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A B S T R A C T   

The forest decline in tropical areas is one of the largest global environmental threats as the growth of both global 
population and its needs have put an increasing pressure on these ecosystems. Efforts are ongoing to reduce 
tropical deforestation rates. Earth observations are increasingly used to monitor deforestation over the whole 
equatorial area. Change detection methods are mainly applied to satellite optical images which face limitations 
in humid tropical areas. For instance, due to frequent cloud cover in the tropics, there are often long delays in the 
detection of deforestation events. Recently, detection methods applied to Synthetic Aperture Radar (SAR) have 
been developed to address the limitations related to cloud cover. In this study, we present an application of a 
recently developed change detection method for monitoring forest cover loss from SAR time-series data in 
tropical zone. The method is based on the Cumulative Sum algorithm (CuSum) combined with a bootstrap 
analysis. The method was applied to time-series of Sentinel-1 ground range detected (GRD) dual polarization 
(VV, VH) images forming a dataset of 60 images to monitor forest cover loss in a legal forest concession of the 
Democratic Republic of Congo during the 2018–2020 period. A cross-threshold recombination was then con-
ducted on the computed maps. Evaluated against reference forest cut maps, an overall accuracy up to 91% and a 
precision up to 75% in forest clear cut detection was obtained. Our results show that more than 60% of forest 
disturbances were detected before the PlanetScope-based estimated date of cut, which may suggest the capacity 
of our method to detect forest degradation.   

1. Introduction 

The tropical forests, which play a critical role in the global climate 
regulation by recycling ~2.1 Gt CO2 per year (Federici et al., 2015; 
Nunes et al., 2020), are being deforested at increasing rates. In Africa, 
the forest losses in carbon stocks are driven by multiple factors, 
including legal or illegal selective logging causing degradations, or cuts 
to fulfil the agricultural needs of local populations (Contreras-Hermo-
silla et al, 2000). Optical satellite remote sensing is commonly used to 
monitor forest cover changes (e.g., Global Forest Watch (Bullock et al., 
2020; Hansen et al., 2013; Tyukavina et al., 2018)). Yet, the monitoring 
systems based on this kind of images are likely to provide inaccurate 

information over regions strongly affected by cloud cover (Hansen et al., 
2016). They were also shown to be less robust in regions where forest 
exhibits strong seasonal variability in the canopy water content 
(Hamunyela et al., 2017). Studies based on the merging of optical and 
Synthetic Aperture Radar (SAR) datasets, showed a better temporal 
accuracy in the detection of forest cuts by accounting for the seasonal 
changes in the vegetation structure but at the costs of a high computa-
tional complexity (Hamunyela et al., 2020). With the advances in the 
spatial and temporal resolutions of the satellite observations, the 
application of change detection algorithms to satellite data requires 
increasing computational platform performances. Some change detec-
tion algorithms such as the RADD and JJFAST alerts (Watanabe et al., 
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2021; FAST, 2021) are currently operational on powerful platforms such 
as Google Earth Engine, (see Reiche et al., 2021 for instance). As the 
revisit time of the satellite observations decreases, change detection 
algorithms based on temporal analysis are increasingly used (Duveiller 
et al., 2008; Hamunyela et al., 2016; Souza et al., 2013). Among them, a 
change detection algorithm analysing the temporal stability of the signal 
through the deviation of a variable to its mean – the cumulative Sum 
(CuSum) – has been used in environmental studies, including for forest 
monitoring: (Kucera et al., 2007; Manogaran and Lopez, 2018; Ruiz- 
Ramos et al., 2020). The CuSum is a change detection method based 

on statistics to analyse multi-temporal processes, as it allows the 
detection of any type of variation (slow, abrupt) as long as it has an 
impact on the trend of the time-series. This method has been found to be 
less affected by the seasonal variability of vegetation and thus more 
performant to detect abrupt changes in the vegetation structure due to 
forest cut (Ruiz-Ramos et al., 2020). 

To monitor forest cover changes, many studies have used pairwise or 
single epoque image comparison or multi-temporal averages for 
detecting changes between two dates (Antropov et al., 2016; Bouvet 
et al., 2018; Joshi et al., 2015; Lievens et al., 2017; Reiche et al., 2018b; 

Fig. 1. Study site: (a) global view including DRC borders, (b) global view including DRC borders with its forest concessions. The study zone is indicated by the red 
pinpoint. PlanetScope 3 m surface reflectance image over the study site dated from (c) 2018–01-06 and (d) 2019–11-29. (For interpretation of the references to color 
in this figure legend, the reader is referred to the web version of this article.) 
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Rüetschi et al., 2019; Tanase et al., 2015; 2010). These methods have 
known limits: there is often a delay between a change in the vegetation 
structure and/or cover and a change in the SAR backscattering. Due to 
the SAR sensitivity to changes in the vegetation/soil moisture content 
and surface roughness, vegetation change is difficult to detect or may be 
detected with a delay (Belenguer-Plomer et al., 2019; Reiche et al., 
2018a; Ruiz-Ramos et al., 2018; Watanabe et al., 2018). Moreover, if the 
revisit time of the satellite is too low, vegetation may partially recover 
after being cut, hindering the detection of the cut (Numbisi and Van 
Coillie, 2020; Reiche et al., 2021). Though L-band SAR images can be 
used for an accurate monitoring of the deforestation in tropical envi-
ronments e.g., (Takeuchi et al., 2001; Whittle et al., 2012), they are not 
easily available and often have a lower temporal resolution. The use of 
time-series with a high temporal resolution such as Sentinel-1 allows 
early detection and permits to detect changes at different time scales and 
to reduce the noise in the backscatter signal due to speckle or temporary 
changes. 

In this study, C-band SAR observations from Sentinel-1 A satellite 
were used to monitor deforestation and other forest cover changes in the 
living area of a legal forest concession of the Democratic Republic of 
Congo (DRC). This satellite, launched in 2014, has a 12-day revisit 
period over the DRC and a spatial resolution of 20 m × 22 m, allowing to 
monitor changes in vegetation with a high resolution in both space and 
time. We evaluated the use of the CuSum algorithm (Manogaran and 
Lopez, 2018) applied to dual polarization VV-VH observations, taking 
advantage of the high capability of CuSum to detect vegetation cover 
change (Ruiz-Ramos et al., 2020). Results based on the combination of 
different configurations of the CuSum approach are analysed and 
optimal configurations are presented and discussed. 

