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A B S T R A C T   

Understanding the feedback of ecosystem carbon uptake on climate change at temporal and spatial scales is 
crucial for developing ecosystem models. Previous studies have focused on the role of spring and autumn 
phenology in regulating carbon sequestration in forest stands, but few on the impact of physiological status in 
summer. However, plant accumulated the most carbon in summer compared with spring and autumn, therefore, 
it is of great significance to explore the role of summer phenological metrics on the variability of carbon 
sequestration. Using 514 site-years of flux data obtained at 40 FLUXNET sites including three forest ecosystems 
(i.e. evergreen needleleaf forest (ENF), deciduous broadleaf forest (DBF) and mixed forest (MF)) in Europe and 
North America, we compared the potential of physiological and phenological metrics of Gross Primary Pro
duction (GPP) and Ecosystem Respiration (RECO) in explaining the interannual and spatial variability (IAV and 
SV) of forest net ecosystem production (NEP). In view of the better performance of physiological metrics, we 
developed the maximum carbon uptake index (MCUI), which integrated the physiology metrics of photosynthesis 
and respiration in summer, and further explored its ability in explaining the IAV and SV of NEP. The results 
suggest that the MCUI had a better ability than respiration-growth length ratio (RGR) in predicting NEP for all 
three forest types. The interpretation of MCUI based on meteorological variables illustrated that the controlling 
meteorological factors of MCUI differed substantially among ecosystems. The summer shortwave radiation had 
the greatest influence on MCUI at DBF sites, while the soil water content played an important but opposite role at 
ENF and DBF sites, and no significant meteorological driver was found at MF sites. The higher potential of MCUI 
in explaining IAV and SV of NEP highlights the importance of summer physiology in controlling the forest carbon 
sequestration, and further confirms the significant role of peak plant growth in regulating carbon cycle of forest 
ecosystems. Understanding the drivers of peak plant growth is therefore of a great significance for further 
improving the precious of ecosystem model in the future.   
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1. Introduction 

Forest ecosystem is the dominant terrestrial ecosystem on Earth and 
plays an important role in global carbon sequestration (Pan et al., 2013; 
Shiga et al., 2018). Net ecosystem productivity (NEP), which represents 
the net gain of carbon (C) at the ecosystem level and is the result of the 
difference between C uptake through photosynthesis and C released 
through respiration, determines the capacity of an ecosystem to act as 
carbon source or sink (Ryu et al., 2019; Woodwell et al., 1978; Yatskov 
et al., 2019). In the context of global climate change, understanding the 
interannual and spatial variability (IAV and SV) of NEP in forest helps to 
improve the simulation accuracy of carbon uptake, thus providing a 
better understanding of how forest functions as part of the global carbon 
cycle (Ballantyne et al., 2012; Luo et al., 2015; Wu et al., 2012). 

Photosynthesis and respiration are the two main processes affecting 
carbon sequestration at the ecosystem level. Using the long-term 
continuous eddy-covariance (EC) technique, NEP can be well 
measured within the footprint (NEP = -NEE), and partitioned into Gross 
Primary Production (GPP) and Ecosystem Respiration (RECO) (Baldoc
chi, 2003; Papale et al., 2006). Vegetation phenology describes the 
recurring seasonal changes of plant development status in response to 
environmental changes (Lieth, 1974), and includes key events such as 
sprouting, leaf development, flowering, and defoliation (Ivits et al., 
2012; Walther et al., 2002). Plant summer physiology (e.g., leaf 
pigmentation, leaf mass per unit area, water and nutrient content, etc. 
(Ma et al., 2011; McKown et al., 2013)), which can be indicated by 
summer flux, reflect the greatest potential of canopy assimilation and 
respiratory potential (Hilker et al., 2011; Keenan et al., 2014). Accord
ingly, several phenological and physiological metrics derived from GPP 
and RECO have been proposed for tracking changes of the vegetation 
growth process, using the time series of carbon flux or vegetation indices 
(Garrity et al., 2011; Gonsamo et al., 2013; Huang et al., 2018; 
Richardson et al., 2010; Wohlfahrt et al., 2005; Wu and Chen, 2013; Xia 
et al., 2015; Zhou et al., 2016). Given that phenology and physiology are 
important processes in controlling vegetation carbon accumulation, 
evaluations of phenological and physiological metrics are of great sig
nificance to improve our understanding of the feedbacks of ecosystem 
processes to climate change (Baldocchi et al., 2001; Pan et al., 2013; 
Wilkinson et al., 2012; Yu et al., 2008). 

Previous studies focused on the effect of GPP-derived phenology on 
carbon sequestration, and found that prolonged growing season lengths 
(GSL) usually increase annual cumulative NEP across and within sites 
(Baldocchi, 2008; Churkina et al., 2005; Dragoni et al., 2011; Richard
son et al., 2009). However, there are also several studies showing 
different or even diametrically contrary conclusions. For example, the 
prolongation of GSL caused by autumn warming may reduce carbon 
sequestration in high latitude ecosystems, because the loss of respiration 
far exceeds the benefit of photosynthesis in the late growing season 
(Piao et al., 2008; Wu et al., 2013). Besides, although a warm spring 
increases NEP in the early growing season, it can also lead to soil 
moisture deficits in summer, and thus reduce the annual cumulative NEP 
(Buermann et al., 2013; Hu et al., 2010; Sacks et al., 2007). Moreover, 
the NEP shows great interannual variability with the same GSL because 
of the effect of summer drought (Angert et al., 2005). The relationship 
between the GSL and NEP is not necessarily linear and predictable 
(Richardson et al., 2013), and consequently, taking into account the 
physiological status of vegetation in summer, when drought periods 
most often happens (David et al., 2007; Eisenhauer et al., 2012; Peichl 
et al., 2015), could be of great importance to better interpret the vari
ability of carbon sequestration. Previous studies have confirmed that 
summer physiology (e.g. the maximum of GPP, GPPmax) is highly rele
vant to the IAV of GPP (Xia et al., 2015; Xu et al., 2019; Zhou et al., 
2016) and an increasing trend of peak growth of vegetation was 
observed at the global scale in the context of climate change (Gonsamo 
et al., 2018; Huang et al., 2018). However, the potential of GPPmax in 
explaining the variability of NEP has not been studied at the interannual 

