio R. Signorini, 2013).

Environmental variables related to four pCO2 controlling processes
(e.g., biological effects, thermodynamic effects, mixing effects and air-
sea exchange effects), such as sea-surface temperature (SST), sea-
surface salinity (SSS), concentration (Chl-a) and diffuse attenuation coef-
ficient (Kd), can be good indicators of sea surface pCO2 due to the capture
of environmental changes. Ocean thermodynamic effect is dependent on
SST, an exponential function (pCO2@T2= pCO2@T1× e0.0423×(T2−T

1
)) were

estimated to describe the relationship between surface pCO2 and SST
(Takahashi et al., 2002; Takahashi et al., 2009). The solubility of CO2

and the dissociation constants of the carbonate system can be influenced
by SST and SSS (Weiss, 1974; Lee et al., 1998; Millero et al., 2006). Phys-
ical processes (horizontal and vertical mixing) of different water masses
that have distinct carbonate characteristics such as total alkalinity (TA)
and dissolved inorganic carbon (DIC) can also be well tracked by SST
and SSS (Lee et al., 2006; Yang and Byrne, 2015). Biological activities
such as photosynthesis, respiration and calcification, can be implicitly
expressed by optical parameters of Chl and Kd (Friedrich and Oschlies,
2009; Jamet et al., 2012; Lei et al., 2020). Most studies that estimate
pCO2, whether based on remote sensing images or observation data
sets, employed statistical approaches such as multiple linear regression
(MLR) (Lefèvre, 2002; Olsen et al., 2004; Jamet et al., 2007; Marrec
et al., 2015), multiple polynomial regression (MPR) (Stephens et al.,
1995; Ono et al., 2004; Zhu et al., 2009; Qin et al., 2014) and principle
component regression (PCR) (Lohrenz and Cai, 2006; Lohrenz et al.,
2010). Machine learning methods, such as self-organizing maps
(SOMs) (Telszewski et al., 2009; Nakaoka et al., 2013), regression trees
(Lohrenz et al., 2018), and feedforward neural networks (Jo et al.,
2012; Moussa et al., 2016), have also performed well in estimating
pCO2. However, statistical-based research still lacks information related
to the mechanistic processes that explain why coastal areas play a role
as sinks or sources for carbon fluxes (Dai et al., 2013). At the same
time, the predicted results cannot be explained by physical, chemical,
and biological methods either (Chen et al., 2017).

The geographical conditions of the Gulf of Mexico (GOM) are com-
plex. The north GOM is dominated by the Mississippi and Atchafalaya
River system (MARS), which has been ranked as the seventh largest
freshwater discharge system in the world (Milliman and Meade,
1983). “The dead zone” is adjacent to the outflows of the Mississippi
and Atchafalaya Rivers (Rabalais et al., 2002), and GOM coastal wet-
lands provide many ecosystem services as well (Engle, 2011). The
plume of MARS extends westward (Huang et al., 2013), while the
Loop Current flows through the Florida Strait, into the Gulf Stream,
and heads north up the eastern coast of the U.S. The diversity and het-
erogeneity of coastal ecosystems, which has been emphasized in earlier
work (Borges et al., 2005), is particularly prominent in the Gulf of
Mexico. Therefore, it is necessary to explain the physical and biogeo-
chemical processes that control surface pCO2 in the GOM area.

In order to overcome the inherent disadvantages of empirical
methods, a nonlinear semi-mechanistic model was developed by
Hales et al. (2012) to study the upwelling-dominated U.S. westernmar-
gins. This model reproduces changes in DIC and TA caused by mixing
processes and thermal forcing, and then uses CO2 System Program
(CO2SYS) (Pierrot and Wallace, 2006) to calculate surface pCO2 from
DIC and TA (Hales et al., 2012). Themechanistic semi-analytic algorithm
(MeSAA) was developed to parameterize and quantify the contribution
of major controlling factors in a mechanistic manner, like the inherent
nonlinearities of the carbonate system, andwas used tomodel summer-
time surface pCO2 in the East China Sea (ECS), a river-dominated coastal
ocean (Bai et al., 2015). Similarly, a satellite-based semi-mechanistic
model was developed to consider surface pCO2 as the sum of the pCO2

caused by biological and mixing effects, and was applied to the north
GOM area to estimate summer sea-surface pCO2 (Le et al., 2019). Since
mechanism-based methods can be effective and are more meaningful
than simple empirical regression methods, semi-mechanistic methods
have been increasingly applied to nearshore areas in recent years
(Song et al., 2016). Although the semi-mechanistic model has an ex-
planatory advantage, it has greater uncertainty due to uncertainties
caused by river end-member properties and satellite-derived variables
(Le et al., 2019); and because the strong surface delamination in the
summer minimizes the vertical mixing effect, the model cannot be ap-
plied well in areas or seasons with strong upwelling (Chen et al., 2017).