2. Study site and data 

2.1. Study site 

For the investigation of forest change in the Congo Basin by devel-
oping using our approach, we chose to monitor the forest near the living 
area of a forest concession where degradation and deforestation are 
likely to occur. The concession is the Industrie Forestière du Congo 
(IFCO) COD 018/11 forest concession (Alibuku), located within the 
North-Eastern region of Kisangani in the Democratic Republic of Congo 
(DRC), in central equatorial Africa (Fig. 1). The climate of the region is 
characterised by two wet seasons, reaching their peaks in terms of 
rainfall respectively at the end of March / early April and end of 
September / early October and two dry seasons per year. The maps of 
the forest concessions are available at the DRC forest atlas (Forest Atlas, 
2016) available at https://cod.forest-atlas.org/. This concession is 
formed of yearly allowed cut zones where trees are extracted and in a 
living area for the logger community. The study site was specifically 
selected based on the nature/typology of the expected forest change. 
Since most of the forest changes were expected to be made by logger 
communities (over-exploitation for timber and firewood, agricultural 
activities (Contreras-Hermosilla et al., 2000)) instead of commercial 
logging clear-cuts, the study site was located near the populated area of 
the Alibuku concession. The study site (area = 22.57 km2) is located 
between 25.4122◦ and 25.4657◦ E, and 0.9033◦ and 0.9376◦ N, in the 
north-western part of a living area. 

2.2. Data 

2.2.1. Sentinel-1 SAR images 
The Sentinel-1 mission, developed by the European Space Agency 

(ESA) in the framework of the Copernicus programme, is a constellation 
composed of 2 satellites positioned on the same reference orbit plane 
with a 180◦ orbital phasing difference at an altitude of 693 km (Torres 
et al., 2012). The sun-synchronous orbit is near polar, presenting an 
inclination of 98.18◦. The repeat cycle of each satellite is 12 days over 

the study site. Sentinel-1A was launched on April 3rd of 2014, while 
Sentinel-1B was launched on April 25th 2016. The main instrument 
onboard both Sentinel-1 satellites is a C-band Synthetic Aperture Radar 
(SAR) referenced as C-SAR. It is operating at a frequency of 5.405 GHz in 
4 different modes, of which the Interferometric Wide-swath (IW) with a 
ground resolution of 20 m × 22 m, at the VV and VH polarizations was 
selected in this study. The images are available in several formats: Slant 
Range, Single Look Complex (SLC), Ground Range, and Multi-Look 
Detected (GRD). The data used in this study are the GRD products in 
IW mode at the VV and VH polarizations. The images used in this study 
were only acquired from Sentinel-1 A on a single descending orbit at the 
sampling period of 12 days as no Sentinel-1B images were available on 
the study area. The resulting pixel size is 10 m × 10 m. This product was 
chosen instead of the SLC as it is a good compromise in terms of possible 
speckle noise reduction and volume of data to get accurate data but not 
increasing too much the computational time. A total of 60 images that 
formed our time-series on the study site between 01/01/2018 and 01/ 
01/2020 were provided by the European Space Agency (ESA) at and 
downloaded using VtWeb (https://visioterra.org/VtWeb/). 

2.2.2. PlanetScope optical images 
To evaluate our Sentinel 1 detection algorithm, a reference map of 

the forest changes was created using high-resolution PlanetScope im-
ages. We used the level 3B product of PlanetScope Ortho Scene obtained 
from a multispectral Cubesat constellation. This product is a 4-band 
(Red: 605–695 nm, Green: 515–595 nm, Blue: 450–515 nm, NIR: 740 
– 900 nm) Surface Reflectance (SR) image, orthorectified and scaled, 
with a pixel resolution of 3 m. The PlanetScope images available during 
the period ranging from 06/01/2018 to 30/12/2019 were selected upon 
the following criteria: (i) Images on which the visual interpretation was 
not possible because of large cloud cover were removed. No strict 
threshold on cloud cover could be used as the visualization depends on 
the thickness of the clouds. For instance, it was possible to perform vi-
sual interpretation if the cloud cover corresponds to a thin cloud veil 
covering the whole scene. (ii) Images partially covering the scene and 
images separated by a day or less from one another were removed. After 
this selection step, only twenty-four images were kept. Among the kept 
images, some of them were still affected by the presence of a few clouds 
that did not prevent to perform a visual interpretation. The images were 
downloaded from Planet Explorer at https://www.planet.com (Planet, 
1996). 

2.2.3. Tree cover loss map from global forest watch 
To compare with the results obtained from the CuSum change 

detection algorithm applied to Sentinel-1 SAR images, the performances 
of the Global Forest Watch (GFW) Tree Cover Loss (TCL) map (Hansen 
et al., 2013) were also evaluated against the visual interpretation of the 
PlanetScope images. Results obtained from this forest change cover 
analysis were subsequently used for assessing the performance of our 
detector. The TCL map is a dataset developed for monitoring forest cover 
loss worldwide based on Landsat-5 TM, Landsat 7 ETM+, Landsat 8 OLI/ 
TIRS and MODIS data with a pixel resolution of 30 m (Potapov et al., 
2020). The TCL map over the study site is made freely available at 
https://data.globalforestwatch.org/ (Dataset: ‘Granule 10N 20E’ on 
GFW website). According to the TCL map, the study zone lost about 204 
ha of tree cover (Fig. 2) between 2018 and early 2020. 