and spatial scales across forest types. 
Ecosystem respiration, which describes the process of gross CO2 

release from the ecosystem, is an essential component of the terrestrial 
carbon cycle (Luyssaert et al., 2007; Waring et al., 1998). Concurrent 
enhancement of RECO typically tends to offset about 50% of the 
increased GPP that results from a longer GSL (Richardson et al., 2010). 
However, the effects of seasonal characteristics of respiration (i.e. the 
start, end, length and maximum of RECO) on carbon sequestration have 
not been systematically studied among different forest types. 

An integrated indicator considering both photosynthesis and respi
ration is better for understanding the role of phenology and physiology 
in regulating carbon sequestration (Piao et al., 2008). Combining the 
phenological metrics of photosynthesis and respiration, Wu et al. (2012) 
derived a respiration–growth length ratio indicator (RGR) at three forest 
sites in Canada and found that RGR performed better in explaining the 
IAV of NEP than the single phenological metrics. However, this metric 
lacks validation at more tower stations and plant functional types. In 
addition, an integrated physiological indicator considering both respi
ration and photosynthesis has not been developed and tested across 
forest types yet. 

Using 514 sites-years of flux data observed at 40 sites across three 
forest types (i.e. evergreen needleleaf forest (ENF), deciduous broadleaf 
forests (DBF) and mixed forest (MF)) in northern temperate and boreal 
regions (30◦-70◦ N), we investigated the role of phenological and 
physiological metrics derived from GPP and RECO in controlling the IAV 
and SV of NEP. The specific objectives were (1) to compare the potential 
of single phenological metrics (the start, end, and length of GPP and 
RECO) and physiological metrics (the maximum of GPP and RECO) in 
interpreting IAV and SV of NEP, (2) to explore the ability of integrated 
indicators considering both GPP and RECO for a better explanation of 
NEP, and (3) to understand the control of meteorological variables on 
the new indicator. 

2. Material and methods 

2.1. Study sites 

We selected 40 forest sites from the Fluxnet community including 20 
evergreen needleleaf forests, 14 deciduous broadleaf forests and 6 mixed 
forests (Fig. 1). The selection criteria were as follows. First, we used the 
sites which have at least 5 years of complete data records, with these 
being less than 20% gap-filled each year. Second, the selected sites had a 
complete set of meteorological variables, including air temperature, 
precipitation, shortwave radiation. Third, mature and undisturbed for
ests were given preference. All sites are distributed in North America 
and Europe, covering various climate types. The descriptions of these 
sites are shown in Supplementary Table 1. 

2.2. Flux and meteorological data 

Flux and meteorological data at all study sites were obtained from 
the FLUXNET2015 Dataset (https://fluxnet.fluxdata. 
org/data/fluxnet2015-dataset/). This dataset collects the continuous 
half-hourly eddy covariance measurements at FLUXNET sites and in
cludes several improvements to the data quality control protocols and 
the data processing pipeline (Pastorello et al., 2020, 2014). Net 
ecosystem exchange (NEE = -NEP) is filtered with an ensemble of 
USTAR thresholds calculated with two different methods (Barr et al., 
2013; Papale et al., 2006), and then gap-filled with the marginal dis
tribution sampling (MDS) method (Reichstein et al., 2005), and parti
tioned into Gross Primary Production (GPP) and Ecosystem Respiration 
(RECO) using both the nighttime based (Reichstein et al., 2005) and 
daytime based approach (Lasslop et al., 2010). GPP and RECO based on 
nighttime approach were used in this study. RECO estimated from 
nighttime data (Reichstein et al., 2005) were used in this study. 

Air temperature (Ta), shortwave radiation (SW), vapor pressure 
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deficit (VPD) and precipitation were obtained from field measurement 
of flux towers. To ensure data measurement consistency across flux sites, 
the gridded daily soil water content (SWC) (CCI SM v04.2, http://www. 
esa-soilmoisture-cci.org) with 0.25◦ spatial resolution and monthly soil 
temperature (Ts) (FLDAS_NOAH01_C_GL_M,https://disc.gsfc.nasa.gov/ 
datasets/FLDAS_NOAH01_C_GL_M_001/summary?key
words=FLDAS_NOAH01_C_GL_M) data records with 0.1◦spatial resolu
tion and a depth of 0–10 cm were obtained (An et al., 2016; Dorigo et al., 
2017). The mean values of these meteorological variables in early 
summer (from June 1 to July 31) were calculated from daily record in 
each site-year. The reason for the selection of this time duration is that 
most of days of year (DOYs) for the peak of GPP and RECO were 
appeared in June and July in the three forest types (GPPmax: DOY 185 
+/- 23 for ENF, DOY 181 +/- 15 for DBF and DOY 184 +/- 15 for MF; 
RECOmax: DOY 199 +/- 24 for ENF, DOY 184 +/- 26 for DBF and DOY 
206 +/- 36 for MF) (supplementary Fig. 1). 