A random-forest-based regression ensemble (RFRE) model, pro-
posed by Chen et al., (2019), combined machine learning and semi-
mechanistic methods to overcome the problems of high uncertainty
and insufficient explanatory power. The random forest method, while
dealingwith complex problems, also provides the role of distinguishing
factor differences. Therefore, a model using SST, SSS, Chl and diffuse at-
tenuation coefficient at 488 nm (Kd, m−1) using the semi-analytical
algorithmdeveloped by Lee (2005) (Kd_Lee) to implicitly interpret con-
trolling processes can apply to different GOM partitions and seasons
with satisfactory performance (Fennel et al., 2008; Ikawa et al., 2013).
Developing a model that combines semi-mechanistic and machine
learning methods is an effective way to estimate sea-surface pCO2 in
complex coastal areas. In practice, however, considerations of
partitioning and spatial heterogeneity remain inadequate in most
coastal ocean studies (Lohrenz et al., 2018). There is controversy over
whether an estuary is a weak source or sink (Ternon et al., 2000;
Borges and Abril, 2012), if the GOM's inner shelf is a moderate seasonal
sink (Cai, 2003; Lohrenz et al., 2010; Huang et al., 2015), and if mid-
latitude open oceans are usually a net sink for atmospheric CO2

(Takahashi et al., 2009; Landschützer et al., 2014; Takahashi et al.,
2014). Hence, more semi-mechanistic methods should be introduced
to adequately characterize seasonal changes and underlying spatial
patterns in the GOM, as previously emphasized (Robbins et al., 2014),
and to explain the heterogeneity of factors and the natural laws of
partitioning as well.

The cubist method is widely used for terrestrial carbon digital map-
ping and is amore popularmachine learningmethod because of its high
explanatory power (Adhikari et al., 2014; Gray et al., 2016; Rudiyanto
et al., 2018). Cubist uses related environmental variables to build an es-
timatingmodel; it divides subsets according to their geographic similar-
ity (Ma et al., 2017a) and provides results on the relative importance of
each variable in the model (Pouladi et al., 2019; Yan et al., 2020). Thus,
the application of the Cubist model can reasonably reflect the spatial
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Table 1
Underway pCO2 measurements used for the development and validation of the pCO2

model. These surface pCO2 measurements were collected from different cruises, covering
the entire year of 2018.

Cruise ID Ship name Date range # of
observations

EQ17 M/V Celebrity Equinox 1/1/2018–1/6/2018 2179
AS17 M/V Allure of the Seas 1/4/2018–1/7/2018 1198
GU1801_Leg1 R/V Gordon Gunter 1/14/2018–1/22/2018 4178
GU1801_Leg2 R/V Gordon Gunter 1/26/2018–2/9/2018 7421
GU1801_Leg3 R/V Gordon Gunter 2/12/2018–2/27/2018 5428
GU1801_Leg4 R/V Gordon Gunter 3/1/2018–3/16/2018 7941
GU1802 R/V Gordon Gunter 6/24/2018–7/9/2018 7609
GU1803-transit R/V Gordon Gunter 7/11/2018–7/14/2018 1340
GU1803-Leg1 R/V Gordon Gunter 7/20/2018–8/3/2018 7196
GU1803-Leg2 R/V Gordon Gunter 8/6/2018–8/19/2018 4727
GU1804 R/V Gordon Gunter 8/23/2018–8/31/2018 4445
GU1805-Leg1 R/V Gordon Gunter 9/2/2018–9/9/2018 3563
GU1805-Leg2 R/V Gordon Gunter 9/11/2018–9/30/2018 9659
EQ18 M/V Celebrity Equinox 1/6/2018–12/22/2018 872
GU1806 R/V Gordon Gunter 11/10/2018–12/4/2018 10,127
Total from all cruises 77,883
Total used in model development and validation 7963
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heterogeneity of the GOM and explain the importance of interpretation
factors by region.