3. Methods 

3.1. Pre-processing 

The Sentinel-1 SAR images were pre-processed using VtWeb. VtWeb 
is an online platform enabling users to easily browse free Earth obser-
vation data, display it in 2D/3D and process it on-the-fly (VtWeb, 2015) 
accessible on https://visioterra.org/VtWeb/. The pre-processing per-
formed by VtWeb to obtain geo-corrected backscatter images (resulting 
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in γ0 terrain corrected data) consisted in the 3 following steps (Fig. 3): 
- Orbit correction 
- thermal noise removal (Piantanida and Miranda, 2017), 
- terrain flattening as terrain correction to remove topological and 

incidence effects (Small, 2011). 
The speckle was filtered using the bilateral filter made available in 

the python PyRAT Toolbox (Reigber et al., 2019) with a kernel window 
size of 7 × 7. This filter is a spatial filter presenting the advantage of 
preserving edges in the images. Its filtering principle relies on the 
replacement of a pixel value with the weighted pixel value average in 
the kernel (Tomasi and Manduchi, 1998). 

3.1.1. Haralick textures and image selection 
VtWeb provides different levels of aggregation of the Sentinel-1 SAR 

images ranging from the highest pixel resolution (10 m) to a very low 
pixel resolution (40960 m). The Contrast (CON) from Haralick textures 
(Coelho, 2013; Haralick et al., 1973) was computed on aggregated im-
ages with a resulting pixel resolution of 1,280 m to monitor changes in 
the SAR backscatter at a larger scale than that of S1 (10 m × 10 m) as 
follows: 

CON =
∑

i

∑

j
p(i, j)*(i − j)2 (1)  

where p(i,j) is the frequency of the elements in Grey Level Co- 
Occurrence Matrix (GLCM),(i,j) is the cell index. 

The study zone is located in a region characterized by a high cloud 
cover during the entire year. The presence of raincells has been 
confirmed on this area. Raincells are known to cause either an 
enhancement and/or a darkening of the SAR images (see an example of 
this latter effect on Fig. 4). These two opposite effects are due to the 
presence of hydrometeors which interact with the EM waves emitted by 
the SAR sensor, causing dark and bright areas, on the SAR images, 
especially at C and X-bands (Alpers and Melsheimer, 2004; Kellndorfer, 
2019; Users Manuals, 2021). To detect the presence of large raincells in 
the SAR images, the Haralick texture features were used. The presence of 
raincell strongly modifies the CON parameter as defined in Eq. (1). 

The removal of raincell-contaminated images was automatized using 
a threshold (τ) defined using the temporal dynamics of CON in both the 
VV and VH polarizations: 

τ = K*(σCON +CON) (2)  

where CON and σCON are respectively the average and the standard 
deviation (std) of CON during the observation period, and K a constant 
empirically set equal at 2 in this study. If CON is greater than τ in a 
Sentinel-1 image for both the VV and VH polarizations, the S1 image is 

removed from the analysis. A large raincell was observed on the image 
acquired on 13/11/2018. This image was removed from the analysis 
(Fig. 5). 

3.2. Change detection algorithm 

3.2.1. CuSum algorithm 
The Cumulative Sum (CuSum) algorithm is a change point detection 

method based on time-series analysis. It has been initially used in the 
financial sector (Manogaran and Lopez, 2018) and pioneer studies have 
applied it for mangrove and temperate forest monitoring (Kellndorfer, 
2019; Ruiz-Ramos et al., 2020). Previous studies showed better perfor-
mances in deforestation detection when this method was applied to 
filtered and smoothed time-series (Kellndorfer, 2019). The C-band SAR 
backscatter signal tends to decrease after a forest cut, according to 
literature (Kellndorfer, 2019). The CuSum method is able to detect such 
changes in the signal (Manogaran and Lopez, 2018). The CuSum method 
consists in 5 steps including the bootstrap analysis. 

The first step is to compute the VV and VH backscatter time-series of 
each pixel of the Sentinel-1 image in the study area over a given period. 
Then, the mean of the time-series (γ0 (j), over each pixel j) is determined 
at both the VV and VH polarizations and used in the computation of the 
cumulative sum of the residuals, Rsumj: 

Rsumj =
∑nimages

i=1
Rij (3)  

where Rij = γ0
ij − γ0

j , nimages is the number of images and j the pixel index. 
The third step consists in determining the maximum and minimum 

value of the cumulative sum of the residuals to compute the amplitude 
Asumj over the period: 

Asumj = Rsum maxj − Rsum minj (4)  

where Rsum_maxj is the maximum value of Rsumj and Rsum_minj is the 
minimum value of Rsumj. The date of change in the vegetation over the 
pixel j is assumed to happen at the date when Rsumj reaches a maximum. 
A bootstrap analysis based on Asumj is then conducted to validate or 
invalidate the change. There is no global threshold over the magnitude 
of the change. A threshold is computed individually over each pixel, as 
the mean value of the time series may change from one pixel to another. 

3.2.2. Bootstrap analysis 
A bootstrap analysis is conducted on the CuSum result. The bootstrap 

analysis is a mean to check the validity of the change detected through 
an indirect measure of the impact of the order sequence on the times-
eries. The bootstrap consists in conducting CuSum on a randomly 
modified backscatter timeseries nbootstraps times and check if the gener-
ated amplitude of the residuals is greater than the original amplitude of 
the residuals. nbootstraps is the number of bootstraps. It depends on the 
length of the time-series (Kellndorfer, 2019). Firstly, the original back-
scatter time-series is randomly reorganized, thus modifying the tempo-
ral order. Then, the CuSum method is applied to the newly reorganized 
series to compute Rsum_randj_i and Asum_randj_i (with i the index of the 
bootstrap). The next step is to compute the difference of amplitude be-
tween Asumj and Asum_randj_i (Eq.6) 

nbootstraps =

{
nimages!(if nimages! < 1500)
1500(if nimages ≥ 1500) (5)  

where nimages! is the factorial of the number of images. 

Adiffji = Asumj − Asum randji (6) 

If Adiffj_i > 0, the residual amplitude of the randomly generated 
reorganized time-series (Asum_rand_i) is lower than its original value 
(before reorganization). This means the original residual amplitude 

Fig. 2. TCL map (Hansen 2018–2019) on the PlanetScope 2019–11-29 
image background. 
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Fig. 3. Workflow of the Sentinel-1C-SAR image preprocessing, processing and CuSum steps.  
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(Asumj) is affected by the temporal dimension. The number of times the 
original residual time-series presents a Asumj value greater than the 
randomly reorganised one is estimated and referred to as the index Ngj 
(Eq. 7). This index is incremented by 1 each time Adiffj_i > 0. It is an 
indirect measure of the sequence effect in the backscatter time-series 
and a sensitivity parameter that intervenes in the computation of the 
Confidence Level (CLj, Eq. 8). 

