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Abstract 14 

Precision feeding and management of growing-finishing pigs typically require mathematical 15 

models to forecast individual pig performance from past data. The current approaches, namely 16 

double exponential smoothing (DES) and dynamic linear regression are likely to have some 17 

limitations in their applicability since they: (1) assume that responses can be forecasted 18 

linearly, which only holds in the short-term, and (2) often take insufficient account of 19 

uncertainty and correlations in the estimated traits. We developed and evaluated alternative 20 

approaches to forecasting individual growth or intake responses based on nonlinear models 21 

(allometric, monomolecular, rational) and Bayesian methodology to fit models to the data and 22 

generate probabilistic forecasts. We applied these approaches to individual data from two 23 

distinct pig populations, to parameterise the models (fitting based on a training dataset) and 24 

forecast performance (forecast horizons: 1-30 d tested on a validation dataset). We found that 25 

good fitting did not guarantee accurate forecasting, which is quantitatively relevant in the 26 

medium-to-long term. Forecasts from nonlinear models were more accurate compared to those 27 

from benchmark linear models, with the allometric model being more accurate for most pigs 28 

across considered forecast horizons. While DES was the best model at fitting, it was also the 29 

least accurate at forecasting for all forecast horizons. These results enhance the understanding 30 

of how underlying biological growth responses could be approximated using straightforward 31 

mathematical relationships. The approach could be utilised to formulate optimised feeding 32 
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strategies and inform management decisions, including pen allocation or end-weight 33 

prediction. 34 

 35 

Keywords: Precision feeding; Forecasting; Bayesian modelling  36 
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1. Introduction 37 

Precision feeding and management strategies (Berckmans, 2006; Wathes, Kristensen, Aerts, & 38 

Berckmans, 2008; Filipe, Knol, Vogelzang, & Kyriazakis, 2018) that account for variation in 39 

the requirements and growth trajectories of individual animals could substantially improve 40 

resource utilisation and reduce environmental impacts of livestock systems, as well as increase 41 

profitability of these operations (Cerosaletti, Fox, & Chase, 2004; Andretta, Pomar, Rivest, 42 

Pomar, & Radünz, 2016; Zuidhof, 2020). It is possible that such strategies may also enhance 43 

animal welfare (D'Eath, Tolkamp, Kyriazakis, & Lawrence, 2009).  44 

 45 

The implementation of precision feeding and management strategies typically require 46 

mathematical models to forecast performance of individual animals from past data. Successful 47 

forecasting of individual growth or feed intake responses in the context of precision feeding 48 

and management is conditional on: (1) how well the mathematical model approximates the 49 

underlying biological process; (2) how accurately the parameter values of the model can be 50 

estimated from the information on past performance of the animals; and (3) whether the 51 

estimates are accompanied by a quantification of uncertainty to inform the extent to which they 52 

can be relied upon. While previous precision feeding and management studies in pigs 53 

(Hauschild, Lovatto, Pomar, & Pomar, 2012; Brossard, Taoussi, Van Milgen, & Dourmad, 54 

2017; Quiniou, Brossard, & Marcon, 2017; Peña Fernández et al., 2019) often provide 55 

assessments of different forecasting approaches, the aforementioned three conditions are rarely 56 

taken into full consideration, which may limit the conclusions about the applicability of these 57 

approaches. Here, we compare the most frequently utilised approaches in the literature with 58 

alternatives aimed at addressing some of the identified main limitations.  59 

 60 

The previously developed precision feeding and management systems in growing-finishing 61 

pigs tackle the problem of forecasting individual growth responses based on previous feed 62 

consumption and bodyweight (BW) data typically using either: (i) double exponential 63 

smoothing (DES) (Hauschild et al., 2012; Brossard et al., 2017; Quiniou et al., 2017), a type of 64 

weighted moving average of past observations (Holt, 1957; Brown, 1959); or (ii) dynamic 65 

linear regression (DLR) (Peña Fernández et al., 2019), where the regression parameters can 66 

vary over time (Petris, Petrone, & Campagnoli, 2009). Both approaches assume that growth 67 

responses to nutrient intakes are linear in relation to the explanatory variables, time (age) or 68 

feed intake respectively, despite considerable evidence suggesting that these processes are 69 

nonlinear, at least in monogastric livestock species (Kuhi, Kebreab, Lopez, & France, 2004; 70 
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Van Buggenhout, Aerts, Vranken, & Berckmans, 2004; Schulin-Zeuthen et al., 2008; Demmers 71 

et al., 2018). Most responses can be approximated by a linear relationship within a short-term 72 

window and this is the implicit basis on which linear models are then applied. The length of 73 

this window is often unknown in advance but is necessarily limited because the responses 74 

change nonlinearly during the course of growth, as growth slows down and eventually stops 75 

(Fitzhugh & Taylor, 1971; Blaxter, Fowler, & Gill, 1982; Filipe, Leinonen, & Kyriazakis, 76 

2018). Thus, in forecasting growth, the confidence in a linear relationship is expected to 77 

decrease, as the forecast horizon increases, from e.g., one day to three or to seven days, and so 78 

on. Consequently, the key question concerns which nonlinear relationship should be used for 79 

longer forecasts. Currently, the answer to this question is unknown and is the main reason why 80 

we test several nonlinear deterministic relationships between the two traits of interest (i.e., feed 81 

consumption and BW), which are associated with the conversion of feed into biomass.  82 

 83 

The quality of the variables’ estimates and subsequent forecasts can be considerably impacted 84 

by the choice of the estimation method for fitting to the data, irrespective of the model used 85 

(Wagenmakers, Lee, Lodewyckx, & Iverson, 2008). The current precision feeding and 86 

management systems in pigs rely predominantly on maximum likelihood (Myung, 2003) to 87 

obtain estimates from the data. However, this methodology generates single point estimates 88 

and gives insufficient information about the uncertainty and correlations in the estimated 89 

variables (Babtie & Stumpf, 2017), which could mislead the decision-making process and 90 

could lead to a suboptimal formulation of feeds. Alternative estimation methods based on the 91 

Bayesian framework, which outputs distributions of possible values of the variables (Gelman 92 

et al., 2013), may yield more reliable point estimates and measures of uncertainty (Beerli, 2005; 93 

Filipe & Kyriazakis, 2019).  94 

 95 

Considering the above limitations of the current approaches to the problem of forecasting 96 

individual pig growth and intake responses based on past performance, the objectives of this 97 

paper were to develop and evaluate quantitatively alternative approaches to this problem. We 98 

hypothesised that non-linear approaches would perform better than the current approaches, 99 

which assume linearity. These alternative approaches were selected with the following criteria 100 

in mind: (a) models should describe the relationship between feed consumption and consequent 101 

BW gain rather than the relationships of these traits to time; (b) fewer and interpretable model 102 

parameters are preferred; (c) estimation methods should give sufficient information on 103 

uncertainty and correlations in estimated variables. The results of this study were expected to 104 
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enhance the understanding of how underlying biological growth responses of growing-105 

finishing pigs could be approximated using straightforward mathematical relationships and 106 

could be used to deliver more optimised precision feeding and management strategies. 107 