In this study, we will combine the semi-mechanistic and cubist
methods to predict ocean surface pCO2 of the GOM with higher accu-
racy, using the four environmental variables: SST, SSS, Chl and Kd-490
(for brevity it is simply called Kd in this study). The model divide
GOMarea based on environmental variable differences rather than geo-
graphic locations for the first time. Spatiotemporal heterogeneity ana-
lyze of pCO2 in the coastal area and main controlling environmental
variables analyze are on the basis of model zoning. The main objectives
of this study are to (1) develop a pCO2-estimating model for a coastal
area by using environmental variables; (2) divide the GOM into sub-
regions according to model rules, analyze the spatial heterogeneity of
pCO2, and discuss the main factors used to indicate pCO2-controlling
processes based on the rules' linear equation; and (3) analyze seasonal
changes in pCO2 for the GOM and discuss its causes. This study can con-
tribute to propose amodelwith general applicability to estimate surface
pCO2 from satellites for coastal areas and facilitate variables and forms
selection of pCO2 model construction in different regions of the GOM.
Relating seasonal changes of environmental variable and pCO2 will pro-
vide an idea for explaining reasons for the coastal areas act as a carbon
source or carbon sink changing by seasons as well. Furtherly, will con-
tribute to estimate the near-shore carbon flux, quantify the role of
coastal area in the carbon cycle, and provide effective information for
understanding the mechanism of ocean acidification.

2. Dataset and method

2.1. Study area

The Gulf of Mexico (GOM) has an area of 1.6 million km2, including
the West Florida shelf (WFS), the Louisiana shelf, the Texas shelf, the
Mexico shelf, and the open bay. The Louisiana Continental Shelf (LCS)
in the north is a typical river-dominated continental shelf, dominated
by the Mississippi and the Atchafalaya River System (MARS). The
GOM shoreline includes a variety of coastal habitats, costal strand
beaches, adjacent marshes, and subaqueous habitats, and extends ap-
proximately 18–30.5°N and 80.6–98°W (Mendelssohn et al., 2017).
“The dead zone” is the world's second largest dead oxygen zone, caused
by nutritional fluxes from the Mississippi-Atchafalaya Basin coupled
with temperature and density-induced stratification, and it has ex-
panded in recent years (Larsen, 2004). The Loop Current flows into
the bay through the Yucatan Channel and flows eastward from the Flor-
ida Straits. The general coastal climate is subtropical with warm to hot
summers and cool winters (Ellis and Dean, 2012). Sea surface tempera-
tures are lowest in February and highest in August. Surfacewinds are di-
rected south-southwest in the summer, while mostly from the east in
non-summer seasons. Typhoons also bring phytoplankton blooms into
the northern GOM area (Shi and Wang, 2007).

2.2. Field data

The in-situ measured pCO2 used in this study was downloaded from
the Ocean Carbon Data Systems (OCADS, https://www.nodc.noaa.gov/
ocads/). Twelve cruises collected data throughout the year of 2018
and are described in Table 1. These are data mainly distributed in the
northern GOM area and partly distributed in the open sea (Fig. 2). The
in-situ sea-surface properties include pCO2, sea-surface salinity (SSS),
and sea-surface temperature (SST). Sea-surface pCO2 data were mea-
sured by using non-dispersive infrared analyzer Li-COR (model 7000)
with a measurement frequency of 2 min and an accuracy of 2 uatm.
The SSS and SST data were obtained ~3 m below the sea surface, using
a CTD (SBE-38 or SBE-45, Seabird Inc.,) integrated in the underway
pCO2 system. All cruise data underwent quality control, with quality
control flags for fCO2 values (2 = good, 3 = questionable). The details
for data sampling, processing, and quality control can be found in
Pierrot et al., 2009.

2.3. Satellite data

Daily standard NASA level-2 data products, obtained by the Moder-
ate Resolution Imaging Spectroradiometer (MODIS/Aqua), were
downloaded from NASA's ocean color website (http://oceancolor.gsfc.
nasa.gov/). These level-2 ocean color data included properties such as
chlorophyll-a and spectral remote sensing reflectance (Rrs) between
412 and 678 nm.We directly obtained chlorophyll-a and the diffuse at-
tenuation coefficient at 490 nm (Kd-490) for the level-2 products calcu-
lated from spectral Rrs data. For details on algorithms, refer to the
official NASA ocean color document (https://oceancolor.gsfc.nasa.gov/
atbd/). SSS was calculated by using an empirical algorithm developed
by Chen and Hu (2017), this multilayer perceptron neural network-
based (MPNN) SSS model use Rrs at 412, 443, 488, 555, 667 nm and
SST as input and has been proven to perform satisfactorily in both
coastal and plume areas. SeaWiFS Data Analysis System software (Ver-
sion 7.5)with up-to-date calibration coefficients were used to reprocess
the images. According to NASA's recommendation, images with quality
level N 1 were discarded from the daily level-2 SST data. The spatial res-
olution of the field data was averaged at 1 km in order tomatch the sat-
ellite data's resolution of approximately 1 km. Conjugate matching was
possessed between daily images and in situ underway measurements.
During the matching process, a time window of ±6 h between in situ
and MODIS measurements was used, and a median value from a 3 × 3
pixel box centered at each sampling site was used to filter sensor and
algorithm noise.