NGj =
∑nbootstraps

i=1
IndexGji (7) 

With IndexGji =

{
1ifAdiffji > 0
0ifAdiffji ≤ 0 

CLj = (
NGj

nbootstraps
) (8) 

CL represents the ratio of bootstraps in which the original 

backscatter time-series presents the amplitude Asumj > Arandj in com-
parison to the total number of bootstraps. A critical threshold value (Tc) 
can be set as a CL over which the change point is considered as valid by 
the bootstrap analysis. 

3.2.3. Sensitivity to input parameter 
The Confidence Level (CL) is a criterion related to the algorithm’s 

sensitivity. In this study, we evaluated four different critical thresholds 
Tc based on the Confidence Level over which we consider the change as 
valid: Tc = 0.25, 0.50, 0.75 and 1.00. Higher Tc values resulted generally 
in a lesser number of pixels detected as “change” since only “change” 
pixel with high confidence level will reach the specific threshold, 
whereas lower Tc values resulted generally in a higher number of pixels 
detected as “change” because the lower specific threshold will be 
crossed on many pixels. 

Fig. 4. Sentinel-1 SAR images dated from (a) 20/10/2018 and (b) 13/11/2018 displayed in RGB: VV, VH, NDI(VV,VH). The raincell effect is visible on the sec-
ond image. 

Fig. 5. Temporal availability of Sentinel-1C-SAR IW dual polarization and PlanetScope 3 m images. The 13/11/2018 Sentinel-1 image was removed due to partial 
raincell contamination. The Contrast is computed from Haralick’s texture (see 3.2), showed on VV polarisation. The Mean Contrast is the average contrast of a 
Sentinel-1 image with a pixel resolution of 1280 m over the study area. 
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3.2.4. Spatial operations over the CuSum results 
The two maps resulting from application of the CuSum algorithm to 

the VV and VH SAR images were intersected to form the “VV intersect 
VH” dataset. In that case, a pixel is considered to be subject to a change 
when it is classified as ‘change’ at both the VV and VH polarizations. 
This dataset was made in order to assess if changes affect both volume 
and surface components. As the SAR backscatter is affected by the 
dominant scattering mechanism resulting from the signal/target inter-
action, the impact on polarisation channels can vary. A dominant sur-
face or double-bounce scattering mechanism generally display a higher 
intensity on the VV channel, while a dominant volume scattering will 
greatly influence the VH backscatter signals. The changes affecting an 
area can modify these interactions, resulting in changes being more 
detected by a polarisation than by the other. 

The maps based on the VV and VH results were joined to form the 
“VV union VH” dataset. In that case, a pixel is considered to be subject to 
a change when it is classified as “change” from at least one of the po-
larizations (either VV or VH). Our objective with these “intersection” 
and “union” maps were to check the consistency / difference of the re-
sults based on both the VV and VH polarizations and to evaluate their 
complementarity. 

High threshold values of Tc (Tc = 1.00) were found to be the most 
robust values in terms of accuracy from preliminary tests. In order to 
reduce the number of false positives obtained from low Tc values in the 
form of small clusters of change, a spatial recombination of Tc thresholds 
was applied. Results obtained from high Tc values were combined with 
those obtained from low Tc values. The raster images were first con-
verted to vector images containing changes as polygons by using a 4- 
pixel connexion. Secondly, the areas corresponding to “high Tc“ poly-
gons (polygons to computed from high TC values) were selected and only 
polygons of area > 300 m2 were kept. They composed the base on which 
the following filter was applied. A filter was then applied using lower Tc 
values. Only the “low Tc“ polygons including a “high Tc“ polygon were 
kept in the analysis (Annexe 2). This resulted in the cross-Tc results, also 
referred to as 100_25 (base: Tc = 1.00, low Tc = 0.25), 100_50 (base: Tc 
= 1.00, low Tc = 0.5) and 100_75 (base: Tc = 1.00, low Tc = 0.75). 

3.3. Validation steps 

3.3.1. 3.3.1. Reference map composition 
The resulting maps of the date of forest change occurrence obtained 

in this study were evaluated using the PlanetScope optical images as no 
in-situ information was available. The GFW maps were not used as the 
visual inspection showed they missed newly deforested areas compared 
to the ones observed on the PlanetScope images, and hence, were 
considered to be less reliable over the study zone. Eventually, all the 
areas visually determined as newly deforested from the consecutive 
PlanetScope images over the 2018–2019 period were assembled to form 
the PlanetScope 2018–2019 cover change image. This image was used as 
a reference to assess the accuracy of the change detection method based 
on the CuSum algorithm applied to the Sentinel 1 images. The ‘defor-
estation’ considered in the following parts of this study was the visual 
interpretation of change from forest to non-forest. The ‘degradation’ 
considered in the following parts of this study was estimated from the 
visual interpretation of PlanetScope images. It corresponds to the 
changes in the radiance of forested areas before their deforestation. 

3.3.2. Statistics 
There are two types of errors when comparing two binary spatial 

datasets: i) the false positive, which corresponds to the reference map 
detecting no change while the algorithm detects a change, ii) the false 
negative, which occurs when the reference map detects a change 
whereas the algorithm does not detect it. In order to describe the quality 
of the matching between our S1-based retrieved change map and the 
reference PlanetScope change map, the following classical statistical 
indicators (Overall Accuracy as Accuracy, Recall, Precision, F-score and 

Kappa Coefficient) derived from the confusion matrix were used. Due to 
class imbalance between Change and No Change, the overall accuracy, 
recall and precision should be studied along with F-score and Kappa 
coefficient for interpretation. The overall accuracy is shown here as an 
indicative statistic and should not be interpreted by itself, as explained 
in Olofsson et al. (2014) which provides exhaustive information about 
good practices for land cover change estimates. The overall accuracy is 
the ratio between the number of correctly classified pixels and the total 
number of pixels. 