2.3. Physiological and phenological metrics 

Several physiological and phenological metrics derived from daily 
GPP and RECO were used in this study. The summer physiological 
metrics were the maximum value of GPP and RECO (GPPmax and 
RECOmax). The phenological metrics included the start, end and length 
of the photosynthesis (GPPstart, GPPend, and GPPGSL) and respiration 
(RECOstart and RECOend and RECORSL), and we also counted the days 
when GPPmax and RECOmax appeared. 

The following methods were used to calculate these metrics for each 
site-year. We derived the smoothed time series estimates of GPP and 
RECO using the Savitzky-Golay (SG) filter, which is based on local 
polynomial least square fitting and widely used in data smoothing and 
denoising (Chen et al., 2004; Savitzky and Golay, 1964) (Fig. 2). The 
smoothing window and iteration time were set as 4 and 20, respectively 
(Peng et al., 2019). GPPmax and RECOmax can be determined as the 
maximum value of smoothed daily GPP and RECO. Then, 10% of the 
difference between annual maximum and minimum RECO was adopted 
to define RECOstart and RECOend (Wu and Chen, 2013). Finally, we fitted 
a seven-parameter double logistic function (Eq. (1)) to derive fitted 
curves for daily GPP estimates (Gonsamo et al., 2012). GPPstart and 
GPPend can be estimated by the extreme points of the third derivative of 
the fitted curve of equation (1). 

GPP(t) = α1 +
α2

1 + e− ∂1(t− β1)
−

α3

1 + e− ∂2(t− β2)
(1)  

where GPP (t) is daily GPP at day of year (DOY) t, α1 is the background of 

GPP in the year, α2 is the early summer plateau, α3 is the amplitude of 
late summer plateau, ∂1 and ∂2 are the transition in slope coefficients, and 
β1 and β2 are the midpoints in the day of year (DOY) of these transitions 
for GPP increase and decrease, respectively. GPPstart is the DOY at the 
beginning of the slope of the rising curve. Similarly, GPPend is the DOY at 
the end of the falling curve (Fig. 2). 

2.4. Modeling NEP using physiological metrics 

After obtaining phenological metrics, we can determine the pheno
logical indicator of the respiration–growth length ratio (RGR) (Wu and 
Chen, 2013): 

RGR =
RECOend − RECOstart

GPPend − GPPstart
× 100% (2) 

After obtaining phenological metrics, considering the important and 
opposite roles of physiological metrics (GPPmax and RECOmax) in regu
lating annual carbon uptake, we derived two new integrated 

Fig. 1. Spatial distribution of study sites in this study. ENF ( ), DBF ( ) and MF ( ) represent evergreen needleleaf forests, deciduous broadleaf forests and 
mixed forests, respectively. The circle size represents the data years of these sites. 

Fig. 2. Example of calculating the metrics in this study using daily gross pri
mary productivity (GPP) and respiration (RECO) data of Ontario-Turkey Point 
1974 Plantation White Pine (CA-TP3) in 2012. The growing season start 
(GPPstart) and end (GPPend) are defined by the extremes of the third derivatives 
(GPP (DOY)) of the fitted logistic function. RECOstart and RECOend are respec
tively determined by the days when smoothed daily RECO first reaches and 
leaves 10% of the annual RECO value range. GPPmax and RECOmax are defined 
as the maximum of smoothed GPP and RECO curves. 
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physiological indicators: the photosynthesis-respiration maximum ratio 
(PRMR) and the maximum carbon uptake index (MCUI). 

PRMR was proposed to explain the IAV of NEP, since both GPPmax 
and RECOmax showed higher correlation with NEP anomaly than 
phenological metrics for all forest types (Fig. 3). Thus, PRMR was 
selected as a candidate for temporal-scale factor (Scaletemporal) of MCUI. 

PRMR =
GPPmax

RECOmax
(3) 

Given the great potential of GPPmax in explaining the spatial vari
ability of NEP (Fig. 4), we defined GPPmax as the spatial-scale factor 
(Scalespatial) of MCUI. Accordingly, MCUI (unit: grams C meter-2day− 1) 
was finally defined as followed (see Eq. (4)). 

MCUI = Scaletemporal*Scalespatial =
GPPmax

RECOmax
*GPPmax (4)  

2.5. Statistical analysis strategy 

We calculated the yearly anomalies of all variables, which have been 
verified as a reliable method in evaluating IAV between variables across 
sites (Richardson et al., 2010). (Richardson et al., 2010). The yearly 
anomalies of physiological indicators, phenological indicators, meteo
rological variables in early summer and NEP were calculated using this 
method. The yearly anomaly was defined as the difference between the 
annual observations and the multi-year mean value of the study period. 

Ai = xi − Xmean (5) 

Fig. 3. Relationship between the interannual net 
ecosystem productivity (NEP) anomalies and metrics 
anomalies: (a) the start of the growing season 
(GPPstart), (b) the start of respiration (RECOstart), (c) 
the end of the growing season (GPPend), (d) the end of 
respiration (RECOend), (e) the length of the growing 
season (GPPGSL), (f) the length of respiration 
(RECORSL), (g) the maximum of gross primary pro
duction (GPPmax) and (h) the maximum of respiration 
(RECOmax) in evergreen needleleaf forests (ENF), de
ciduous broadleaf forests (DBF) and mixed forests 
(MF) ecosystem.   