2.4. Cubist model

Cubist is a spatial data mining algorithm based on the M5 algorithm
and is essentially similar to regression trees. It recursively partitions the
predictor variables in a divide-and-conquer way, discovering the
unknown relationships between predictor and predicted variables,
and then generates a rule-based prediction model (Quinlan, 1992;
Quinlan, 1993; Holmes et al., 1999). The predicted variable will be di-
vided into subsets that are more internally homogenous with respect
to the target variable and covariates than the dataset as a whole (Ma
et al., 2017b; Liang et al., 2019; Peng et al., 2019). Unlike the regression
trees in CART (Classification and Regression Trees) (Breiman et al.,
1984a, 1984b), Cubist's terminal nodes are multiple linear regression
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Table 2
Comparison table of pCO2 estimation approaches in the GOM, all methods used the same
training dataset and validation dataset.

Approach RMSE
(μatm)

R2 MB
(μatm)

MAE
(μatm)

MLR Training 15.54 0.52 0.00 8.75
Validation 16.94 0.47 −0.23 9.09

MNR Training 14.65 0.57 0.00 8.81
Validation 15.44 0.56 −0.24 8.89

Semi-mechanistic (Chen et al.,
2017)

Training 37.91 0.28 0.00 27.15
Validation 37.79 0.27 −0.20 26.81

Machine Learning (Cubist in this
study)

Training 5.52 0.93 −0.07 3.18
Validation 8.42 0.87 −0.41 4.55

Machine Learning (SVM) Training 14.64 0.59 1.55 7.63
Validation 15.94 0.55 1.34 7.93

Machine Learning (Neural Network) Training 12.02 0.71 0.03 7.09
Validation 13.11 0.69 −0.13 7.17
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equations rather than predictions, thus constructing regression models
as piecewise linear models. Cubist models generally provide better re-
sults than those produced by simple techniques, such as multivariate
linear regression, and are easier to understand than neural networks.

Cubist improves the accuracy of rule-based models by combining a
composite model with an instance-based or nearest-neighbor algo-
rithm. On this basis, a committee model constituted by multiple rules
can be generated for each rule of the composite model; the subsequent
rule in the committee model will be used to correct the predicted value
of the previous rule (Walton, 2008; Pouladi et al., 2019). Cubist uses
heuristic algorithms to automatically integrate both rule-based and
composite models, yielding the smallest average absolute error value
for modeling prediction results (Henderson et al., 2005; Miller et al.,
2015).

Absolute|error|:

T1−P1j jþ…… Tn−Pnj j
n

A series of rules used to define partitions are sorted in descending
order of importance by cubist with the form: if {conditions} then linear
model. This means that the first rule has the greatest contribution to ac-
curacy when modeling the training data, while the last rule has the
least. Thus, the distribution of the dataset on the variables are indicated
by the rules. The variables used in themodel are built on this subset and
can be used to interpret the main variables that affect the subset in the
meantime (Lacoste et al., 2014).

Therefore, we use cubist to (1) estimate the sea-surface pCO2 of the
GOM region according to the input environment variables; (2) analyze
the distribution heterogeneity of the entire GOMregion's pCO2 on a spa-
tial scale according tomodel rules; (3) analyze themain physical and bi-
ological processes affecting pCo2 and their related environmental
variables in different regions according to the most significant variable
of each rule equation; (4) analyze patterns of seasonal change in pCO2

across the GOM region based on pCO2 seasonal maps predicted by the
model. In this study, the cubist algorithms were employed in the R stu-
dio software package “caret”.

3. Result and discussions

3.1. Model performance

The number of rule sets is a critical parameter for cubist; therefore,
firstly, we compared multiple metrics to select the optimal number of
rule sets. Fig. 3 shows that the root mean square error (RMSE) and coef-
ficient of determination (R2) was lowest and highest, respectively, with
six rule sets; RMSE and R2 increases and decreases, respectively, with
more than six rule sets. This indicates that there is model over-fitting
when exceeding six rules. Thus, six rules were selected when building
the cubist prediction model to balance both model accuracy and
simplicity.

The dataset was sorted and grouped, each group data was randomly
divided by 8:2, after compositing group data, the dataset was divided in
two parts. The 80% of dataset was used to build the prediction model
and the rest was used to validate themodel. The RMSE and R2 were cal-
culated to evaluate model performance. The performance of the cubist
model in both the training and validation datasets is shown in Fig. 4, col-
ored by data density. The R2 is 0.93 and 0.87 formodel development and
validation, respectively, with an RMSE of 5.52 and 8.42 μatm. A histo-
gram of the residuals (difference between measured and predicted
pCO2) for the combined datasets (both model training and validation
data) is shown in Fig. 4c. The histogram shows that 98.4% of the resid-
uals were smaller than 20.5 μatm pCO2 standard deviation.