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)  

where TP are the True Positive (pixels classified by both the reference 
map and the algorithm as ‘cover change’), TN are the True Negative 
(pixels classified by both the reference map and the algorithm as ‘no 
cover change’), FP are the False Positive errors and FN are the False 
Negative errors. The precision corresponds to the ratio between the 
number of pixels correctly classified as ‘cover change’ and the total 
number of pixels classified as ‘cover change’ by the algorithm. 

Precision =
TP

TP+ FP
(10) 

The recall corresponds to the ratio between the number of pixels 
correctly classified as ‘cover change’ and the total number of pixels 
classified as ‘cover change’ by the reference map. 

Recall =
TP

TP+ FN
(11) 

The F1-score is the weighted average of precision and recall. This 
score is used when the classes are unevenly distributed. 

F1 = 2
recall.precision

recall+ precision
(11) 

The Kappa Coefficient is a measure quantifying how better the al-
gorithm performs compared to a random classification according to the 
frequency of each class. 

κ =
P0 − Pe

1 − Pe
(12)  

where Po is the Observed Accuracy (Eq.9) and Pe the expected accuracy. 

Pe =
TP+ FP
Total

.
TP+ FN
Total

+
TN + FN
Total

.
TN + FP
Total

(13)  

4. Results 

Results obtained from the investigation of the PlanetScope data 
revealed a cover change area estimated at 341.5 ha (15.1% of the total 
study area) over the 06/01/2018 – 26/11/2019 period. 

4.1. Spatiotemporal distribution of the changes 

The CuSum algorithm was applied on the time-series of backscat-
tering coefficients from the Sentinel-1 SAR images acquired at C-band in 
both the VH and the VV polarisations, for Tc values of 0.25, 0.5, 0.75 and 
1.00. Cover changes detected by the CuSum approach are presented in 
Fig. 6a to d, and 7-a to d, respectively for VH and VV. Change pixels are 
developed in continuous and consistent spatial patterns. For all mapping 
configurations (in terms of polarisation and Tc values), the number of 
pixels affected by a change decreases as Tc increases: the total area 
presenting a change ranges from a minimum value of 113.2 ha (VV 
intersect VH, Tc = 1) to a maximum value of 1333.6 ha (VV union VH, 
Tc = 0.25). Smaller clusters affected by changes are generally detected 
for lower values of Tc than for higher values. Besides, the cluster size is 
also greater for lower values of Tc than for higher Tc values. The use of 
higher Tc values lowers the number of these clusters, but also reduces 
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the size of the larger clusters. The latter are most often connected 
whereas the small clusters are not. 

The results of the change detection method were compared with the 
PlanetScope reference map. Results obtained for a lower Tc value of 0.25 
show a better detection of the cut areas with lower false negatives (True 
Positives = 273.7 ha / False Negatives = 67.8 ha for VV union VH) than 
for higher Tc values of 1 (True Positives = 160.5 ha / False Negatives =
181.1 ha for VV union VH). However, results obtained for lower Tc 
values (Tc = 0.25) present a large number of false positives (1060.0 ha 
for VV union VH) compared to higher Tc values of 1 (327.7 ha for VV 
union VH, Table 1). It is worth noticing that the larger clusters of change 
detected for any VV and VH combinations and for any Tc values corre-
spond to the areas detected as cut in the PlanetScope reference map. 

When comparing the results of the CuSum algorithm applied to the 
polarization channels, the VV channel detects more small clusters of 
change compared to the results obtained at VH. Similar results were 
obtained when comparing VV with VV union VH results. The area of the 
largest clusters was lower for VV (True Positives = 230.9 ha and False 
Negatives = 110.6 ha for Tc = 0.25, True Positives = 136.6 ha and False 
Negatives = 205.0 ha for Tc = 1.00). The clusters based on the VV po-
larization are more isolated than those obtained at VH polarization. For 
low Tc values (high sensitivity to changes), less changes are detected 
using VV than using VH, but it is the opposite for a higher Tc value. 

According to Table 2, the number of separated clusters of change is 
not proportional to the threshold. This could be explained as the bigger 
clusters can often be dissociated at higher Tc, but smaller Tc clusters can 
disappear at higher Tc. The cross-threshold operations result in 
increasing mean and median areas compared to their simple Tc 
equivalent. 

4.2. Cross comparison against external datasets using confusion-matrix 
derived statistics 

When comparing results obtained for all mapping configurations 
based on VV, VH and their combinations (intersection and union) and 
for any Tc value (0.25, 0.5, 0.75, 1 and 100_25, 100_50 and 100_75), the 
precision ranges from very low (0.21 for VV union VH for Tc = 0.25) to 
high (0.93 for VV intersect VH for Tc = 1.00). Precision is very similar 
for all mapping configurations for Tc = 1.00 (0.87 to 0.90). The results of 
the different mapping configurations are very scattered for Tc ranging 
from 0.25 to 0.75. The cross-Tc combination generally increases the 
precision (compared to the simple Tc configuration), for instance the 
precision increased by 11.0% for VH (compared to Tc = 0.5 against 
100_50) or by 23.8% for VV intersect VH (compared to Tc = 0.25 against 
100_25) (Fig. 7). However, the use of cross-Tc does not significantly 
increase the precision for VV union VH (for Tc = {0.25; 0.50} against 
{100_25; 100_50}) and for VH (Tc = 0.25 against 100_25). Whatever the 
Tc values, the VV intersect VH presents a better precision, followed by 
simple VV with a difference in precision of 0.11 (Table 3). 

The accuracy results range from acceptable (50% for VV union VH at 
Tc = 0.25) to very accurate (91% for VV intersect VH at 100_75). The 
range of results is larger for lower Tc values than for higher ones. The use 
of cross-Tc leads to a narrower range of the accuracy values, increasing 
the accuracy from 2% to 10%. The most stable accuracy values were 
observed for VV intersect VH, with accuracy ranging from 81% to 91%. 
For VV intersect VH, the accuracy results obtained for Tc = 1.00 are 
similar to those obtained for cross-Tc = 0.75. 