Y. Liu et al.                                                                                                                                                                                                                                      



Ecological Indicators 129 (2021) 107982

5

where Ai is the yearly anomaly of a variable in the year i, xi represents 
the observation of the variable in the year i, and Xmean is the multi-year 
mean value of the variable in specific site during the study period. 

In addition to the IAV, we compared the ability of phenological and 
physiological indicators to explain the SV of NEP across sites for a 
particular forest type (i.e. DBF, ENF, MF). First, the mean values and 
standard errors of these indicators were calculated for each site. Then, a 
simple linear regression was used to analyze the relationship between 
these indicators and NEP across each of three forest types. All correla
tions in this study were evaluated by the Pearson correlation coefficient 
(r) and a p-value threshold of 0.05. Furthermore, these correlations were 
divided into DBF, ENF and MF forest functional types, considering their 
large differences in carbon sequestration characteristics and responses 
to climate change. 

3. Results 

3.1. Explaining variability of NEP using single physiological and single 
phenological metrics 

We found that physiological metrics (GPPmax and RECOmax) and 
phenological metrics (GPPstart, GPPend, GPPGSL, RECOstart, RECOend and 
RECORSL) differed in their ability in explaining the IAV of NEP among 
these three forest types. Besides, opposite correlations were observed 
between the IAV of NEP and GPP-based and RECO-based metrics 
(Fig. 3). 

Phenological metrics showed relatively weak relationships with the 
annual NEP. The GPP-derived phenological metrics were only signifi
cantly correlated with annual NEP at DBF sites. Among them, GPPGSL 

Fig. 4. Relationship between annual net ecosystem 
productivity (NEP) and metrics: (a) the start of 
growing season (GPPstart), (b) the start of respiration 
(RECOstart), (c) the end of growing season (GPPend), 
(d) the end of respiration (RECOend), (e) the length of 
growing season (GPPGSL), (f) the length of respiration 
(RECORSL), (g) the maximum of gross primary pro
duction (GPPmax) and (h) the maximum of respiration 
(RECOmax) in evergreen needleleaf forests (ENF), de
ciduous broadleaf forests (DBF) and mixed forests 
(MF) ecosystem.   
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and GPPend showed higher ability than GPPstart, with Pearson’ r of 0.33 
(p < 0.001) and 0.37 (p < 0.001), respectively (Fig. 3a, c, e). However, 
the phenological metrics derived from RECO showed no significant 
correlation with the NEP at DBF sites, but significant correlations at MF 
and ENF sites. Similar to the phenological metrics of photosynthesis, 
RECOend and RECORSL performed relatively better than the RECOstart, 
with negative r of − 0.15 (p < 0.05) and − 0.22 (p < 0.001) for ENF sites 
and r of − 0.23 (p < 0.05) and − 0.21 (p = 0.05) for MF sites (Fig. 3b, d, 
f). 

Physiological metrics (GPPmax and RECOmax) exhibited a higher 
correlation than corresponding phenological metrics in interpreting the 
IAV of NEP. GPPmax performed better than any other GPP-derived 
phenological metrics (GPPstart, GPPend and GPPGSL), with higher corre
lations at DBF sites (r = 0.41, p < 0.001) and ENF sites (r = 0.21, p <
0.001) (Fig. 3g). Similarly, we found that RECOmax was more tightly 
correlated with annual NEP than RECO-derived phenological metrics 
(RECOstart, RECOend and RECORSL), with r of − 0.29(p < 0.001), − 0.15(p 
< 0.05) and − 0.43(p < 0.001) for ENF, DBF and MF sites, respectively 
(Fig. 3h). 

The impacts of physiological and phenological metrics on SV of NEP 
were also analyzed among different forest types. We found that, in 
contrast to IAV of NEP, consistent correlations were observed between 
SV of NEP and GPP-based and RECO-based metrics (Fig. 4). 

The RECO-derived phenological metrics, including RECOstart, 

RECOend, and RECORSL, were significantly correlated with SV of NEP at 
ENF sites, with comparable Pearson’s r of − 0.57 (p < 0.01), 0.49 (p <
0.05) and 0.54 (p < 0.05). RECOstart was the only metric that was 
significantly correlated with NEP at DBF sites (r = -0.68, p < 0.01). 
However, no significant correlation was observed between the SV of 
NEP and RECOmax of these three forest types. 

Compared with RECO-derived metrics, all GPP-derived metrics 
exhibited higher correlations with the SV of NEP for ENF sites (Fig. 4), 
and GPPstart, GPPend, GPPGSL and GPPmax had overall similar perfor
mances with high Pearson’s r of − 0.67 (p = 0.001), 0.53 (p < 0.05), 0.68 
(p < 0.001), 0.69 (p < 0.001) (Fig. 4a, c, e, g), respectively. Among 
them, GPPGSL and GPPmax were also reliable in interpreting the SV of 
NEP at DBF sites (r = 0.57, p < 0.05 and r = 0.54, p < 0.05) (Fig. 4e, g). 
GPPmax was the only metric that was significantly correlated with the SV 
of NEP of MF (r = 0.72, p < 0.05) (Fig. 4g). 