The other standard statistical measures, mean bias (MB) and mean
absolute error (MAE), were also used to compare the cubist model
with other methods. As presented in Table 2, the performances of
machine learning methods were better, especially cubist, each index is
significantly better than the other methods. Since MLR cannot simulate
nonlinear characteristics well, it yielded greater error with an RMSE of
16.94 μatm and R2 of 0.47 for validation. Although MNR method con-
structedmodel in a non-linearway, it cannot fully consider the inherent
differences in the dataset, resulting in RMSE of 15.44 μatm and R2 of
0.56. Worse performance shown in semi-mechanistic method with an
RMSE of 37.79 μatm and R2 of 0.27 was due to the great impact brought
by the uncertainty of remote sensing products and river-end members
on the model accuracy, and the fact that semi-mechanistic method
was not applicable for other seasons except summer (a season when
seawater stratification is evident). The R2 and RMSE of the cubist
model are equivalent to that of Chen's latest research (Chen et al.,
2019) which showed an showed an overall performance of a root
mean square difference (RMSD) of 9.1 μatm, with a R2 of 0.95; the accu-
racy was lower but his model's correctness was higher. Considering its
sufficient ability to explain factor heterogeneity, compared with other
machine learning methods, cubist model can be viewed as a favorable
method for estimating pCO2 in the GOM.

The year pCO2map estimated by the cubist model is shown in Fig. 5.
It can be seen that the overall trend of pCO2 showed a ring-shaped in-
ward value increase. In the northern region, due to the physical and bi-
ological effects brought by river water mixing, low salinity and strong
photosynthesis make pCO2 was lower throughout the whole year
(Lohrenz and Cai, 2006; Lohrenz et al., 2018; Le et al., 2019). In the
open sea area, the pCO2 was usually higher because of the minimal
river influence. Meanwhile, as a result of the inflow of high salinity
warm current water, high pCO2 values extended eastward into the
open sea area as well.

In summary, the cubist model estimated pCO2 by fully considering
the regional heterogeneity and effectively predicted pCO2 within the
range of 200–550 μatm. Despite the biological and physical effects on
pCO2 that were considered at the same time, the consequence of these
were not considered separately, thus avoiding the propagation error
generated when quantifying the two effects. Cubist model shows ad-
vantages over other methods in accuracy, and the correlation and con-
tribution of the environmental variables can be more intuitively
understood due to its tree structure that provides a linear model for
each node.

3.2. Rule-based GOM partition

The cubist model divided the dataset by six rules and developed lin-
ear models for each subset (Table 3), each model has independently
verified before analyzing pCO2 differences in specific regions (Table 4).
These subsets correspond to the rule-based sub-regions, which indicate
the distribution of different spatially-heterogeneous regions in the
GOM. Annual average images of four variables (SST, SSS, Kd and Chl)



Table 3
Cubist-generated linearmodels for each region, explaining the relationship between envi-
ronmental variables and surface pCO2.

Region Linear models

1 2.2144 + 2.6 SSS – 218.8 Kd + 239.6 Chl
2 −467.385 + 228.7 Chl - 300.9 Kd + 8.58 SST + 9.6 SSS
3 −44.7571 + 92.1 Chl −132.9 Kd + 7.95 SST + 2.5 SSS
4 −216.4958 + 1.1 SSS – 547.8 Kd + 279.9 Chl + 0.74 SST
5 295.8847 + 2.84 SST + 0.3 SSS
6 91.5145 + 3.08 SST + 5.8 SSS - 20.5 Chl
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were composited to correspond to the conditions of each region rule
and apply in rule-based region division. Combining Figs. 1 and 6, it can
be seen that the characteristics of the region are closely related to the
distribution of the continental shelf and water bodies (wetlands and
river), and the depth of the ocean as well.

On the whole, the dividing area of the cubist model is similar to the
GOM continental shelf partition used by (Xue et al., 2016). Rules 2, 3,
and 5 divided the GOM region mainly into three sub-regions, the
near-shore, offshore, and open sea areas. The near-shore area surrounds
the outer circle of the GOM, which is mostly concentrated in the north—
that is, the river-dominated NGOM (northern GOM) area, whose depth
is less than 90m. The other area of region 2 closely corresponded to the
distribution of wetlands (for example, the southern and eastern coastal
wetland areas).