Lower recall values were obtained for higher Tc values (Fig. 8). The 
range of the Recall values is 0.34–0.78 considering all combinations of 

Fig. 6. CuSum algorithm results at VH polarization with Tc = (a) 0.25, (b) 0.50, (c) 0.75, (d) 1.00 with PlanetScope reference map cuts as blue-colored polygons. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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polarisations. This range is larger for Tc = 0.75 than for Tc = 0.25, 0.50 
or 1.00 considering all possible combinations of VV and/or VH. The best 
recall values at all Tc and cross-Tc were obtained with VV union VH, 
increasing up to 0.78 for cross-Tc = 100_25. 

The Kappa coefficient values range from very low (0.12) to accept-
able (0.59) considering all VV and/or VH combinations. The range of the 
Kappa coefficient values is larger for lower Tc values. Use of cross-Tc 
configurations increases the Kappa coefficient by 13.5%. Overall, the 
higher value of the kappa coefficient is obtained using VV intersect VH. 

The F1-score results range from relatively low (0.33) to acceptable 

(0.64) considering all VV and/or VH combinations. Use of cross-Tc 
configurations increases the F1-score by 4% up to 15%. Overall, the 
higher value of the F1-score is obtained using VV intersect VH. 

5. Discussion 

Raincells are a large source of contamination of the backscatter co-
efficient over tropical forests. When applying the CuSum algorithm, we 
noted that it is crucial to filter out the images affected by the presence of 
raincells. If not, the inclusion of a contaminated pixel in the temporal 

Table 1 
Comparison between the CuSum results and the reference map. Change area of reference (from PlanetScope images) = 341.5 ha, non-change area of reference =
6581.1 ha. c = change area, nc = non-change area, TP: True Positives, TN: True Negative, FP: False Positive, FN: False Negative. The color legend is qualitative: red is 
considered as “poor”, orange as “relatively poor”, yellow as “relatively good” and green as “good”.  
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average of the backscatter is likely to impact the results of the change 
detection method. In the present study, we found that the Contrast 
parameter from the Haralick’s textures provided an efficient way to 
detect the contaminated images. 

The lack of in-situ data complicates the validation process of the 
surfaces identified as presenting a cover change. By using visual inter-
pretation of PlanetScope high resolution (3 m) images, clear cuts, field 
cuts and field cover changes could be clearly identified. The visual 
interpretation permitted to clearly separate forest and non-forest areas, 
and the changes occurring over these two types of covers. The validation 
of the method presented above was limited to clear cuts from forest 
areas, but changes over non-forest areas could be also detected using our 
approach, showing that this technique is able to detect forest cuts and 
forest degradation but also crop field cuts and soil cover changes. 

High precision (0.93), recall (0.80), accuracy (91%), were obtained 
by evaluating the results of different parameterizations of the CuSum 
algorithm against PlanetScope, used as a reference, but the value of the 
Kappa coefficient remains relatively average (0.59 for the best config-
uration). The statistics of the comparison between the GFW map and the 
PlanetScope reference map show that, over the study area, the GFW map 
presents high accuracy (86%), but average precision (0.54), recall (0.57) 
and Kappa coefficient (0.48). The Tree Cover Loss area estimated from 
GFW dataset was 204 ha (9.0 % of the study area) vs 341.5 ha (15.1 % of 
the study area) for the PlanetScope-based reference map. The results of 
our method applied to Sentinel-1 SAR images has a higher Kappa coef-
ficient than GFW in spite of being impacted by large false positives. 
Several clusters detected using the CuSum approach to the Sentinel-1 
SAR images did not correspond to cuts based on the PlanetScope vi-
sual interpretation. As it can be seen in Fig. 9, several zones were 
detected “as cover changes” by applying CuSum before the zones were 

Table 2 
Spatial comparison between the CuSum clusters of change detected.  

Base Tc Number mean area (ha) median (ha) 

VV 0.25 1711 0.4207 0.0544 
0.50 2054 0.3121 0.0453 
0.75 1972 0.2493 0.0453 
1.00 453 0.3449 0.0272 
100_25 122 3.4043 1.65 
100_50 122 3.013 1.4505 
100_75 138 2.2695 1.1785 

VH 0.25 583 1.9666 0.0453 
0.50 1077 0.9053 0.0635 
0.75 1522 0.4611 0.0725 
1.00 525 0.2847 0.0181 
100_25 41 24.9114 3.6535 
100_50 77 8.7425 2.7016 
100_75 115 3.7219 2.1486 

VV union VH 0.25 574 2.3235 0.0181 
0.50 1041 1.1307 0.0272 
0.75 1953 0.4492 0.0453 
1.00 586 0.3297 0.0181 
100_25 29 44.561 0.5802 
100_50 55 16.8254 2.9645 
100_75 117 4.7293 2.1576 

VV intersect VH 0.25 1609 0.3322 0.0544 
0.50 1703 0.2587 0.0363 
0.75 1160 0.2731 0.0363 
1.00 240 0.4715 0.0725 
100_25 92 3.3616 2.0229 
100_50 97 2.9045 1.7973 
100_75 101 2.417 1.514  

Fig. 7. CuSum algorithm results at VV polarization with Tc = (a) 0.25, (b) 0.50, (c) 0.75, (d) 1.00 with PlanetScope reference map cuts as blue-colored polygons. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 
Confusion matrix - derived statistics obtained by comparing the CuSum results to the PlanetScope reference map.  

Fig. 8. CuSum results statistics based on Planet cut map of reference. (a) Precision, (b) Accuracy, (c) Recall, (d) Kappa coefficient.  
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visually seen as deforested. The PlanetScope images exhibited a change 
in radiance in these zones but this change is much lower than that due to 
clear-cut. Later on (from a few days to 3 weeks later generally), most of 
these zones were cut. We assumed that the change in radiance in the 
PlanetScope images corresponds to degradation prior to deforestation. 
As the PlanetScope reference map we made does not consider “degra-
dation” but only “deforestation”, the value of the Kappa coefficient and 
precision may be impacted by the “degradation” events detected by 
CuSum but unconsidered by the reference map, thus remaining rela-
tively low in comparison to the other (recall, accuracy) criteria. 