 108 

2. Materials and methods 109 

There was no requirement for ethical approval, since the data originated from previous 110 

experiments, which were granted ethical approval on behalf of the original trial investigators. 111 

 112 

2.1. Data  113 

Empirical data, at age t (d), on daily feed intake, 𝐷𝐷𝐷𝐷𝐼𝐼𝑡𝑡 (kg/d), and bodyweight, 𝐵𝐵𝑊𝑊𝑡𝑡 (kg), of 114 

individual pigs from two distinct pig populations were obtained from two independent 115 

experiments conducted by: (1) INRAE at the UE3P unit (Pig Physiology and Phenotyping 116 

Experimental Facility, https://doi.org/10.15454/1.5573932732039927E12), Saint Gilles, 117 

France (Population A) and (2) Topigs Norsvin at their commercial testing facilities (Population 118 

B). Data from these two populations (Population A: 𝑛𝑛 = 32 pigs; Population B: 𝑛𝑛 = 30 pigs) 119 

covered the growth period from a typical post-nursery weight (approximately 35 kg) to a 120 

typical slaughter weight (approximately 110-120 kg). In each of the two experiments, pigs were 121 

kept in nearly commercial conditions (ad-libitum access to water, group housing, ambient room 122 

temperature of 20-24°C) and were offered two feeds successively, formulated to meet or exceed 123 

the expected population-average nutritional requirements prevailing at the time of the 124 

experiment (National Research Council, 1998). The change in feeds occurred when animals 125 

from each population reached approximately 65 kg. A detailed description of the experimental 126 

conditions utilised in the two aforementioned experimental trials could be found in Serviento, 127 

Brossard, and Renaudeau (2018) and Brossard et al. (2017). Descriptive statistics summarising 128 

both datasets are given in Table 1.  129 

 130 

2.2. Model structure and candidate functions 131 

To relate feed intake to 𝐵𝐵𝑊𝑊𝑡𝑡 rather than to time (Whittemore & Green, 2001; Black, 2009), 132 

and to reflect the fact that the feed consumed over a period of time should relate to changes in 133 

𝐵𝐵𝑊𝑊𝑡𝑡 and other unobserved mass flows (that is, excretion of solids and fluids, water 134 

consumption, etc.) over the same period (Filipe, Piles, Rauw, & Kyriazakis, 2019), we 135 

focused on the relationship between the cumulative 𝐵𝐵𝑊𝑊𝑡𝑡 gain and cumulative feed intake. For 136 

each animal we define period cumulative feed intake (𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡):  137 

https://doi.org/10.15454/1.5573932732039927E12
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𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 = �𝐷𝐷𝐷𝐷𝐼𝐼τ(𝑖𝑖)

𝑛𝑛(𝑡𝑡)

𝑖𝑖=1

  (kg)  (1) 138 

and period cumulative 𝐵𝐵𝑊𝑊𝑡𝑡 gain, (𝐶𝐶𝐺𝐺𝑡𝑡): 139 

𝐶𝐶𝐺𝐺𝑡𝑡 = ��𝐵𝐵𝑊𝑊τ(𝑖𝑖) − 𝐵𝐵𝑊𝑊τ(𝑖𝑖−1)�
𝑛𝑛(𝑡𝑡)

𝑖𝑖=1

= 𝐵𝐵𝑊𝑊𝑡𝑡 − 𝐵𝐵𝑊𝑊𝑡𝑡0   (kg), (2) 140 

where 𝑛𝑛(𝑡𝑡) is the number of observations by time 𝑡𝑡, and 𝜏𝜏(𝑖𝑖), �𝑖𝑖 = 0,1, … ,𝑛𝑛(𝑡𝑡)� are the 141 

specific ages, which we will call time points, when observations took place for a given 142 

animal; at 𝑡𝑡0 = 𝜏𝜏(0), BW was measured, but the feed consumption was not (note also that 143 

𝜏𝜏�𝑛𝑛(𝑡𝑡)� = 𝑡𝑡). 144 

 145 

For each animal, an animal-specific total number of observations, N, was collected at animal-146 

specific successive time points 𝜏𝜏(𝑖𝑖). We denote the time point of the last observation in the 147 

dataset as 𝑇𝑇 = 𝜏𝜏(𝑁𝑁) = 𝜏𝜏�𝑛𝑛(𝑇𝑇)�. Most observations were daily, 𝑑𝑑𝑡𝑡 =  𝜏𝜏(𝑖𝑖 + 1) − 𝜏𝜏(𝑖𝑖) = 1 d, 148 

but in rare instances the lags were greater than one d. In addition to the biological motivation 149 

above, the use of cumulative data was intended to reduce the effects of longitudinal random 150 

variation on the estimation and to lead to a better identification of a suitable mathematical 151 

representation of the feed intake-BW gain relationship.  152 

 153 

Next, we assumed that the relationship between 𝐶𝐶𝐺𝐺𝑡𝑡 and 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 has the general form: 154 

𝐶𝐶𝐺𝐺𝑡𝑡 = 𝑓𝑓(𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 ,𝜽𝜽) + 𝜖𝜖𝑡𝑡, (3) 155 

where 𝑓𝑓(𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 ,𝜽𝜽) is a trend function of 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 that depends upon a vector of unknown 156 

parameters 𝜽𝜽, and 𝜖𝜖𝑡𝑡 is an ‘error’, or ‘residual’ term representing random deviations from the 157 

deterministic temporal trend. These deviations could be due to e.g., changes in the 158 

environmental conditions, or health status, or measurement error. In the case of the DES 159 

model, the relationships are: 160 

𝐶𝐶𝐺𝐺𝑡𝑡 = 𝑔𝑔1�𝑡𝑡,𝜽𝜽𝟏𝟏,𝒕𝒕� + 𝜖𝜖1,𝑡𝑡 and 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 = 𝑔𝑔2�𝑡𝑡,𝜽𝜽𝟐𝟐,𝒕𝒕� + 𝜖𝜖2,𝑡𝑡  (4)161 

As is common practice, we chose the error term to be a stochastic process that assumes 162 

independence from one observation time to another, additivity to the trend and 163 

homoscedasticity; specifically, the error was assumed to be normally distributed, i.e. 164 

𝜖𝜖𝑡𝑡~𝑁𝑁(0,𝜎𝜎2),   (5)165 

with zero mean and constant variance, 𝜎𝜎2, with 𝜎𝜎2 estimated from the data. This simplified 166 
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error term could be modified if there was a priori belief or evidence supporting alternative 167 

assumptions. 168 

 169 

For the trend functions, we considered (Table 2) the linear model (Cangar, Aerts, Vranken, & 170 

Berckmans, 2006) and three candidate nonlinear models, namely: allometric (Filipe et al., 171 

2019), monomolecular (Spillman, 1924; France, Dijkstra, & Dhanoa, 1996; Schulin-Zeuthen 172 

et al., 2008) and rational (Powell et al., 2017). These models were chosen to capture the 173 

concavity of the empirical growth response to feed intake within the observed data range. The 174 

following sets of functions were rejected and not considered further: (i) polynomials of 175 

degree greater than one, since their parameters would not be biologically meaningful (Yin, 176 