Regions 1 and 4 were distributed within the vicinity of surrounding
water bodies and are areas that need great attention. Geographically, re-
gion 1 mainly distributed in estuaries, while region 4 has very little dis-
tribution and was basically in the surrounding of wetlands. And, from
the perspective of rule division, the difference lies in the value of the en-
vironmental variable (Chl) used to indicate biological effects. The off-
shore area with a depth of less than 200 m, compared to region 2, was
Table 4
Independent accuracy verification of each region model for both train and validation.

Region Train

Count RMSE
(μatm)

R2 MAE
(μatm)

MB
(μatm

1 90 19.35 0.94 13.58 1.84
2 636 7.97 0.95 5.02 −0.38
3 624 5.13 0.96 2.98 −0.27
4 176 13.03 0.80 7.98 −0.36
5 3802 3.66 0.67 2.48 −0.01
6 1015 4.66 0.97 3.01 −0.07

Fig. 1. (a) Geographical location of the GOM and distribution of its river and
less affected by rivers or wetlands. However, region 3 still distributed
within an area that is rich in phytoplankton, and its edges are roughly
consistent with the water depth boundary, reaching the boundary be-
tween the near-shore and open seas. In addition, the different water
mixing caused by different water flow directions (Fig. 1b) may be one
of the reasons for the difference. The different water properties of
mixed water in region 3 and region 2 may be reflected in SST and SSS.
Since the former was the mixing with the Loop Current's high-
temperature water caused by the single transportation from the north
to the southeast, while the latter were mixedwith low-salinity wetland
waters on the edge of Florida. Near-shore regions 1, 2, 3 and the offshore
region 4 nearly occupied the GOM's entire continental shelf. Region 5
occupied the largest area and covered the open sea, which was consis-
tent with the conceptual open sea area. It separated from the coast,
and the depth was at least greater than 200m. The region that required
particular attention was the scattered area clustered near the Yucatan.
Evidently, the distribution of region 6 captured the trajectory of the
Loop Current, and that along the tracks of the Florida Current, extending
to the east as well.
3.3. Regional dominant factor

Only one or two processes may dominantly control the changes of
surface pCO2 in specific region (Bai et al., 2015), thus analyzing which
corresponding environmental variables were the main dominant fac-
tors can well indicate the controlling processes in sub-regions. From
the valid variables selected to build the linear equation of each subset,
we can analyze the importance of each environmental variable. From
the linear equations of each subset (Table 3), it can be seen that the
SST variable participated in the construction of each rule equation and
was themost significant environmental variable in themodel. After nor-
malization, the most important parameters of each equation can be de-
Validation

)
Count RMSE

(μatm)
R2 MAE

(μatm)
MB
(μatm)

26 32.55 0.82 23.60 −7.44
155 16.07 0.79 10.32 −1.35
156 6.59 0.93 4.18 −0.84
45 16.81 0.75 13.11 0.72

960 3.99 0.65 2.68 0.02
276 6.79 0.94 4.81 −0.66

wetlands; (b) Water depth and typical Loop Current path in the GOM.



Fig. 2. Spatial distribution of conjugate samples of remote sensing and in-situ data in the GOM.
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termined by the coefficients of the parameters. The parameters Kd and
Chl always appeared simultaneously, and their coefficients were much
larger than those of the remaining parameters. The region of rule 5
Fig. 3. Trend in the RMSE and R2when evaluating surface pCO2 accuracy and interpretability as r
model development.
was determined to have a strong correlation with SST, since SST is the
variablewith largest weight among the two variables in the rule 5 equa-
tion. The subset of rule 1 and 3 has less samples, thus resulting in greater
ule number increases, while listing the usage percentage of each environmental variable in



Fig. 4. Cubist model performance in estimating pCO2 in both training (a) and validation (b); data pairs are color coded by data density. (c) Histogram of error distributions for bothmodel
development and validation.
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uncertainties reflecting in higher RMSE of rule model verification. The
most influential environmental variables in each rule regions are
shown in Fig. 7. Based on the map, the entire Gulf area of the GOM
was strongly affected by environmental variable Chl. The dominate fac-
tor of the open sea area was SST, and the area reflecting the Loop Cur-
rent was affected by both SSS and SST. Combining Spatial correlation
analyze can verify the rationality of the zoning fromanother perspective
and contribute to analysis the main control factors.