According to the results some changes are well detected from only 
one polarization configuration (either VV or VH). This means both po-
larizations are affected differently by changes. But, overall, most big 
clusters of deforestation (showing a wide area labelled as deforestation 
on the reference map) are detected from both polarizations. The 
detection of a change by a polarization seems to be affected by (1) the 
nature of the change and (2) the magnitude of the change. 

CuSum detected changes in many zones before their estimated dates 
of cut (64%, 167.3 ha, Table 4, Annex 1). This is consistent with the 
detection of degradations which occur before the reference dates of cut. 
Due to the relatively low availability of non-cloud-contaminated Planet 
images and the difficulty to monitor all degradations using this source, a 
precise estimate of the time-lag between degradation and cut could not 
be evaluated in this study, so that any change corresponding to a cut 
detected between the two nearest PlanetScope images is considered as a 
good detection. 

Using two PlanetScope images separated by a long period would be 
suboptimal. Indeed, both degradation resulting in canopy gaps and 
canopy recovery may happen during a long period and the PlanetScope 
visual interpretation would then miss the degradation events that 
happened during that period. The use of a PlanetScope image temporally 
too close to the forest change detected by applying CuSum to Sentinel-1 
SAR images can also miss the change. Indeed, this image may not be able 
to detect the forest degradation that was detected on the SAR images (as 
this change may not affect the canopy enough to be visible on the 
image). In both cases (small degradation and recovery), changes 
detected by the SAR images may not be detected by the Planet images. 
This effect may explain some false positives. 

Note that the date pre-emptively detected is mostly detected within 
two weeks before the actual dates of cut. Nearly no detection of cuts was 
made later than the dates of cut seen through PlanetScope visual 
interpretation (5.93 % of the study area, corresponding to 15.49 ha), 
suggesting that some of the false positives made by applying CuSum are 
mainly due to degradation just before forest cut, and not by false 
detection of cut forests. Recent studies using Sentinel-1 images found 
that tropical canopy gaps and degraded canopy can be partially moni-
tored using High Resolution SAR images (Numbisi and Van Coillie, 
2020; Reiche et al., 2021). It seems that our results confirm these find-
ings over our study area. 

The sensitivity threshold (Tc) plays a crucial role for the precision 
and recall criteria of the algorithm. A high Tc value provides a robust 
result with many false negatives and very few false positives whereas a 

Fig. 9. (a) 10/09/2018 PlanetScope image, (b) 08/11/2018 PlanetScope image, (c) 03/01/2019 PlanetScope image, (d) CuSum results based on VV with Tc = 0.75. 
Blue polygons correspond to PlanetScope cut map. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 4 
Temporal evaluation of the CuSum results based on VV with Tc = 0.25.  

Time period 
monitored 

Total TP Cut area 
(m2) 

TP change area detected 
in time (m2) 

TP change area detected 
early (m2) 

TP change area 
detected early (%) 

TP change area 
detected late (m2) 

TP change area 
detected late (%) 

2018/01/ 
06–2019/11/26 

2,613,700 782,500 1,676,300 64.14% 154,900 5.93%  
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low Tc value provides results reducing vastly the false negatives but 
greatly increasing the false positives. The combination of the results 
based on VV and VH and the use of cross-threshold Tc values seems to be 
a good compromise to optimize both accuracy and precision. The 
number of false positives is relatively large for all configurations, but as 
explained earlier, the reference map is not ground truth as no in-situ 
data was available and it did not account for forest degradation before 
forest cut. Despite this lack of in situ data, spatially & temporally 
consistent results were obtained in this study, making us confident in our 
evaluation. For instance, a spatial coherence of the cross-threshold re-
sults was found (Fig. 10): it seems the detected cuts form clusters which 
are dis-connected for high Tc values and the connection between clusters 
increase for decreasing Tc values, which could be interpreted by the fact 
roads or forest paths make connection between the different clusters of 
cut forests. It seems that small areas detected with a low Tc threshold and 
which are disconnected from the big clusters disappear for higher Tc 
values and are less reliable than those estimated with the “cross- 
threshold” clusters. The generalisation of this algorithm to dry forests 
and deciduous forest showing strong seasonal variability needs to be 
further tested, and the method probably adapted, as in Ruiz-Ramos 
et al., 2020. 

6. Conclusion 

Cover change in tropical forests is difficult to monitor due to the lack 
of in-situ data and the large-scale extent of deforestation. Using Sentinel- 
1C-SAR dual polarisation images, we were able to monitor cover 
changes in a Democratic Republic of Congo forest concession applying 
the CuSum approach to the Sentinel-1 SAR images. 

According to accuracy assessment derived from the confusion 

matrix, CuSum applied to VV polarisation Sentinel-1 SAR images pro-
vides better results than using the VH polarization in terms of accuracy 
(minimal difference between VV and VH results of 1% for Tc = 1.00 up 
to 16% for Tc = 0.25), precision (minimal difference between VV and VH 
results of 0.01 for Tc = 1.00 up to 0.28 for 100_25) and Kappa coefficient 
(minimal difference between VV and VH results of 0.03 for Tc = 1.00 up 
to 0.30 for 100_25). The highest precision, related to the lowest False 
Negative ratio, was obtained using the intersection of VV with VH, with 
a minimal difference of 0.06 when comparing VV intersect VH Tc = 1.00 
with VV Tc = 1.00 and a maximal difference of 0.33 when comparing VV 
intersect VH 100_50 with VH 100_50. 

It is important to note that large differences of forest cut were found 
between our reference map based on PlanetScope (341.5 ha) and the 
GWF Cover Loss map (204 ha) in this area. It is probably due to the fact 
the tropical forest of DRC is often affected by cloud cover, and the better 
revisit time and resolution provided by PlanetScope OrthoScene led to 
improved detections. Our approach based on Sentinel-1 images is less 
affected by cloud cover, and the 12-day revisit time allows a good 
temporal monitoring. GFW Cover Loss map presents lower accuracy, 
precision, recall and kappa coefficient than the modified CuSum algo-
rithm with a cross-Tc of 100_50. It also detects less true change area 
(189 ha) than the modified CuSum algorithm (up to 231.6 ha for VH 
100_75). 