3.2. Explaining the variability of NEP using integrated physiological and 
integrated phenological indicators 

The PRMR was proposed with a better performance of single physi
ological metrics (GPPmax and RECOmax) in explaining the IAV of NEP (as 
presented in Fig. 3), and MCUI aimed to further improve the ability of 
PRMR in interpreting the SV of NEP (as presented in Fig. 4). We 
compared these two indicators with RGR, which is the phenological 

Fig. 5. Relationship between the interannual net ecosystem productivity (NEP) anomalies and indicator anomalies: (a) Respiration-growth length ratio (RGR), (c) 
Photosynthesis- respiration maximum ratio (PRMR), (e) Maximum carbon uptake index (MCUI). Relationship between annual NEP and (b) RGR, (d) PRMR, (f) MCUI 
in evergreen needleleaf forests (ENF), deciduous broadleaf forests (DBF) and mixed forests (MF) ecosystem. 

Y. Liu et al.                                                                                                                                                                                                                                      



Ecological Indicators 129 (2021) 107982

7

indicator integrating the length of GPP and RECO. 
We found that RGR showed limited potential in interpreting the IAV 

and SV of NEP. RGR was slightly negatively correlated with NEP at ENF 
and DBF sites (r = -0.12, p = 0.05 and r = -0.35, p < 0.001) (Fig. 5a), and 
no significant correlation was observed at MF sites. Besides, RGR only 
had a significant correlation with spatial NEP at ENF sites (r = -0.45, p <
0.05) (Fig. 5b). 

In comparison, PRMR and MCUI performed better in explaining both 
IAV and SV of NEP, especially at ENF and MF ecosystems where RGR 
failed to provide reliable NEP estimates (Fig. 5). Both PRMR and MCUI 
were significantly correlated with IAV and SV of NEP for all three forest 
types (Fig. 5c, d, e, f). MCUI improved the accuracy of PRMR in inter
preting SV of NEP, with a higher r of 0.90 (p < 0.001) for DBF and 0.91 
(p = 0.01) for MF, and a comparable r of 0.93 (p < 0.001) for ENF (Fig. 5 
d, f). Moreover, compared with PRMR, MCUI showed a higher correla
tion with the IAV of NEP in the DBF ecosystem, with a high Pearson’s r of 
0.67 (p < 0.001) (Fig. 5c, e). 

We further compared the performances of MCUI and RGR in 
explaining the variability of NEP at each study site (Table 1). RGR still 
showed limited potential with significant correlations observed only at 
two ENF sites (CZ-BK1 and DE-Tha) and two DBF sites (IT-Ro1 and IT- 
Ro2). By comparison, MCUI was more tightly linked to IAV of NEP for 
all three forest types, both in the number of significant sites (12 out of 20 
for ENF, 10 out of 14 for DBF sites and 3 out of 6 for DBF sites) and in the 
value of the correlation coefficient with r ranged from 0.53 (p = 0.033) 
at US-NR1 to 0.96 (p = 0.000) at US-GLE. In addition, we found that, for 
significant correlations, the mean slope of MCUI and NEP regressions at 
ENF and MF sites were steeper than that of DBF sites (38.8 for ENF, 36.9 
for MF and 20.1 for DBF). 

3.3. Controls of meteorological variables on MCUI 

We found that relationships between MCUI and meteorological 
variables, including Ta, SW, VPD, precipitation, Ts and SWC, differed 
substantially among forest types (Table 2 and Fig. 6). 

For ENF ecosystem, SWC was the only meteorological variable that 
was significantly correlated with MCUI anomalies, with a positive r of 
0.20 (p < 0.01) (Table 2). The same result was also confirmed at the site 
level. In contrast with other meteorological drivers, SWC was signifi
cantly correlated with MCUI anomalies at most ENF sites, with more 
significantly positive than negative correlations (15.0%, p < 0.05 vs. 
5.0%, p < 0.05) (Fig. 6). More significant correlations were observed at 
DBF sites. SW, VPD, Precipitation and SWC were all significantly 
correlated with MCUI. Among them, SW and VPD showed positive 
correlations, but precipitation and SWC exhibited negative correlations. 
SW was the most important factor affecting MCUI with r of 0.34 (p <
0.001) (Table 2). Similar results were observed at each single site, where 
the MCUI of 78.57% of DBF sites was positively correlated with SW 
(Fig. 6). No significant correlation was found between MCUI and 
meteorological variables anomalies at MF sites. The result was consis
tent with the statistics at the site level as shown in Fig. 6. 

4. Discussion 

4.1. The role of phenology in regulating NEP among forest types 

Phenological metrics seemed to show relatively limited potential in 
predicting the IAV of NEP (Fig. 3). Among three forest types, the sig
nificant correlation between photosynthesis phenology and NEP was 
only found at DBF sites, and GPPGSL and GPPend performed slightly 
better than GPPstart (Fig. 3a, c, e). These results are in line with a pre
vious study that found higher correlations of NEP to phenological met
rics (the start, end and length of carbon uptake) at DBF sites than that of 
ENF sites (Fu et al., 2017). Deciduous forest adopts the survival strategy 
of higher rate of photosynthesis in a shorter growing season, and reduces 
carbon loss in winter by defoliation, Therefore, phenology showed 

Table 1 
Relationship between annual cumulative net ecosystem production (NEP) and 
respiration-growth length ratio (RGR) and the maximum carbon uptake index 
(MCUI) for each site.  