Goudriaan, Lantinga, Vos, & Spiertz, 2003); (ii) piecewise functions due to complexities 177 

associated with identification and interpretation of switch points (Bolker, 2008); (iii) S-178 

shaped functions, since the relationship between cumulative BW gain and cumulative feed 179 

intake does not appear to follow a sigmoidal pattern during growth (Schulin-Zeuthen et al., 180 

2008; Kuhi et al., 2010); (iv) functions that are not monotonically increasing, since under 181 

normal conditions feed consumption should lead to an overall increase in body size during 182 

the growth period.  183 

 184 

2.3. Benchmark model: double exponential smoothing 185 

Double exponential smoothing is typically expressed as an iterative process involving the 186 

observed variable and latent (unobserved) states (Hyndman, Koehler, Snyder, & Grose, 187 

2002), which for 𝐶𝐶𝐺𝐺𝑡𝑡 is: 188 

𝐶𝐶𝐺𝐺𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 (6) 189 

𝑙𝑙𝑡𝑡 = 𝑙𝑙𝑡𝑡−1 + 𝑏𝑏𝑡𝑡−1 + 𝜙𝜙1𝜖𝜖𝑡𝑡  (7) 190 

𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡−1 + 𝜙𝜙2𝜖𝜖𝑡𝑡 , (8) 191 

where 𝑙𝑙𝑡𝑡 and 𝑏𝑏𝑡𝑡 are the level (i.e. the moving average values) and the change (i.e. either 192 

increasing or decreasing value) of the trend (Hyndman & Athanasopoulos, 2018) at time t, 193 

respectively, and were initialised as follows: 𝑙𝑙0 = 𝐶𝐶𝐺𝐺𝑡𝑡0 ,  𝑏𝑏0 = 𝐶𝐶𝐺𝐺𝑡𝑡1 − 𝐶𝐶𝐺𝐺𝑡𝑡0 (Wheelwright, 194 

Makridakis, & Hyndman, 1998).  195 

 196 

A similar process with its own specific parameters is assumed for 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡. Traditionally, 𝜖𝜖𝑡𝑡 is 197 

assumed to have the same distributional form as in equation (3). Note that the models in 198 
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equations (4, 6-8) are specified with time as independent variable, as opposed to the generic 199 

model from equation (3) which is specified in relation to 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡.  200 

 201 

2.4. Fitting models to the data 202 

The model in equation (3) for each candidate trend function (Table 2) and the benchmark 203 

model (equations (4, 6-8) and section 2.3), were fitted to the data of individual animals from 204 

each of the two distinct pig populations (section 2.1); inferences were made on an individual 205 

basis (i.e. separately for each pig in each population as in Filipe and Kyriazakis (2019)).  206 

 207 

To account for the uncertainty and correlations between the parameter estimates for each 208 

candidate model, we utilised a Bayesian inference approach, which outputs estimated 209 

distributions rather than point estimates of the parameters (Gelman et al., 2013). Sample 210 

parameter distributions were obtained using the Markov Chain Monte Carlo (MCMC) methods 211 

(Gamerman & Lopes, 2006) and more specifically the Metropolis-Hastings algorithm (Chib & 212 

Greenberg, 1995). The posterior inferences on parameters and forecasts were based on the 213 

MCMC samples generated using the MCMC engine rjags (Plummer, Stukalov, & Denwood, 214 

2019). Prior distributions for the parameters are given in the Supplementary Material, together 215 

with a justification for their choice for each candidate model. Four independent MCMC 216 

parameter chains, each containing 100,000 samples and initialised with different random 217 

starting parameter values, were generated, from which the first ten percent samples were 218 

discarded as burn-in (Raftery & Lewis, 1996; Plummer, Best, Cowles, & Vines, 2006). Burn-219 

in was applied to stabilise the sampling distribution and maximise the chances of reaching 220 

stationarity by reducing the influence of random starting values, which are required to initialise 221 

the algorithm. Posterior inference was carried out on the remaining 90,000 samples from each 222 

chain; no thinning was applied (Link & Eaton, 2012). Four MCMC chains, rather than one, 223 

were used as a way of assessing differences among the sampled parameter distributions and 224 

thus, was a first convergence diagnostic (Toft, Innocent, Gettinby, & Reid, 2007). The 225 

convergence of each sample chain was also assessed by investigating trace plots (after burn-226 

in) for each model parameter and by calculating the potential scale reduction factor, 𝑅𝑅� (Gelman 227 

& Rubin, 1992; Brooks & Gelman, 1998). Values of 𝑅𝑅� greater than 1.01 were considered to 228 

indicate poor convergence (Vehtari, Gelman, Simpson, Carpenter, & Bürkner, 2020). The 229 

posterior distribution of sampled parameters used for inference comprised every chain that 230 
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converged; when the four chains converged, it comprised 𝑁𝑁𝑠𝑠 = 4 x 90,000 = 360,000 sampled 231 

parameter values.     232 

 233 

2.5. Goodness of fit and model comparison 234 

To avoid ambiguity, we refer to a training dataset as past data that was utilised to estimate 235 

model parameters, while we refer to a validation dataset as subsequent data that was not utilised 236 

to estimate unknown model parameters (Armstrong, 2001). Consequently, fitting refers to the 237 

process of estimating unknown model parameters from a training dataset, while forecasting 238 

refers to the prediction of data in a validation dataset.  239 

 240 

The accuracy of the models quantified in terms of fitting a training dataset (section 2.5.1) or in 241 

terms of forecasting tested on a validation dataset (section 2.5.2) are presented for every 242 

individual pig in each of the two populations. In addition, for illustration, fitted and forecasted 243 

growth responses are presented for four pigs selected from each of the two populations. The 244 

four pigs per population were selected such that their observed growth trajectories contained: 245 

(a) no perturbation; (b) an early perturbation; (c) a mid perturbation; or (d) a late perturbation 246 

during the observation period. A perturbation is defined here as a short-lived, but evident 247 

deviation from the previous trend in 𝐶𝐶𝐺𝐺𝑡𝑡; these perturbations were identified among the 248 

individual pigs by detecting clusters of data points for which 𝐶𝐶𝐺𝐺𝑡𝑡 > 𝐶𝐶𝐺𝐺𝑡𝑡+1 and calculating the 249 

magnitude of the downward deviation. Fitted and forecasted growth responses (in terms of the 250 

posterior medians and posterior ninety-five percent credible intervals (95% CrIs; the Bayesian 251 

equivalent of confidence intervals)) for the remaining pigs in each of the two populations are 252 

presented in the Supplementary Material. 253 

 254 

2.5.1. Fitting evaluation 255 

For each individual pig, we assessed the goodness of fit of the models to a training dataset, 256 

through a Bayesian coefficient of determination, 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  based on the variance of the errors of 257 

the fitted model (Gelman, Goodrich, Gabry, & Vehtari, 2019): 258 

𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖=1𝑁𝑁 𝑌𝑌�τ(𝑖𝑖)

𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖=1𝑁𝑁 𝑌𝑌�τ(𝑖𝑖) + 𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖=1𝑁𝑁 �𝑌𝑌τ(𝑖𝑖) − 𝑌𝑌�τ(𝑖𝑖)�
(9) 259 

where 𝑌𝑌 are the 𝑁𝑁 observations from the given animal and 𝑌𝑌�   are the fitted model values 260 

corresponding to a single parameter point in the MCMC sample. The median of 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  over 261 
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the 𝑁𝑁𝑠𝑠 parameter points in the MCMC sample was reported as the estimated goodness of fit 262 

statistic. For 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 , values closer to one indicate a good fit to the data.  263 

