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1  |  INTRODUC TION

By the late 15th century, North America was inhabited by ~7 million 
humans, and their activities were responsible for substantially modify-
ing native land cover (Denevan, 1992). The ensuing period of European 
colonization and population expansion resulted in the conversion of 

large expanses of forests, grassland, and shrubland into roads, settle-
ments, and agricultural ecosystems (Goldewijk et al., 2011). By 1850, 
the human population in North America was ~23 million, with westward 
expansion in the United States after 1860 increasing the number of 
farms to six million over a span of 20 years (Shannon, 1989). According 
to the 2010 census, the ~2 million farms in the United States comprise 
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Abstract
Previous studies have identified regions where the occurrence of rainfall significantly 
increases or decreases the probability for subsequent rainfall over periods that range 
from a few days to several weeks. These observable phenomena are termed “rain-
fall feedback” (RF). To better understand the land–atmosphere interactions involved 
in RF, the behavior of RF patterns was analyzed using data from 1849 to 2016 at 
~3000 sites in the contiguous United States. We also considered changes in major 
land-use types and applied a geographically weighted regression model technique for 
analyzing the predictors of RF. This approach identified non-linear and spatially non-
stationary relationships between RF, climate, land use, and land type. RF patterns in 
certain regions of the United States are predictable by modeling variables associated 
with climate, season, and land use. The model outputs also demonstrate the extent to 
which the effect of precipitation, temperature, and land use on RF depend on season 
and location. Specifically, major changes were observed for land use associated with 
agriculture in the western United States, which had negative and positive influences 
on RF in summer and winter, respectively. In contrast, developed land in the eastern 
United States correlated with positive RF values in summer but with negative ones in 
winter. We discuss how changes in climate and land use would be expected to affect 
land–atmosphere interactions, as well as the possible role that physical mechanisms 
and rain-enhanced bioaerosol emissions may play in the spatiotemporal changes ob-
served for historical patterns of rainfall frequency in the United States.
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the largest category of land use, representing 44% of the total (USDA). 
Moreover, human activities that modify landscapes in North America 
have accelerated during the last century (Yu & Lu, 2018), have been 
linked to significant changes in regional climate (Pitman et al., 2011), 
and have increased the likelihood of extreme weather events (Findell 
et al., 2017; Lejeune et al., 2018; Teuling et al., 2010).

Land-cover changes can directly or indirectly affect climate 
by influencing surface properties such as albedo, roughness, soil 
moisture, and the efficiency of evapotranspiration, as well as the 
partitioning of latent and sensible heat, wind speed, and atmospheric 
turbulence (de Noblet-Ducoudré et al., 2012; Nair et al., 2011; Zhang 
et al., 2015). While the specific landscape changes and tipping points 
necessary for altering such land–atmosphere interactions have not 
been thoroughly constrained, the climatic effect of changing land 
cover is well documented. For example, measurable changes in pre-
cipitation and climate are observed in recently urbanized and de-
forested regions (Chambers & Artaxo, 2017; Khanna et al., 2017; 
Pathirana et al., 2014; Seino et al., 2018).

Alteration of the Bowen ratio (i.e., ratio of sensible to latent 
heat), soil moisture, and surface albedo are all effects that have 
been shown to be associated with feedback on rainfall that have 
durations of several days (Eltahir, 1998; Tuttle & Salvucci, 2016). 
For example, decreased surface albedo can increase absorption of 
incident radiation and surface temperature, which in turn leads to 
more evaporation from the surface. Vegetated land cover also in-
creases evapotranspiration, thereby increasing atmospheric mois-
ture (Gerken et al., 2018) and enhancing the probability of afternoon 
precipitation (Findell et al., 2011). Afforestation-enhanced surface 
roughness may also be associated with enhanced evapotranspiration 
and precipitation (Yosef et al., 2018). Conversely, changing a heavily 
vegetated forest to agricultural land use has been shown to reduce 
evapotranspiration, cloudiness, and precipitation (Werth & Avissar, 
2002). Wind speed also effects evapotranspiration and can be al-
tered by changes in land use (Li et al., 2017).