The combination of the algorithm presenting the least false positives 
(high Tc value) with algorithms presenting more false positives (low Tc 
value) contributes to reduce the false positive errors obtained for low Tc 
values (minimum difference of 60.9 ha when comparing VV intersect VH 
Tc = 0.75 to VV intersect VH 100_75 to a maximum difference of 297.2 
ha when comparing VH Tc = 0.5 to VH 100_50). It also contributes to 
reduce the false negative errors obtained for high Tc value (minimum 

Fig. 10. Map of the CuSum spatial results for VH with (a) simple Tc = 100, (b) cross Tc = 100 and 75, (c) cross Tc = 100 and 50, (d) cross Tc = 100 and 25.  
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difference of 72 ha when comparing VV Tc = 1.00 to VV 100_75 to a 
maximum difference of 131.4 ha when comparing VH Tc = 1.00 to VH 
100_25). Overall, the CuSum parameters that provided the best detec-
tion of vegetation cover change amongst the different polarisations and 
Tc configurations is VV intersect VH, cross-Tc 100_75 (Kappa coefficient: 
0.59, Precision: 0.77, Accuracy: 0.91, Recall: 0.55). 

The lack of in-situ data led us to use a PlanetScope-based reference 
map of the cover changes which is only based on remotely sensed optical 
observations and which present many limitations. In particular, degra-
dation effects preceding deforestation were not monitored in this 
reference map, and canopy gaps can recover between two images. This 
could partially explain why our results, based on Sentinel-1 SAR images, 
exhibit more changes than detected in the reference map. This could also 
explain the lower scores obtained at VH than at VV when applying 
CuSum to Sentinel-1 images as observations at the VH polarisation are 
more sensitive to the degradation effects than at the VV polarisation 
(Kellndorfer, 2019). This could affect the false positives detected using 
VH: they are more numerous compared to using VV. In conclusion, some 
of the false positives can be attributed to degradation detected using 
Sentinel-1 SAR images that cannot be identified using optical images as 

previously noted by Numbisi and van Collie (2020) and Reiche et al. 
(2021). 

The major drawback of our approach is its limitation to the detection 
of only one change against time. Once a pixel is affected by a change, its 
status does not evolve against time. We are currently working on a multi- 
temporal detection change approach that will be helpful to characterize 
the evolution of the forest cover from degradation to deforestation and 
then the possible recovery and could also be applied for the monitoring 
of lower vegetation canopy types. 
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Appendix A 

Annexe 1: Table of the detection time of the change.   

Time period 
monitored 

Cut area 
(m2) 

Change area detected in 
time (m2) 

Change area detected 
early (m2) 

Change area detected 
early (%) 

Change area detected 
late (m2) 

Change area detected 
late (%) 

2018/01/06–2018/ 
02/02 

52,700 22,100 0 0.00% 30,600 58.06% 

2018/02/02–2018/ 
03/17 

56,700 30,000 4400 7.76% 22,300 39.33% 

2018/03/17–2018/ 
04/19 

5600 800 3000 53.57% 1800 32.14% 

2018/04/19–2018/ 
06/15 

29,400 23,300 1900 6.46% 4200 14.29% 

2018/06/15–2018/ 
08/17 

18,200 13,000 2700 14.84% 2500 13.74% 

2018/08/17–2018/ 
09/10 

3400 0 1500 44.12% 1900 55.88% 

2018/09/10–2018/ 
11/08 

110,700 60,500 22,400 20.23% 27,800 25.11% 

2018/11/08–2018/ 
12/19 

565,400 214,300 324,100 57.32% 27,000 4.78% 

2018/12/19–2019/ 
01/06 

386,000 143,300 229,500 59.46% 13,200 3.42% 

2019/01/06–2019/ 
01/22 

359,200 88,500 260,300 72.47% 10,400 2.90% 

2019/01/22–2019/ 
02/02 

193,200 24,100 163,500 84.63% 5600 2.90% 

2019/02/02–2019/ 
03/03 

484,400 93,600 384,800 79.44% 6000 1.24% 

2019/03/03–2019/ 
03/31 

108,900 11,000 97,500 89.53% 400 0.37% 

2019/03/31–2019/ 
05/03 

11,100 100 10,200 91.89% 800 7.21% 

2019/05/03–2019/ 
08/06 

70,600 23,100 47,100 66.71% 400 0.57% 

2019/08/06–2019/ 
11/10 

46,200 28,700 17,500 37.88% 0 0.00% 

2019/11/10–2019/ 
11/26 

112,000 6100 105,900 94.55% 0 0.00% 

Total 2,613,700 782,500 1,676,300 64.14% 154,900 5.93%   
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Legend: 

Low T
c 
polygon

High T
c 
polygon

Cross-T
c
 polygon

Cross-T
c
 computation

Applied to the VH with Tc = 0.75 dataset

Explicative schema of the Cross-Tc computation

Annexe 2: Supplementary material: explicative schema of the Cross-Tc computation. 
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Annexe 3: Map of the results of the CuSum based on VV union VH with Tc = (a) 0.25, (b) 0.50, (c) 0.75 et (d) 1.00.
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Annexe 5: Map of the results of the CuSum based on VV intersect VH with (a) Tc = 1.00, (b) cross-Tc 100_75, (c) cross-Tc 100_50 and (d) cross-Tc 
100_25.

Annexe 4: Map of the results of the CuSum based on VV intersect VH with Tc = (a) 0.25, (b) 0.50, (c) 0.75 et (d) 1.00.
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Annexe 6: Map of the results of the CuSum based on VV intersect VH with (a) Tc = 1.00, (b) cross-Tc 100_75, (c) cross-Tc 100_50 and (d) cross-Tc 
100_25.

Annexe 7: Map of the results of the CuSum based on VV union VH with (a) Tc = 1.00, (b) cross-Tc 100_75, (c) cross-Tc 100_50 and (d) cross-Tc 
100_25. 
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