 264 

Model comparison was made on the Watanabe Bayesian extension of the usual Akaike 265 

Information Criterion (𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶; (Watanabe, 2010, 2013)). 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 is given by the computed log 266 

pointwise posterior predictive density (𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑) plus an effective number of parameters (𝑒𝑒𝑓𝑓𝑙𝑙) to 267 

penalise overfitting (Gelman, Hwang, & Vehtari, 2014): 268 

𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 = −2(𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 − 𝑒𝑒𝑓𝑓𝑙𝑙) (10) 269 

where the computed 𝑙𝑙𝑙𝑙𝑙𝑙𝑑𝑑 =  ∑ log ( 1
𝑁𝑁𝑠𝑠 
∑ 𝑌𝑌�τ(𝑖𝑖))𝑁𝑁𝑠𝑠 
𝑠𝑠=1

𝑁𝑁
𝑖𝑖=1  and 𝑒𝑒𝑓𝑓𝑙𝑙 =  ∑ 𝑉𝑉𝑉𝑉𝑉𝑉𝑠𝑠=1

𝑁𝑁𝑠𝑠 log (𝑌𝑌�τ(𝑖𝑖))𝑁𝑁
𝑖𝑖=1 .  270 

 271 

To rank the models by the 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶, the following procedure was followed: (1) for each pig, we 272 

ordered the 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 values of the five models (from lowest to highest since lower 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 273 

indicates a better model); and (2) we counted how many times each model finished 1st, 2nd, …, 274 

5th across all pigs. 275 

 276 

2.5.2. Forecasting evaluation 277 

Here, we adopt common forecasting terminology from Bergmeir and Benítez (2012). Let the 278 

origin (𝑇𝑇0) be last time point in a training dataset, from which forecasts of future growth 279 

responses are generated. Let the forecast horizon (𝐻𝐻) be the time window, ranging between the 280 

first (𝑇𝑇0 +  𝑑𝑑𝑡𝑡) and the last time point (𝑇𝑇) in a validation dataset over which forecasts are 281 

made. We considered a typical dataset split (Hyndman, 2015) with the validation dataset 282 

consisting of the last 30 observations for each individual pig (approximately forty percent of 283 

all available data per pig). For most pigs all the lags between observations were one d and the 284 

maximum forecast horizon under consideration was 𝐻𝐻𝑚𝑚 = 30 d. Model testing was carried out 285 

on forecast horizons ranging from one d and 𝐻𝐻𝑚𝑚; in total, thirty different forecast horizons were 286 

considered.  287 

 288 

To quantify the forecast accuracy of each model in each forecast horizon, we calculated the 289 

Bayesian equivalent of the standard absolute percentage error, 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠, as an average of 290 

the model error over the posterior sample and over the data points in the forecast horizon: 291 

𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 =
1
H

�
1
𝑁𝑁𝑆𝑆
� |

𝑌𝑌τ(i) − 𝑌𝑌�τ(i)(𝜽𝜽𝑠𝑠)
𝑌𝑌τ(i)

 𝑁𝑁𝑆𝑆

𝑠𝑠=1

 |
  

𝑖𝑖∈[1,𝑁𝑁]: 𝑇𝑇0<τ(𝑖𝑖)≤𝑇𝑇0+𝐻𝐻

 (%) (11) 292 



11 
 

where the notation is as in equation (9), but 𝑌𝑌�τ(i) are forecasts rather than fitted values, and the 293 

sum over time points 𝑖𝑖 is limited to the forecast horizon 𝐻𝐻 within the validation dataset; 𝜽𝜽𝑠𝑠 are 294 

the MCMC sample parameters.  295 

 296 

To rank the models forecast accuracy by the 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠  we followed the following procedure: 297 

(1) for each pig we ordered the 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 values of the five models (from lowest to highest 298 

since values closer to zero indicate smaller predictive error) after averaging across the forecast 299 

horizons, 𝐻𝐻 =  1, … , 30 d; and (2) we counted how many times across all pigs each model 300 

scored 1st, 2nd, …, 5th.  301 

 302 

3. Results 303 

3.1. Fitting evaluation 304 

The goodness of fit of the models is quantified by the 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  and 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 in Figure 1 for every 305 

individual pig from the two populations and by the corresponding summary statistics in Table 306 

3. Overall, the 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  values across individual pigs were high, ranging from 0.970 to 1.00 307 

(Population A) and from 0.980 to 1.00 (Population B). These values suggest that all models 308 

fitted the data well. For each pig population, the 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 values resulted in the same fitting 309 

ranking of the models, which was, from the best fitting to the worst fitting (lowest to highest 310 

𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶): (1) DES; (2) allometric; (3) rational; (4) monomolecular and (5) linear. Full, 311 

tabulated model rankings for each individual pig are given in the Supplementary Material. 312 

Note that the summary statistics of the 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  and 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 across pigs (Table 3) indicate less 313 

variation in the goodness of fit among models within Population B than within Population A.  314 

 315 

Figure 2 focuses on how each model fitted growth responses to the four selected pigs per 316 

population, whose growth was subject to perturbations. For each population, all models fitted 317 

the four individual datasets well, but the following main differences were detected among 318 

pigs: (a) the linear model overestimated the growth responses for each of the four pigs per 319 

population – this overestimation was particularly apparent during the earlier and the later 320 

stages of the measurement period; and (ii) the linear model had considerably wider 95% CrIs 321 

than the other models for each of the four pigs per population (section 2.5). These differences 322 

were consistent across the two populations.   323 

 324 

3.2. Forecasting evaluation 325 
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The accuracy of forecasts over forecast horizons 𝐻𝐻 ranging from one to thirty d, is quantified 326 

by the 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 in Figure 3 for every individual pig from the two populations and by the 327 

corresponding summary statistics in Table 4. For every model, the overall forecast accuracy 328 

decreased with increasing forecast horizon, but this decrease was substantially greater for the 329 

linear and DES models (Table 4).  330 

 331 

Across the full range of forecast horizons, the allometric model ranked as the most accurate 332 

in forecasting the overall growth responses for 28/32 pigs, while the forecasts generated using 333 

the monomolecular, rational and linear models ranked as the most accurate for 2/32, 1/32 and 334 

1/32 pigs respectively (Population A: (Figure 3 A). Similar results were also obtained in the 335 

context of pigs within Population B (Figure 3 B), but there was more variability. Specifically, 336 

the allometric model ranked as the most accurate in forecasting the overall growth responses 337 

for 14/30 pigs across the full range of forecast horizons, while the forecasts generated using 338 

the monomolecular, rational and linear models ranked first for 9/30, 4/30 and 3/30 pigs 339 

respectively. Full, tabulated model rankings for each individual pig based on 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 are 340 

given in the Supplementary Material.  341 

 342 

Figure 4 visualises forecasted growth responses over forecast horizons 𝐻𝐻 ranging from one to 343 

thirty d for the selected four pigs per population, whose growth was subject to perturbations 344 