In addition to the direct physical effects of vegetation and soil 
on air masses, land-use changes also alters the sources and emis-
sion (Morris et al., 2014; Suski et al., 2018) of aerosols, including bio-
aerosols that consist of microorganisms, biological propagules, and 
organic detritus (Wery et al., 2018). Aerosols have important direct 
and indirect effects on climate, and the indirect roles of bioaerosols 
emitted from terrestrial environments may have a role in the feed-
back between the land and atmospheric system (Morris et al., 2014). 
For example, the properties of certain bioaerosols allow them to af-
fect meteorological processes by acting as cloud condensation or 
ice nuclei, with the potential to influence cloud formation, cloud life-
time, cloud structure, precipitation formation, and radiative fluxes 
(Andreae & Rosenfeld, 2008; Bigg et al., 2015; Morris et al., 2004).

Time series analyses have revealed an association between rain-
fall and the frequency of rain events that subsequently occur 20 days 
after a rain event (Morris et al., 2017). A statistical indicator for the 
measurable influence of rainfall on subsequent rainfall, termed the 
rainfall feedback (RF) index, was quantified and mapped at 2940 sites 
across the continental USA using available data sets. The distribution 

and range of positive and negative RF index values across the United 
States appear to be associated with specific geographical and climate 
regions, as well as landscape types (Morris et al., 2017). Due to the 
cloud-active properties of certain bioaerosols, Morris et al. (2016) 
considered various phenomena (e.g., changes in soil moisture, Bowen 
ratio, evapotranspiration, and surface albedo) that could explain how 
landscape processes could affect meteorological conditions several 
weeks after a precipitation event. They concluded that changes in 
the emission fluxes of cloud-active bioaerosols was the most plau-
sible explanation for variation in the RF index among different land-
cover and land-use types. However, studies have also shown that soil 
moisture “memory” can extend land–atmosphere feedback that ef-
fect precipitation for periods of several weeks (Dirmeyer et al., 2009; 
McColl et al., 2019), suggesting that physical mechanisms could pro-
vide a plausible explanation for the RF patterns observed.

Given that vegetation exerts a multifaceted influence on hy-
drologic cycling, we analyzed RF variability to test the hypothesis 
that land use and type are predictors of the amplitude and type of 
feedback (i.e., a negative or positive RF index). Assuming that the 
effects may be nonlinear and vary spatially (i.e. spatially nonstation-
ary), we used season, climate, land use, and topography as variables 
for geographically weighted regression (GWR) models that predict 
the RF index. The model outputs were used to assess the effect of 
changes in climate and land-use proportions in the past and indicate 
that rainfall patterns in regions of the United States correlate well 
with human-induced changes in landscape from 1849 to 1960 ce. To 
contribute to pertinent experimental design for data acquisition to 
evaluate hypotheses about underlying mechanisms, we examine the 
range of land–atmosphere interactions that can explain these trends 
and discuss the implications of continued land-use changes for alter-
ing rainfall patterns in the United States.

2  |  MATERIAL S AND METHODS

2.1  |  Model construction

To explore spatial nonstationarity and varying relationships be-
tween RF and decisive factors, a multivariate GWR model was used. 
The GWR is an extension of ordinary least square (OLS) regression 
analysis (Fotheringham et al., 2002). An advantage of this method 
is that GWR models are sensitive to nonstationary interactions be-
tween the dependent and independent variables, whereas linear 
models are limited in their capacity to resolve the spatial autocor-
relation of the regression residuals (see Table S1).

The GWR model estimates a local coefficient for each location 
and explanatory variable and is defined by the equation:

where Yi is the dependent variable at location i, xik is the kth indepen-
dent variable at location i, m is the number of independent variables, βi0 

(1)Yi = � i0 +

m
∑

k=1

� ikxik + �i , i ∈ {1,…, n}
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is the intercept parameter at location i, βik is the local regression coeffi-
cient for the kth independent variable at location i, and εi is the random 
error at location i. The local coefficients were obtained via an OLS esti-
mation by incorporating a sample of observations weighted according 
to their proximity to location i, which was based on a distance-decay 
Gaussian weight function. The number of observations used to esti-
mate each local coefficient was determined by an adaptive bandwidth 
that was based on minimizing the drop-1 cross-validation criteria 
(Bivand et al., 2017; Fotheringham et al., 2002). Thus, the relationship 
between the independent variables and RF index is linear locally (i.e., 
within the estimated bandwidth). At the global scale, the effect of a sin-
gle predictor does not contribute linearly to the dependent variables.