In fact, the correlation between the four variables and pCO2 also has
the same distribution trend as the partitions (Fig. 8). The distribution of
the correlation between Chl and Kd is basically the same, strong nega-
tive correlations appear in most areas. But the negative correlations
were weak in the dead oxygen area and the circulation area, unlike
the other regions. Compared to Chl and Kd, the entire GOM has a strong
positive correlation with SST, with the exception of the estuary region
and the region less than 30 m being weakly positively correlated. A
strong correlation with salinity occurs mainly at the edge of the GOM,
which corresponds to the distribution of wetlands and water bodies.
Fig. 5. Annual surface pCO2 map generated by
On the contrary, a negative correlation appears in the Loop Current
area, which is different from the open sea.

As for the NGOM shelf, theMississippi-Atchafalaya River and associ-
ated plume play the most significant role in determining the distribu-
tion of pCO2 (Chen et al., 2019). The significant influence of the river
on the biogeochemistry of the estuary region is that rivers bring a
large amount of inorganic and organic carbon (Cai, 2003; Bianchi
et al., 2013) and an inflow of low-salinity river water rich in nutrients
at the same time (Guo et al., 2012). The former increases the pCO2

value, while the latter increases phytoplankton production. In addition,
some chemical characteristics of river water (such as DIN loading) have
been shown to positively correlate with pCO2 (Lohrenz et al., 2008).
Therefore, reasonable consideration should be given to the effects of
the strongbiological uptake caused by the input of river-borne nutrients
as well as the rapid change in salinity caused by themixing of river and
seawater on pCO2 (Lohrenz et al., 2018). The relationship between pCO2

and salinity was a downward shape with higher values at low salinities,
corresponding to the highfluvial inputs of DIC andAT, and higher values
the cubist model, averaged from cruises.



Fig. 6. Partitioning according to the model rules; the Loop Current and GOM geographic partitioning are marked on the figure.
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corresponding to the high temperature and low production in the open
sea (Guo et al., 2012; Huang et al., 2015). The strong drawdown of CO2

caused by high productivity can be used to explain the lower values at
intermediate salinities (Lohrenz et al., 1999; Lohrenz et al., 2008; Guo
et al., 2012). However, this cannot be used to determine whether
mixing or biological effects were the main processes for controlling
pCO2, clues can be provided by spatial correlation analyses. The estuary
area has a strong correlation with salinity, but the variables Chl and Kd
do not show a high correlation (the correlation coefficient is close to 0).
Combined with the results of semi- mechanistic model research (Bai
et al., 2015; Chen et al., 2017; Le et al., 2019), which quantified the
Fig. 7. Distribution of main environmental factors in the different regions, de
two effects respectively, we can hypothesize that the variability of
pCO2 was controlled more strongly by mixing than biological effects in
the near-shore plume waters. Further speculation can be drawn from
salinity being themain environmental factor affecting estuary pCO2. Fu-
ture investigations can collect more remote sensing data and measure
more conjugate samples to determine the dominant factors of pCO2.

The inner shelf area (nearshore and offshore areas) is affected by
both harmful and harmless algae blooming (Walsh et al., 2006). The
strong biological effect of chlorophyll, due to its negative correlation
with pCO2 (Sarmaet al., 2006), can be used to trackwhen biological pro-
cesses become dominant in the area. At the same time, due to the
rived from the main variables of each linear model after normalization.



Fig. 8.Maps of correlation coefficients at 1 km resolution between Chl (a), Kd (b), SST (c), SSS (d), and surface pCO2, respectively.
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impact of abnormal weather and ocean currents in the summer, the
dead oxygen area has expanded further. Abnormal algae breeding
brought serious blooms and red tide problems,making the biological ef-
fects on pCO2more significant in the inner shelf area. Besides, some dif-
ferent features in the offshore area may indicate that circulation
phenomena (Oey et al., 2013), such as eddy currents, will affect the
value of pCO2 in the offshore area. Therefore, areas with a depth of
less than 90 m can be seen as a moderate seasonal CO2 sink (Cai,
2003; Lohrenz et al., 2010; Huang et al., 2015).

Open seas are not affected by rivers; their seasonal changes are
mainly controlled by seasonal temperature changes. It should be
noted that the coefficient of temperature and salinity in the circulation
zone are almost the same. The influence of high temperature on solubil-
ity (Chen et al., 2016) and the increase in seawater evaporation caused
by high temperature (Takahashi et al., 2014) make the salinity in the
circulation zone higher than in other open sea areas. Therefore, the cir-
culation zone has high amounts of pCO2 all year round under the com-
bined effect of temperature and salinity.

3.4. Seasonal variations of surface pCO2

The seasonal variation in the GOM is characterized by higher pCO2 in
summer, lower values in spring andwinter, and lower ormedian values
in the fall. The high values in the Loop Current are reflected throughout
the year. This is consistent with most studies (Signorini et al., 2013;
Chen et al., 2016; Lohrenz et al., 2018; Chen et al., 2019) (Fig. 9).