(section 2.5). For the pigs within Population A, the following differences in model forecasts 345 

across the full range of forecast horizons were identified: (1) no perturbation (Figure 4 A, 346 

panel I): the allometric and DES models generated adequate forecasts of the growth trajectory 347 

in terms of the median forecast. However, the DES model had considerably wider 95% CrIs, 348 

indicating greater uncertainty about the generated forecasts. Forecasts from the 349 

monomolecular and rational models were markedly similar and resulted in notable 350 

underestimation of the growth response; (2) an early perturbation (Figure 4 A, panel II): 351 

forecasts from all five models overestimated the growth response; (3) a mid perturbation 352 

(Figure 4 A, panel III): the allometric model generated the most accurate forecasts of the 353 

growth response. Forecasts from the linear model considerably overestimated the growth 354 

response, while forecasts from the remaining three models (monomolecular, rational and 355 

DES) underestimated the trend; (4) a late perturbation (Figure 4 A, panel IV): forecasts of the 356 

growth response from the allometric model were the most accurate. Forecasts from the linear 357 
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and DES models both overestimated the growth trajectory. Contrastingly, forecasts generated 358 

using the monomolecular and rational models underestimated the trend.  359 

 360 

For the pigs within Population B, the following differences in model forecasts across the full 361 

range of forecast horizons were identified: (5) no perturbation (Figure 4, panel V): forecasts 362 

using the allometric, monomolecular and rational models were comparable and were more 363 

accurate than forecasts from the DES model which underestimated the growth response and 364 

forecasts from the linear model which overestimated the growth response; (6) an early 365 

perturbation (Figure 4, panel VI): all five models under consideration generated similar 366 

forecasts of the growth response, but the DES model again had considerably wider 95% CrIs 367 

compared to other models; (7) a mid perturbation (Figure 4, panel VII): forecasts from the 368 

linear model considerably overestimated the growth response, while forecasts from the DES 369 

model underestimated the growth response. Forecasts from the three nonlinear models 370 

(allometric, monomolecular and rational) were more accurate than the linear forecasts; and 371 

(8) a late perturbation (Figure 4, panel VIII): nonlinear forecasts from the allometric, 372 

monomolecular and rational models were more accurate than forecasts generated using the 373 

linear models. Forecasts from the DES model underestimated the growth response, while 374 

forecasts from the linear model overestimated the trend.  375 

 376 

4. Discussion 377 

The main contributions of this study in the context of precision feeding and management of 378 

pigs are twofold: (i) to comprehensively evaluate the existing models and the alternative 379 

nonlinear models based on straightforward mathematical relationships that approximate the 380 

underlying growth trend; and (ii) to implement an alternative, more informative framework 381 

for parameter estimation that is expected to generate more robust forecasts for any chosen 382 

model. We used two datasets to apply our methodology to address whether similar 383 

conclusions could be drawn from pig populations that differed substantially, especially in 384 

their growth and feed conversion efficiency characteristics.  385 

 386 

4.1. Criteria for model selection: ability to fit vs ability to forecast 387 

On the basis of our statistical analysis of individual feed consumption and BW data from 388 

growing-finishing pigs, we identified clear differences in the overall classification of models. 389 

These differences depended on whether model accuracy was measured in terms of fitting or 390 

forecasting. Specifically, our findings suggest that a good fit to a training dataset does not 391 
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necessarily translate into accurate forecasts of individual growth responses in a validation 392 

dataset. Accordingly, while all models under consideration seemed to fit the observed data 393 

well, the nonlinear models generated markedly more accurate forecasts of growth responses 394 

than the linear models across all forecast horizons. For every model, the overall forecast 395 

accuracy decreased with increasing forecast horizon, but this decrease was substantially 396 

greater for the linear models.   397 

  398 

There are two key implications associated with the aforementioned findings. Firstly, testing 399 

the extrapolative ability of models based solely on their goodness of fit could be misleading. 400 

While this lack of connection between quality of the fitting and quality of the forecasting is 401 

not unusual and has been documented in the wider forecasting literature, particularly in 402 

economics (Meese & Rogoff, 1983; Inoue & Kilian, 2005; Silvey, 2007; Rossi, 2013), it has 403 

not been previously raised in animal science. Overconfidence in fitting is typically associated 404 

with overfitting short-term dynamics and does not guarantee capturing of the underlying 405 

mechanisms generating the data (Clark, 2004), which is essential in forecasting a trend. 406 

Secondly, care should be taken when models are compared within- and across- studies based 407 

on differing evaluation criteria, as different metrics could often lead to conflicting inferences 408 

and conclusions.   409 

 410 

4.2. Forecasting ability of the considered models  411 

Our data-based results indicated that there were considerable disparities between models in 412 

their ability to forecast individual growth responses, with the nonlinear models generating 413 

more accurate forecasts compared to the linear approaches for all forecast horizons ranging 414 

from one to thirty d (Figure 3). The lower level of forecast accuracy of the linear models 415 

compared to the nonlinear models was more pronounced for longer-term forecast horizons, 416 

with modest variation among pigs. Our study demonstrates that it may be quantitatively 417 

acceptable to use these linear response models in the context of (very) short forecast 418 

horizons, such as one or two d, which are more frequently utilised in precision feeding 419 

because the magnitude of the error is constrained. However, our study also demonstrates that 420 

alternative models are also available without invaliding the former approaches for short-term 421 

forecasting but allowing for more accuracy and greater reliability for short-term, as well as 422 

long-term forecasting. These findings highlight the necessity to implement nonlinear 423 

forecasting approaches, particularly in the context of precision management strategies, which 424 

could include scheduling processes associated with the purchase of raw feed ingredients, pen 425 
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allocation and transportation or slaughter of animals through end-BW prediction. The more 426 

sustained accuracy of the nonlinear models offers potential multipurpose capacity for both 427 

precision feeding and management purposes, and could also improve their application, as it 428 

would reduce the need for different models in an eventual decision support tool where 429 

different forecast horizons are considered.  430 

 431 

While the linear model relating cumulative feed intake to cumulative BW gain model 432 

overestimated growth trends of most pigs, the other linear approach, DES, which predicts 433 

growth responses solely as a weighted moving average over time (Holt, 1957; Brown, 1959) 434 

displayed a less systematic inaccuracy, with notable trend deviations in both directions (up or 435 

down). Furthermore, when longer forecast horizons, such as ones exceeding one week were 436 

considered, the DES model typically generated forecasts with very large uncertainty intervals 437 

(Figure 4), which were low in information, and in biological plausibility (predicting either 438 

excessively large gains or excessively large losses). The concurrence of an excellent fitting 439 

and a comparatively poor forecast accuracy indicates that this model can overfit the data by 440 

extracting excessive amounts of noise, at the cost of reducing its ability to forecast the future 441 

trend. This inherent construction of DES that trades-off short-term flexibility for long-term 442 

unreliability could potentially limit its usefulness in the context of precision feeding and 443 

management. Thus, while DES have been reported to produce satisfactory accuracy for one d 444 

forecasts in experimental assessments of the proposed precision feeding strategies (Andretta 445 

et al., 2014; Andretta et al., 2016), caution should be exercised when using this model in 446 

scenarios where forecast horizons exceed one d.  447 

 448 

To express cumulative BW gains as a function of cumulative feed intake, rather than time  449 