2.2  |  Dependent variable and study area

RF indices were calculated previously (Morris et al., 2017) and are 
based on analysis of an average of 103  years of rainfall measure-
ment (range of 17 to 163 year per site) from 2940 meteorological 
stations within the contiguous United States of America (available 
at the Rainfall Feedback Maps database; w3.avign​on.inra.fr/rainf​
allfe​edbac​k/index.html). This metric is based on the number of rain 
events 20 days after a “key day,” which is defined as an above aver-
age rain event (range of 0.13 to 74 mm of rainfall among the sites; 
Bigg et al., 2015; Morris et al., 2017). For each site, the RF index was 
calculated by a cumulative sum of differences (CD) across every key 
day for which data are available using the following equation (Bigg 
et al., 2015; Morris et al., 2016):

An individual rainfall event is represented by dk on key day k, dk+j′ 
is a rainfall at j′ days after the key day, dk-j′ is rainfall j′ days before 
the key day, and n is the number of key days in the total collection 
of rainfall data for that site. A negative or positive value for the RF 
index indicates a decrease or increase, respectively, in the number of 
days before subsequent rainfall when compared to the time preced-
ing a key day rainfall.

2.3  |  Independent variables

A group of 73 candidate variables were selected to identify those 
most important in RF prediction (data sources in Table S2). Raster 
data for the candidate variables were cropped to 10-km diameter 
buffers that intersected with watersheds around each meteorologi-
cal station. Continuous data (e.g., climate variables) were averaged 
within the buffer, whereas discrete variables (i.e., land use and land-
scape) were extracted for each buffer and transformed into area 
proportions (value between 0 and 1). Land-use variables were pa-
rameterized by determining the proportion of US land (in 1970  ce 
and the difference between 1970 and 2011 ce) that classified into 

seven broad categories: developed land, barren land, forest (mixed, 
deciduous, and woody wetland), evergreen forest, shrubland, ag-
riculture and herbaceous, and wetland. Climate variables included 
precipitation (seasonal average; minimum and maximum rainfall per 
month) and temperature data in 1950 (seasonal average: minimum 
and maximum temperature per month), and the change in precipita-
tion and temperature data from 1950 and 2000 (Table S2). The dates 
of 1950 and 2000 were chosen based on raster data resolution and 
availability (Tables S2 and S3).

2.4  |  Model specification

To differentiate the effects of short-term (e.g., season, canopy den-
sity, and the presence of cultivated crops) from long-term trends 
attributable to land use and land-use change, data collected from 
spring to summer and fall to winter were modeled separately. For 
simplicity, the seasonally parsed data are hereafter referred to as 
summer (April to September) and winter (October to March). The 
models derived for summer and winter are identical in their relation-
ship between the dependent and independent variables. For ease 
of presentation, the subscript i, representing the location, has been 
omitted (see Equation 1):

This equation describes the RF index from 1960 to 2016 
(RF>1960) as a function of: (i) the RF index from 1849 to 1960 
(RF<1960; numberof rainevents followingkeyday) and its spatially 
smoothed correspondent, W15 ∗ RF<1960, computed using a weight-
ing scheme of the first 15 nearest observations (W15); (ii) altitude 
(m), Alt; (iii) 1950 climatic variables, Climk plus their seasonal change 
between 1950 and 2000, ΔClimk (temp °C; precipitation mm); and 
(iv) 1970 land-use proportions, LUj, and their change from 1970 and 
2011, ΔLUj. As this study is both spatial and temporal, the relation 
with past observations for a given observation needed to account 
for both past and past near observations. The inclusion of the RF 
index from 1849 to 1960 (RF<1960) and its spatially smoothed cor-
respondent controlled for potential spatio-temporal autocorrelation 
with the RF index from 1960 to 2016 (RF>1960). In other words, we 
included the value of RF at the same location at time (t  −  1) and 
the spatially smoothed values of RF at neighboring locations at time 
(t − 1) to explain the value of RF at a given location x at time t.

2.5  |  Model fitting and statistical analysis

Before fitting the GWR models to the summer and winter data, a 
feature selection step was performed using the maximum-relevance 

(2)CDj =

j
∑

j�=1

{(

1

n

∑

k ∈ key days

dk+j�

)

−

(

1

n

∑

k ∈ key days

dk−j�

)}

(3)