Site_ID PFT RGR MCUI 

R (P-value) Slope (g Cm- 

2day− 1) 
R (P- 
value) 

Slope (g Cm- 

2day− 1) 

CA- 
Man 

ENF NS  NS  

CA-Obs ENF − 0.46 
(0.142) 

− 198.81 NS  

CA-TP1 ENF NS  0.86 
(0.063)  

26.61 

CA-TP3 ENF NS  0.69 
(0.028)  

18.26 

CA-TP4 ENF NS  0.59 
(0.042)  

14.84 

CH-Dav ENF NS  0.55 
(0.021)  

76.85 

CZ-BK1 ENF − 0.97 
(0.007) 

− 343.71 0.83 
(0.081)  

42.90 

DE-Tha ENF − 0.53 
(0.029) 

− 673.16 NS  

FI-Hyy ENF − 0.43 
(0.075) 

− 237.30 0.70 
(0.001)  

23.18 

FI-Sod ENF − 0.46 
(0.096) 

− 136.75 0.52 
(0.058)  

16.94 

FR-LBr ENF NS  0.67 
(0.034)  

40.03 

IT-Lav ENF NS  0.86 
(0.000)  

16.06 

IT-Ren ENF NS  0.87 
(0.000)  

37.48 

IT-SRo ENF NS  0.70 
(0.008)  

68.49 

NL-Loo ENF NS  0.65 
(0.006)  

52.38 

RU-Fyo ENF NS  0.63 
(0.009)  

39.14 

US-Blo ENF NS  NS  
US-GLE ENF − 0.54 

(0.137) 
− 226.75 0.96 

(0.000)  
75.09 

US-Me2 ENF NS  NS  
US-NR1 ENF NS  0.53 

(0.033)  
25.75 

CA-Oas DBF − 0.44 
(0.105) 

− 378.15 0.44 
(0.104)  

18.20 

DE-Hai DBF NS  0.51 
(0.079)  

10.57 

DE-Lnf DBF NS  0.75 
(0.033)  

17.53 

DK-Sor DBF NS  0.70 
(0.001)  

34.02 

FR-Fon DBF − 0.51 
(0.166) 

− 406.05 0.90 
(0.000)  

18.95 

IT-Col DBF NS  0.70 
(0.008)  

14.80 

IT-Ro1 DBF − 0.86 
(0.029) 

− 199.49 0.68 
(0.095)  

23.01 

IT-Ro2 DBF − 0.81 
(0.008) 

− 297.57 0.81 
(0.008)  

21.18 

US-Ha1 DBF − 0.41 
(0.085) 

− 375.09 0.55 
(0.012)  

22.39 

US- 
MMS 

DBF − 0.42 
(0.102) 

− 246.15 0.50 
(0.051)  

17.45 

US-Oho DBF NS  0.85 
(0.002)  

23.79 

US- 
UMB 

DBF NS  0.78 
(0.001)  

15.55 

US- 
Umd 

DBF NS  NS  

US-WCr DBF NS  0.64 
(0.026)  

14.95 

BE-Bra MF NS  0.57 
(0.028)  

32.50 

BE-Vie MF NS  0.59 
(0.010)  

43.52 

(continued on next page) 
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higher sensitivity to carbon sequestration (Churkina et al., 2005; Givn
ish, 2002; Richardson et al., 2009; Roser et al., 2002). Other studies have 
discussed the importance of autumn phenology in regulating the inter
annual variability of NEP (Dragoni et al., 2011; Gallinat et al., 2015; Wu 
et al., 2013; Zhu et al., 2012). In addition, we found that the start, end 
and length of the respiration also played an underappreciated role in 
explaining the IAV of NEP at ENF and MF sites (Fig. 3b, d, f). These 
results confirmed the important role of the respiration in controlling 
annual NEP (Chen et al., 2015; Valentini et al., 2000). 

4.2. The role of physiology in regulating NEP among forest types 

We found that physiological indicators may be potentially more 
useful than phenological metrics to interpret the IAV of NEP (Fig. 3). 
Such a result is consistent with a previous study, given that the large 
fluxes rather than phenology could better help in understanding the 
variability of these fluxes (Zscheischler et al., 2016). The cumulative 
NEP in summer contributed more to annual NEP than its counterparts in 
spring and autumn (Supplementary Fig. 2). Since GPPmax and RECOmax 
are tightly correlated with summer NEP (Supplementary Fig. 3), they 
could provide relatively reliable NEP estimates (Musavi et al., 2017; Xia 
et al., 2015; Zhou et al., 2016). 

GPPmax of DBF exhibited a higher correlation with NEP than that of 
ENF and MF, but RECOmax of DBF sites showed lower correlation than 
that of ENF and MF. We suggest that the summer photosynthetic rate of 
DBF is more crucial in controlling carbon sequestration than that of ENF 
and MF, while the maximum summer respiratory rate seems less 
important. At ENF sites, both GPPmax and RECOmax influenced the IAV of 
NEP, and RECOmax was more linked to IAV of NEP than GPPmax. Addi
tionally, ENF is more sensitive to summer respiration and less sensitive 
to summer photosynthesis than DBF, as indicated by the different 
regression slopes. This performance might be interpreted by physio
logical characteristic of ENF, given that ENF ecosystems are more 
adaptable to seasonal changes with relatively low rates of photosyn
thesis and high rates of respiration continuing for longer periods than 
deciduous forests (Barr et al., 2009; Piao et al., 2007; Richardson et al., 
2010; Wu and Chen, 2013). For MF, we found that the IAV of NEP was 
correlated with RECOmax but not with GPPmax. These results demon
strate the substantial differences of NEP controllers among forest types 
as well as that partitioning NEP into GPP and RECO could help to 

understand the role of these two processes in controlling carbon uptake 
(Baldocchi et al., 2018; Fu et al., 2019; Niu et al., 2017; Schwalm et al., 
2010). 