(Whittemore & Green, 2001; Black, 2009), as it is the case in the DES model, and to 450 

overcome limitations of the linear model, we developed alternative nonlinear models relating 451 

these two traits. The accuracy of forecasts of the monomolecular and rational models was 452 

often very similar and almost indistinguishable for many individual animals from the two 453 

populations. Both models typically underestimated growth responses for most pigs. While the 454 

use of the monomolecular model to relate feed intake to BW is relatively common in 455 

monogastric livestock research (Spillman, 1924; France et al., 1996; Schulin-Zeuthen et al., 456 

2008; Kuhi et al., 2010), the use of the rational model is less so (Powell et al., 2017). 457 

However, these two models are mathematically similar being bounded by an asymptote, 458 

which is the BW at maturity. As commercial growing-finishing pigs do not approach their 459 
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mature size, which have been reported to be up to three-four times larger than the typical size 460 

at slaughter (Strathe, Danfær, Sørensen, & Kebreab, 2010), the asymptotic feature of these 461 

two models may not be necessary (van Milgen et al., 2008; Filipe, Leinonen, et al., 2018). 462 

Particular concerns relate to considerable technical challenges and uncertainty in the 463 

estimation of the asymptote from the usually available data and a general ambivalence on 464 

whether these models can adequately approximate growth responses prior to the point of 465 

fastest growth (Filipe et al., 2019). Thus, forecasts of growth responses obtained using these 466 

models may not be optimal, although they were more accurate than those obtained using the 467 

two aforementioned linear models.  468 

 469 

Furthermore, on the basis of our statistical analyses, the allometric cumulative feed intake-470 

cumulative BW gain model generated the most accurate forecasts of the growth responses for 471 

most pigs in the two populations. While the exact knowledge of the data-generating process 472 

could be questioned (Brooks, Gelman, Jones, & Meng, 2011), the allometric model seemed to 473 

reliably approximate the underlying trend of the available data, which is consistent with the 474 

hypothesis and demonstration of the allometric relationship across multiple species in Filipe 475 

et al. (2019). Thus, this model seems to offer a relatively straightforward and reliable way of 476 

forecasting individual growth responses both in the short-term and long-term.  477 

 478 

4.3. Forecasting ability under growth perturbations 479 

Our findings demonstrated that the timing of a perceived short-lived growth perturbation, 480 

caused e.g. by infrequent, temporary physiological and/or environmental disturbances 481 

(Kyriazakis, 1997; Kyriazakis & Tolkamp, 2011) could impact the ability to reliably forecast 482 

individual growth responses in different ways. Based solely on a subset of illustrative 483 

animals, whose growth trajectories were examined because they were perturbed, we found 484 

the following: when a single, short-lived growth perturbation occurred early in the training 485 

dataset (and away from the time point of the last known value, from which the forecasts were 486 

performed), all considered models were largely able to cope with this unexpected deviation 487 

from the trend. Contrastingly, when a perceived single, short-lived growth perturbation 488 

occurred late in the training dataset (and near the time point of the last known value, from 489 

which the forecasts were performed), the forecast accuracy of all models was reduced, but to 490 

different extents. Specifically, the DES model generated the least reliable forecasts leading to 491 

a marked underestimation of growth responses, probably related to the fact that this approach 492 

mainly relies on the most recent past observations to inform the trend forecasts, which can be 493 
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unduly influenced by perturbations. While it is possible to give more weight to older 494 

observations in the DES model (Young, 2012) to negate, at least partly, the possible adverse 495 

effects of short-term perturbations on the estimation (Hauschild et al., 2012), this typically 496 

requires manual adjustment of the unknown tuning parameters.. Thus, the DES model and 497 

other extensions of the exponential smoothing methods (Hyndman et al., 2002), as well as 498 

models from a closely related family of autoregressions and moving averages, commonly 499 

referred as ARIMAs (Shumway & Stoffer, 2017), should be used with caution for precision 500 

feeding and management since they can be unduly influenced by single, short-lived growth 501 

disturbances occurring near the forecast horizon.  502 

 503 

The examined approaches were shown to cope with relatively short-lived (or with constant 504 

level, diet driven) growth perturbations, but as they stand, are not specifically designed to 505 

forecast under considerable growth retardation and subsequent compensation, which could be 506 

observed in pigs kept in suboptimal conditions facing multiple physiological, infectious or 507 

environmental challenges (Sandberg, Emmans, & Kyriazakis, 2006; Kyriazakis & Houdijk, 508 

2007). Recently, an approach to quantify individual feed intake responses of growing pigs to 509 

such perturbations was developed by Nguyen-Ba, van Milgen, and Taghipoor (2019), but this 510 

research area still warrants further attention. 511 

 512 

4.4. Bayesian methodology in the context of precision feeding and management 513 

To our knowledge, precision feeding and management strategies in pigs have not yet fully 514 

utilised Bayesian estimation methods for fitting and forecasting. Traditionally, the estimation 515 

of parameters from data in this area is carried out using maximum likelihood (Myung, 2003). 516 

However, an estimation framework constructed on Bayesian principles may offer important 517 

advantages, including: (i) Bayesian point estimates based on the median values of posterior 518 

distributions are generally more robust than modal point estimates, such as those generated 519 

by maximum likelihood (Beerli, 2005; Filipe & Kyriazakis, 2019); (ii) Bayesian probabilistic 520 

outputs translate into robust uncertainty statistics that inform on the reliability of the 521 

predictions for decision making; this uncertainty is due to the data and potential adequacy of 522 

the model in capturing the underlying processes (Bijak, 2010; Bijak & Bryant, 2016); (iii) 523 

Bayesian methodology, through the usage of the MCMC algorithms (Dunson, 2001) is 524 

particularly suitable for data which is sparse or incomplete, which may be relevant in cases 525 

where there are minor malfunctions of the data collection devices or where there are issues 526 

obtaining regular measurements from some animals. These aforementioned aspects of 527 
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Bayesian estimation methods make them particularly suitable for precision feeding and 528 

management purposes, as they could provide more accurate forecasts of growth responses 529 

and could lead to a more robust estimation of the expected nutrient requirements, while also 530 

informing on their reliability through uncertainty statistics. Thus, an implementation of these 531 

Bayesian principles could further optimise precision feeding and management strategies.  532 

 533 

5. Implications and future research 534 

We provided an in-depth comparison of alternative approaches to forecasting individual 535 

growth or intake responses that could be utilised in the context of precision feeding and 536 

management of growing-finishing pigs. It is likely that our approach may be of relevance to 537 

other livestock species where precision feeding and management could be applied (González, 538 

Kyriazakis, & Tedeschi, 2018). Specifically, the methods described in this paper could be 539 

particularly relevant in the context of optimising feed efficiency and could contribute towards 540 

increasing profitability of commercial farming operations. These methods could also be 541 

useful for preventing obesity in companion and captive animals. It is also likely that the 542 

developed approaches could be useful in the context of genetic selection (Knol, Nielsen, & 543 