During non-summer seasons, the outflow fromMARS is usually dis-
tributedwestward along the Louisiana shelf, due to the force ofwind di-
rected downcoast from east towest (Feng et al., 2012). However, during
the summer, strong winds forcing out of the south and west drive river
plumes to distribute eastward and reverse the shelf cycle (Wiseman
et al., 1997). The enhanced chlorophyll signal is mainly transmitted
westward in the spring and early summer (Walker et al., 2005). Surface
water dissolved inorganic carbon (DIC) also showed a westward in-
crease in coastal distribution (Guo et al., 2012). This may explain why
areas with low pCO2 expand westward in non-summer months, oppo-
site to that of summer.

In winter, the thermocline breakdown, MLD increase, and the de-
crease of SST occur at the same time (Liu and Weisberg, 2007). On one
hand, as nutrients are brought to the surface by upwelling, phytoplank-
ton blooms can occur and their negative correlation with chlorophyll
can cause low pCO2 values (Fig. 8a). The low pCO2 value brought by
lower temperatures is supported by the strong positive correlation be-
tween temperature and pCO2 throughout the entire region (Fig. 8c).
Thus, surface pCO2 would significantly decrease by combining both bio-
logical and temperature effects. With the transition to spring, the



Fig. 9.Monthly map of surface pCO2 in the GOM, derived from MODIS using cubist model for 2018.
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estuary ushers in an increasing river flow, and thewind-induced plume
was gradually directs to the east (Salisbury et al., 2004; Teague et al.,
2006). The input of riverwater, which is rich in dissolved organicmatter
and nutrients, will increase phytoplankton productivity (Wawrik et al.,
2003; Yuan et al., 2004), from which a bloom of phytoplankton usually
occurs in March. As the temperature rises, pCO2 also begins to rise, ex-
cept in the estuary area, which is mostly controlled by biological effects.

In summer, the CO2 from photosynthesis began to decrease as the
main production was inhibited by nutritional depletion from seawater
stratification. The increase in sea temperature and the greater respira-
tion, compared with photosynthesis, increased pCO2 (Chen et al.,
2016). However, greater river discharge in late spring and summer
caused strong mixing in the estuary while biological effects remained
active at the same time. Thus, the estuary during summer still showed
low pCO2 (300–350 μatm), like in other seasons, due to a combination
of biological and mixed effects. The pCO2 maintained a high value in
early autumn and then decreased as the water temperature became
colder. The biological absorption of surface water CO2 is suppressed
with the consumption of nutrients, keeping the pCO2 from decreasing
further (Huang et al., 2012; Guo et al., 2012). Oxygen andorganicmatter
promote the growth of bacteria, and bacteria break down organic mat-
ter in thewater column to release carbon dioxide back into the seawater
(Cai et al., 2011). Absorption decreased and release increased, resulting
in the continued pCO2 trend of late summer in early autumn.
4. Conclusion

In this study, we applied a cubist model to estimate the sea-surface
pCO2 fromMODIS images for theGOMarea and obtained a satisfied per-
formancewith anRMSE of 8.42 μatm and R2 of 0.87.Model rules divided
the GOM into six sub-regions. The circulation, river influence, and the
distribution of wetlands could be used to explain the rationality of the
zoning. The linear equations established for each region, with different
dominating processes (e.g., physical and biological processes, etc.),
made the prediction of pCO2 in each zone more accurate. In addition,
it provided clues for analyzing the dominant environmental factors of
each district, helping explain the temporal and spatial variability of
pCO2 from the characteristics and temporal changes of environmental
factors, such as the biological and physical factors of chlorophyll and
temperature. Nutrient flux and salinity mix caused by river inflow re-
sulted in strong physical and biological effects, making pCO2 low all
year round in the estuary area. In contrast, theflowofwaterwith higher
temperatures brought by the Loop Current distinguished the pCO2

within the Loop Current from that of the open sea, which was not
only controlled by temperature, resulting in a higher pCO2 throughout
the whole year. The difference between two regions in the inner shelf
is the circulation trend and the influence of thewetland on the coastline,
reflected in the gradient distribution of pCO2. Phytoplankton blooms,
red tides, and eddies result in chlorophyll concentration changes, mak-
ing the internal shelf a seasonal sink. Ourmodel performedwell in esti-
mating pCO2, which provides a solid foundation for extending its
application to others area with similar environmental and geographical
conditions. Themodel also provides effective information for explaining
the spatial heterogeneity of pCO2 and exploring seasonal changes of
pCO2 in coastal areas.
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