4.3. Controls of meteorological factors on MCUI 

Understanding the response of MCUI to meteorological factors can 
help to model NEP in forest ecosystem. MCUI is an integrated indicator 
that combines maximum respiratory and photosynthetic rates, thus any 
meteorological variables that affect these two processes will affect 
MCUI. Unfortunately, we found that there is no single meteorological 
driver for MCUI. 

Precipitation can affect carbon sequestration by affecting SWC 
(Knapp et al., 2008), however, the effects of water regimes on the IAV of 
NEP are often ecosystem specific (Niu et al., 2017). We found that MCUI 
was not significantly correlated with summer precipitation but summer 
SWC at ENF sites, suggesting that SWC has a more direct impact on NEP 
than precipitation. The positive correlation between SWC and MCUI at 
ENF sites confirms that a higher SWC could probably lead to a higher 
NEP in a water limited ecosystem (Davidson et al., 1998; Quan et al., 
2019; Reich et al., 2018). However, we found that both SWC and pre
cipitation in summer are negatively correlated with MCUI at DBF sites. A 
similar result that summer precipitation is negatively correlated with the 
maximum of NEP at DBF sites (Fu et al., 2017), suggests that more water 
does not always lead to a higher NEP. More precipitation and high SWC 

Table 1 (continued ) 

Site_ID PFT RGR MCUI 

R (P-value) Slope (g Cm- 

2day− 1) 
R (P- 
value) 

Slope (g Cm- 

2day− 1) 

CA-Gro MF NS  NS  
CH-Lae MF − 0.49 

(0.150) 
− 461.82 0.77 

(0.060)  
32.42 

US-PFa MF NS  NS  
US-Syv MF NS  0.85 

(0.007)  
34.77 

Note: ENF, DBF and MF represent evergreen needleleaf forest, deciduous 
broadleaf forests and mixed forest, respectively. NS indicate not significant. 

Table 2 
Relationships between the maximum carbon uptake index (MCUI) anomaly and meteorological variables anomaly across vegetation types.  

Meteorological variables  Ta (◦C) SW (MJm-2day− 1) VPD (hPa) Precipitation (mm) Ts (◦C) SWC (%) 

ENF r − 0.02  0.004 − 0.12  0.05  0.03  0.20 
(N = 20) P-value 0.748.  0.947 0.078  0.514  0.714  0.004 
DBF r 0.05  0.34 0.17  ¡0.19  0.07  ¡0.12 
(N = 14) P-value 0.482  0.000 0.037  0.013  0.349  0.012 
MF r − 0.07  − 0.11 − 0.04  − 0.10  − 0.09  0.09 
(N = 6) P-value 0.523  0.327 0.753  0.444  0.420  0.450 

Note: ENF = Evergreen Needleleaf forests, DBF = Deciduous Broadleaf forests, MF = mixed forests. Ta, SW, VPD, precipitation, Ts and SWC are average values of daily 
air temperature, shortwave radiation, vapor pressure deficit, precipitation, soil temperature and soil water content from June to July. Bold font indicated significant 
correlations were found. 

Fig. 6. The correlation coefficient between the maximum carbon uptake index 
(MCUI) and environment variables at all three types (20 evergreen needleleaf 
forest (ENF), 14 deciduous broadleaf forest (DBF) and 6 mixed forest (MF)) of 
study sites. Bars above and below the zero line represent the percentages of 
positive and negative correlations, respectively. Dark-colored parts indicate 
significant correlations at p < 0.05 and light-colored parts indicate significant 
correlations at p < 0.1. Ta, SW, VPD, precipitation, Ts and SWC are average 
values of daily air temperature, global shortwave radiation, vapor pressure 
deficit, precipitation, soil temperature and soil water content from June to July. 
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are always associated with less incoming PAR, which leads to less 
photosynthesis, and hence less NEP (Gonsamo et al., 2015; Oliphant 
et al., 2011). The significant positive correlation between SW and MCUI 
in DBF ecosystems also supported this view (Table 2). With climate 
change, the aggravated mismatch between water conditions and tem
perature may instead have opposite effects on productivity (Heisler- 
White et al., 2009; Thomey et al., 2011). In addition, MCUI was 
significantly correlated with VPD, but showed no preference for positive 
or negative correlation at the site level (Fig. 6). 

Shortwave radiation has a more important role than other climate 
factors in regulating IAV of NEP at local scales (Jung et al., 2017; Niu 
et al., 2017), especially in light-sensitive ecosystems (Delpierre et al., 
2012; Oliphant et al., 2011). We found that summer shortwave radiation 
was significantly positively correlated with MCUI at DBF sites (Table 2 
and Fig. 6). Such a result is consistent with a previous study, given that 
the increasing of shortwave radiation is in line with increasing NEP in 
mature deciduous forests (Gonsamo et al., 2015). Gonsamo et al. (2018) 
also showed that the earlier occurrence of peak plant activity will result 
in increased plant productivity because of higher solar irradiance. 
However, in regions with long winters, the spring phenological activity 
and carbon uptake rely on cues other than the shortwave radiation 
(Zohner et al., 2016), which is consistent with the poor correlation be
tween shortwave radiation and MCUI at ENF sites, and also suggest the 
complexity of shortwave radiation in controlling NEP among different 
temperate forest species. 