Knap, 2016). For example, Filipe et al. (2019) suggested that the variation in the parameters 544 

of the allometric model is likely to be (at least partially) of genetic origin  and could 545 

potentially be heritable.  546 

 547 

Overall, the utilisation of Bayesian methods for estimation, particularly in the context of 548 

nonlinear forecasting of individual pig performances has the potential to overcome some of 549 

the limitations of the current approaches implementing linear forecasting functions. However, 550 

further extensions to our Bayesian approach developed in this study are possible and could be 551 

the subject of the future research. First, the final estimated population-level distribution of 552 

individual traits was not fully Bayesian, as it was based on point (median) estimates from the 553 

individual posterior distributions. As such, these estimates did not contain uncertainty about 554 

the median, but are expected to be more accurate than point estimates based on maximum 555 

likelihood (Filipe and Kyriazakis 2019). This approach was used for simplicity, but a full 556 

Bayesian approach would account fully for uncertainty in the pig phenotypes. In the context 557 

of our paper this was appropriate given the relative uniformity of the pig populations. Second, 558 

instead of relying on forecasts generated from a single model, Bayesian model averaging 559 

(Eklund & Karlsson, 2007) to obtain forecast combinations of multiple models (Winkler & 560 

Makridakis, 1983) could be applied. Such forecast combinations have been reported to 561 
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outperform other types of forecasts from single models (Barrow & Kourentzes, 2016; 562 

Makridakis, Spiliotis, & Assimakopoulos, 2018).  563 

 564 

An alternative framework for forecasting individual growth responses to nutrient supplies 565 

could be based on machine learning algorithms, such as neural networks (Kotsiantis, 566 

Zaharakis, & Pintelas, 2006; Dey, 2016). Such methods have been previously utilised in the 567 

context of growth control and prediction of groups of broiler chickens (Demmers et al., 2018; 568 

Johansen, Bendtsen, Jensen, & Mogensen, 2019), but their application in precision feeding 569 

systems of individual pigs has been so far limited (Brossard et al., 2017).  570 

 571 
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Sample 
size Breed Sex 

Initial 
average 
BW (kg) 

Final 
average 

BW 
(kg) 

Trial 
length 

(d) 

ADFI 
(kg/d) 

ADG 
(kg/d) 

Population A 

32 (LW x L) x P 
Barrows 

and 
gilts 

35.2    
(4.70) 

118 
(9.87) 

81     
(-) 

2.80 
(0.275) 

1.03 
(0.0911) 

Population B 

30 Non-commercial Boars 32.9   
(0.574) 

109 
(4.49) 

74   
(9) 

1.91 
(0.239) 

1.04 
(0.0967) 

Table 1. Descriptive statistics (mean (SD)) of experimental data collected on growing-584 

finishing pigs from two distinct populations. Dataset A corresponds to a trial by the INRAE 585 

at the UE3P unit (Pig Physiology and Phenotyping Experimental Facility, 586 

https://doi.org/10.15454/1.5573932732039927E12), Saint Gilles, France. Dataset B 587 

corresponds to a trial by Topigs Norsvin at their commercial facilities.  588 

Abbreviations: LW, Large White; L, Landrace; P, Pietrain; BW, bodyweight; ADFI, average 589 

daily feed intake; ADG, average daily gain; d, days 590 

  591 

https://doi.org/10.15454/1.5573932732039927E12
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Function name Equation Parameter description 

Allometric 𝐶𝐶𝐺𝐺𝑡𝑡 = 𝜃𝜃1𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡
𝜃𝜃2 + 𝜃𝜃3 𝜃𝜃1 −  proportionality parameter associated 

with feed conversion (Filipe et al., 2019) 

𝜃𝜃2 −  exponent varying shape of the curve 

(Filipe et al., 2019) 

𝜃𝜃3 −  vertical shift operator (y-axis 

intercept) accounting for the cumulative 

measurement bias 

Linear 𝐶𝐶𝐺𝐺𝑡𝑡 = 𝜃𝜃1𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡 + 𝜃𝜃3 𝜃𝜃1 − proportionality parameter associated 

with feed conversion ratio (slope of the 

line) (Cangar et al., 2006) 

𝜃𝜃3 −  vertical shift operator (y-axis 

intercept) accounting for the cumulative 

measurement bias 

Monomolecular 
𝐶𝐶𝐺𝐺𝑡𝑡 = 𝜃𝜃2 �1 − 𝑒𝑒

𝐶𝐶𝐶𝐶𝐼𝐼𝑡𝑡
 𝜃𝜃1 � + 𝜃𝜃3 

𝜃𝜃1 − rate of approach to the asymptote 

(Spillman, 1924; France et al., 1996; 

Schulin-Zeuthen et al., 2008) 

𝜃𝜃2 − the upper asymptote corresponding to 

the size at maturity (Spillman, 1924; France 

et al., 1996; Schulin-Zeuthen et al., 2008) 

𝜃𝜃3 − vertical shift operator (y-axis 

intercept) accounting for the cumulative 

measurement bias 

Rational 
𝐶𝐶𝐺𝐺𝑡𝑡 =  

𝜃𝜃2𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡

1 + 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡
𝜃𝜃1

+ 𝜃𝜃3 𝜃𝜃1 − x-axis scaling  

𝜃𝜃2 − y-axis scaling 

𝜃𝜃1𝜃𝜃2 − product of parameters 

corresponding to the size at maturity  

𝜃𝜃3 −  vertical shift operator (y-axis 

intercept) accounting for the cumulative 

measurement bias 

Table 2. Selected models relating cumulative feed intake (kg) to cumulative bodyweight gain 592 

(kg)  593 

Abbreviations: 𝐶𝐶𝐺𝐺𝑡𝑡, cumulative bodyweight gain (kg); 𝐶𝐶𝐷𝐷𝐼𝐼𝑡𝑡, cumulative feed intake (kg) 594 
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 Population A Population B 

Model 𝑹𝑹𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐  𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 𝑹𝑹𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝟐𝟐  𝑾𝑾𝑾𝑾𝑾𝑾𝑾𝑾 

Allometric 0.998    
(0.00112) 

166      
(64.6) 

0.998    
(0.00110) 

143      
(49.3) 

Monomolecular 0.998 
(0.00108) 

191      
(39.2) 

0.998   
(0.000600) 

143      
(39.7) 

Rational 0.998 
(0.00107) 

189      
(40.9) 

0.998   
(0.000600) 

143      
(37.8) 

Linear 0.990  
(0.0072) 

323      
(68.8) 

0.995    
(0.00250) 

218       
(36.9) 

DES 1.00    
(0.0002) 

103      
(52.7) 

1.00    
(0.000275) 

89.6      
(26.6) 

Table 3. Fitting evaluation of candidate models relating cumulative feed intake (kg) or time 595 

(d) to cumulative bodyweight gain (kg): median (IQR) of the calculated 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  and 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 596 

for each model. Each model was fitted separately to each training dataset of each individual 597 

pig (Population A: 𝑛𝑛 = 32 pigs; Population B: 𝑛𝑛 = 30 pigs). For 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 , values closer to one 598 

indicate that the model provides good fit to the data. For 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶, lower 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 indicates a 599 

model that fits better and is more parsimonious. For description of the dataset see Table 1. 600 

Abbreviations: 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 , Bayesian coefficient of determination; 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶, Watanabe extension of 601 

the Akaike Information Criterion; DES, double exponential smoothing; d, days 602 

 603 

  604 
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 𝑴𝑴𝑾𝑾𝑴𝑴𝑬𝑬𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩  (%) 
Model H = 1 H = 5 H = 10 H = 20 H = 30 

Population A 

Allometric 1.01 (0.526) 1.28 (0.855) 1.82 (1.75) 1.89 (1.79) 2.07 (3.25) 

Monomolecular 1.16 (0.631) 1.51 (1.36) 3.72 (2.49) 5.09 (3.69) 7.87 (4.17) 

Rational 1.22 (1.07) 1.61 (1.55) 3.83 (2.25) 4.66 (4.43) 6.64 (4.14) 

Linear 3.83 (1.52) 4.51 (2.34) 4.86 (3.25) 8.35 (3.96) 11.0 (5.81) 

DES 1.47 (1.04) 4.69 (1.64) 9.29 (3.00) 20.2 (5.59) 31.3 (9.39) 

Population B 

Allometric 1.30 (0.853) 1.84 (1.22) 1.77 (1.49) 2.38 (2.83) 2.98 (3.72) 

Monomolecular 1.33 (1.16) 1.95 (1.77) 1.77 (2.72) 2.86 (3.79) 4.66 (5.51) 

Rational 1.38 (0.898) 2.07 (2.02) 1.93 (2.34) 3.56 (3.55) 4.77 (5.86) 

Linear 1.69 (1.13) 2.13 (2.62) 3.04 (2.18) 5.35 (2.81) 6.87 (4.53) 

DES 1.90 (1.42) 6.44 (2.94) 12.4 (5.83) 24.9 (10.1) 36.4 (15.0) 

Table 4. Forecasting evaluation of candidate models relating cumulative feed intake (kg) or 605 

time (d) to cumulative bodyweight gain (kg): median (IQR) of the calculated 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 (%) 606 

for each model. Each model was fitted separately to each training dataset of each individual 607 

pig (Population A: 𝑛𝑛 = 32 pigs; Population B: 𝑛𝑛 = 30 pigs), followed by trend forecasts 608 

tested on each validation dataset of each individual pig. Forecasts were generated over 609 

forecast horizons 𝐻𝐻 ranging from 1 to 30 d. For 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠, percentage values closer to zero 610 

indicate smaller predictive error.  611 

Abbreviations: 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠, Bayesian equivalent of the percentage error, characterised in 612 

terms of its median value; H, time window for which forecasts are made (for most pigs all 613 

lags between observations were 1 d, therefore H corresponds to number of d ahead for which 614 

forecasts are made); DES, double exponential smoothing; d, days  615 
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Figure 1. Fitting evaluation of candidate models relating cumulative feed intake (kg) or time 616 

(d) to cumulative bodyweight gain (kg): goodness of fit and comparison of models in terms 617 

of the (I) individual 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  values for the Population A pigs; (II) individual 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2  values for 618 

the Population B pigs; (III) individual 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 values for the Population A pigs; (IV) 619 

individual 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 values for the Population B pigs. Each model was fitted separately to each 620 

training dataset of each individual pig (Population A: 𝑛𝑛 = 32 pigs; Population B: 𝑛𝑛 = 30 621 

pigs). For 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 , values closer to one indicate that the model provides good fit to the data. 622 

For 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶, lower 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶 indicates a model that fits better and is more parsimonious. 623 

Abbreviations: 𝑅𝑅𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠2 , Bayesian coefficient of determination; 𝑊𝑊𝑊𝑊𝐼𝐼𝐶𝐶, Watanabe extension of 624 

the Akaike Information Criterion; d, days 625 

  626 
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Figure 2. Fitting evaluation of candidate models relating cumulative feed intake (kg) or time 627 

(d) to cumulative bodyweight gain (kg): fitted growth responses, in terms of cumulative 628 

bodyweight gain (kg) of the selected pigs, whose growth trajectories were assessed to 629 

contain: (A) for Population A (I) no-perturbation, (II) an early-perturbation, (III) a mid-630 

perturbation, (IV) a late-perturbation, and (B)  for Population B (V) no-perturbation, (VI) an 631 

early-perturbation, (VII) a mid-perturbation, (VIII) a late-perturbation. Perturbations were 632 

identified among the individual pigs by detecting clusters of data points for which 𝐶𝐶𝐺𝐺𝑡𝑡 >633 

𝐶𝐶𝐺𝐺𝑡𝑡+1 and calculating the magnitude of the downward deviation. Each model was fitted 634 

separately to each training dataset of each individual pig. Posterior model fit is summarised 635 

by median ± 95% CrIs.   636 

Abbreviations: 𝐶𝐶𝐺𝐺𝑡𝑡, cumulative bodyweight gain at time 𝑡𝑡; 95% CrIs, 95% credible intervals; 637 

Monom, monomolecular; DES, double exponential smoothing; d, days638 
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Figure 3. Forecasting evaluation of candidate models relating cumulative feed intake (kg) or 639 

time (d) to cumulative bodyweight gain (kg): the accuracy of cumulative bodyweight gain 640 

forecasts over forecast horizons 𝐻𝐻 ranging from 1 to 30 d, presented as 100 −𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 641 

(%). Each model was fitted separately to each training dataset of each individual pig 642 

(Population A: 𝑛𝑛 = 32 pigs; Population B: 𝑛𝑛 = 30 pigs), followed by trend forecasts tested 643 

on each validation dataset of each individual pig. Large 100 −𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠 values indicate 644 

better forecast accuracy relative to smaller values.  645 

Abbreviations: 𝑀𝑀𝑊𝑊𝑀𝑀𝐸𝐸𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑠𝑠,  Bayesian equivalent of the percentage error, characterised in 646 

terms of its median value; d, days  647 
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Figure 4. Forecasting evaluation of candidate models relating cumulative feed intake (kg) or 648 

time (d) to cumulative bodyweight gain (kg): fitted and forecasted growth responses, in terms 649 

of cumulative bodyweight gain (kg), of the selected pigs, whose growth trajectories were 650 

assessed to contain: (A) for Population A (I) no-perturbation, (II) an early-perturbation, (III) a 651 

mid-perturbation, (IV) la ate-perturbation, and (B)  for Population B (V) no-perturbation, 652 

(VI) an early-perturbation, (VII) a mid-perturbation, (VIII) a late-perturbation. Perturbations 653 

were identified among the individual pigs by detecting clusters of data points for which 654 

𝐶𝐶𝐺𝐺𝑡𝑡 > 𝐶𝐶𝐺𝐺𝑡𝑡+1 and calculating the magnitude of the downward deviation. Each model was 655 

fitted separately to each training dataset of each individual pig, followed by trend forecasts 656 

tested on each validation dataset of each individual pig. Forecasts were generated over 657 

forecast horizons ranging from 1 to 30 d. Vertical dotted lines mark the forecast origin. 658 

Posterior model fit is given in terms of median ± 95% CrIs.  659 

Abbreviations: 𝐶𝐶𝐺𝐺𝑡𝑡, cumulative bodyweight gain at time 𝑡𝑡; 95% CrIs, 95% credible intervals; 660 

Monom, monomolecular; DES, double exponential smoothing; d, days 661 
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