4.4. The development of MCUI 

The integrated indicator MCUI was developed because of the 
imperfect but complementary ability of GPPmax and RECOmax in esti
mating the interannual variability of NEP (Fig. 3). First, we proposed the 
PRMR using the ratio of photosynthesis and respiration maximum, and 
PRMR did exhibit higher potential than single physiological metrics, 
confirming that respiration and photosynthesis are equally important in 
regulating NEP (Huang et al., 2012; Piao et al., 2008; Wu et al., 2013). 
Then, considering the better performance of GPPmax in predicting SV of 
NEP (Fig. 4g), MCUI was developed based on PRMR, and this helped to 
improve the ability of PRMR in explaining SV of NEP, especially at DBF 
sites (Fig. 5d, f). Furthermore, it should be noted that MCUI also per
formed better than PRMR in explaining the IAV of NEP at DBF sites 
(Fig. 5c, e), and the higher correlation between GPPmax and IAV of NEP 
at DBF sites may interpret the better performance (Fig. 3g). Moreover, 
MCUI showed a similar and powerful ability to indicate the variability of 
NEP among three forest types, especially at ENF and MF sites where the 
previously integrated phenological indicator (RGR) cannot provide 
reliable estimates. As an integrated physiological indicator, the better 
performance of MCUI is not surprising, given that the generally stronger 
abilities of single physiological metrics than single phenological metrics 
in explaining NEP. The better performance of integrated physiological 
indicator compared to integrated phenological indicators further illus
trates that the summer physiology status (related to maximum potential) 
may be more valuable than phenology (related to time) in regulating 
forest NEP, which agrees with the previous finding that the maximum 
carbon uptake dominates the IAV of NEP more than the net carbon 
uptake period at the global scale (Fu et al., 2019). 

In contrast with DBF, the MCUI of ENF and MF were more sensitive 
to IAV and SV of NEP, with higher slopes of regressions (Fig. 5e, f), 
indicating the more important role of summer physiology in regulating 
NEP for ENF and MF ecosystems than for DBF ecosystems. On the con
trary, the phenology of DBF exhibited a relatively higher sensitivity to 
NEP, which is also supported by previous studies (Churkina et al., 2005; 
Piao et al., 2007; Richardson et al., 2010; Wu et al., 2013). The opposite 
sensitivity of physiology–NEP and phenology-NEP relationship 
confirmed that the sensitivity of ecophysiological-drivers of NEP is often 
ecosystem specific and depends on the characteristic of the ecosystem. 

To the best of our knowledge, this is the first analysis to simulate NEP 

merely using physiological metrics, which is a beneficial attempt and 
particularly significant for C sequestration. However, MCUI was math
ematical and performance-based, rather than mechanistic and meteo
rological driven. We tried to interpret the variability of MCUI using the 
meteorological factors, but unfortunately, no single meteorological 
driver for MCUI was found among these forest types (Table 2 and Fig. 6). 
In addition, the MCUI still showed uncertainty, especially at several ENF 
sites. Although GPPmax and RECOmax could represent photosynthesis 
and respiration to some extent (Huang et al., 2018; Xia et al., 2015; Xu 
et al., 2019; Zhou et al., 2017), using only these two metrics in summer 
might inevitably lead to certain uncertainties. For instance, the 
maximum carbon uptake depends on the relative strengths of photo
synthesis and respiration, yet the largest difference between photosyn
thesis and respiration is not always around the day of GPPmax and 
RECOmax, which results in the inability of MCUI to accurately predict the 
NEP. 

4.5. Limitations and challenges 

Our study showed that the IAV and SV of NEP can be better explained 
by physiological indicator in summer rather than previously used 
phenological indicator. However, given that most of flux sites have less 
than 30 years measurements, and hence the NEP variability is strictly 
more sensitive to summer physiology rather than phenology in such a 
short period. Besides, the distribution of sampled flux towers may affect 
the result of the relative contributions of the phenology and physiology 
to SV of NEP. 

In addition, the different forest managements may have impacts on 
annual cumulative NEP (Clay et al., 2019; Fahey et al., 2010; Hyvönen 
et al., 2007; Tong et al., 2020), especially considering that these sites are 
located in different geographical environments. When calculating the 
overall average over all years for a site, the average implies the man
agement of the respective sites in all years was constant. However, the 
fact that management has always changed over times. Thus, it may 
affect the validity of the indicators proposed in this study under different 
forest management modes and methods. 

Since the development of MCUI was based on GPP and RECO at 
tower stations, the application of MCUI is limited due to the lack of 
measured ecosystem respiration in large areas. Clarifying the relation
ship between MCUI and meteorological factors will help to select the 
useful meteorological variables to predict MCUI and thus NEP, but 
inconsistent correlations were observed among ENF, DBF and MF sites, 
which causes its difficulty to apply in a large area (Shen et al., 2014). 

5. Conclusions 

Our study explored the impact of summer physiology of photosyn
thesis and respiration in regulating the IAV and SV of NEP in forests, in 
contrast to previous studies of carbon sequestration mainly focused on 
the photosynthetic phenology or the metrics of NEP itself. Using 514 
sites-years of flux data observed at 50 sites covering three forest types 
from North America and Europe, we found that the IAV and SV of NEP 
can be better explained by a new integrated physiological indicator, 
MCUI, highlighting the important role of physiological process in sum
mer. This might be the first evidence of the importance of investigating 
the role of summer physiological indicators in controlling the variability 
of NEP based on both GPP and RECO. These results are of great signif
icance for understanding the responses of the carbon uptake in forest 
ecosystem under future climate change. 
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