RF>1960 =𝛽0+

m
∑

k=1

𝛽climk
climk+

m
∑

k=1

𝛽Δclimk
Δclimk

+

p
∑

j=1

𝛽LUj
LUj+

p
∑

j=1

𝛽ΔLUj
ΔLUj

+𝛽RF<1960RF<1960+𝛽W15∗RF<1960
W15 ∗RF<1960+𝛽AltAlt+𝜀

http://w3.avignon.inra.fr/rainfallfeedback/index.html
http://w3.avignon.inra.fr/rainfallfeedback/index.html
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minimum-redundancy algorithm in order to identify a subset of 
both relevant and complementary features (De Jay et al., 2013). The 
coefficient parameters for the GWR models were estimated using 
the gwr function of the spgwr library in R, and their fit was com-
pared with that for two OLS models. Local T-values were generated 
to determine coefficient significance (1.96  ≤  T  ≤  −1.96, p  ≤  0.05). 
Data extraction [sp (Pebesma, Bivand, Rowlingson, et al., 2020), sf 
(Pebesma, Bivand, Racine, et al., 2020), and raster (Hijmans et al., 
2020)], feature selection [mlr (Bischl et al., 2016) and mRMRe (De 
Jay et al., 2013)], model fitting [spgwr (Bivand et al., 2020)], and plot 
generation [ggplot2 (Wickham, 2016)] were performed in RStudio 
1.1.447 with R version 3.5.0.

3  |  RESULTS

3.1  |  Descriptive statistics for the region of study

Descriptive statistics for all variables used in the summer and win-
ter GWR models are listed in Table S3. US landscapes in 1970 were 
dominated by agricultural and herbaceous land covers (48.6%) and 
mixed forest (20.6%; Table S3). The largest land-use changes from 
1970 to 2011 were agriculture and evergreen forests, which de-
creased an average of 6.1% and 1.6%, respectively, and developed 
land, which increased by 5.5%. Gains and losses for other land-use 
types were <1% between 1970 and 2011. Since long-term climate 
records tend to exist for weather stations in proximity to cities and 
agricultural regions, rather than natural areas, there is an inherent 
geographic bias in the data available. As such, caution should be ap-
plied to interpreting the results based on the land-use estimates for 
regions of the United States where data are sparse and temporally 
limited (e.g., southwestern USA). Additionally, because there is not 
a weather or land-use data set for the United States that covers the 
time period from 1849 to 2011, we had to use the PRISM data set 
(PRISM Gridded Climate Data, 2021) for periods before 1960 and 
the WorldClim data set (Fick & Hijmans, 2017) for periods after 
1960. As such, it is difficult to predict how differences in the meth-
ods used to create these data sets may have affected the capacity 
of our models to differentiate independent variables that correlate 
to the RF index.

3.2  |  Geographically weighted regression model 
outputs and contribution of variables to RF

For all sites during the 1960–2016 period, the average RF index was 
positive in summer (0.11, median) and negative in winter (−0.024, 
median; Figure 1). RF index values for the Northern Rockies and the 
plains during winter could not be calculated due to lack of rainfall 
in these regions during that period. The coefficient of determina-
tion (R2) averaged 0.40 for the entire period (Table S1) but varied by 
site and season (R2 = 0.14 for AS, 0.38 for OM; Figure S1; Table S1). 
The RF index pre-1960 did not correlate with post-1960 RF, yet it 

improved the predictive power of the model (i.e., from a global R2 of 
0.39 to R2 of 0.40 for the entire period).

Because the value of the GWR coefficients varies with location, 
their regression coefficients are less straightforward to interpret 
than those derived for conventional linear models. For this reason, 
the contribution of a predictor to the dependent variable was evalu-
ated by examining the product of the coefficient and corresponding 
variable (Figures 3–5), which directly represents the value that each 
variable contributes to the predicted RF index at a given site.

3.2.1  |  Effect of seasonal climate

The most strongly correlated and statistically significant predic-
tors of the RF index are minimum precipitation change, maximum 
precipitation, and temperature (Figure 2; Supplemental files S1 and 
S2). In summer, maximum temperature, maximum precipitation, and 
maximum precipitation change are negatively correlated with the RF 
index for 83%, 100%, and 100%, respectively, of the sites (Figures 2 
and 3; Table S4; Supplemental file S1). The period between April and 
September (i.e., summer) is markedly different from winter (Figures 
2 and 3; Supplemental file S1), with most of the variables creating 
both positive and negative effects, depending on the site and its lo-
cation (spatial nonstationarity).

3.2.2  |  Effect of land use and land-use change

Of all the land-use variables, forest, barren land, developed land, 
shrubland, and agriculture had the largest significant effects on sum-
mer and winter RF index values (Figure 2, Supplemental files S1 and 
S2). Fifty-four percent of mixed forest sites had positive RF index 
values in summer, but less than half of these (21% of the sites) were 
statistically significant (Table S5; Supplemental file S1). Locations 
with a high proportion of developed land use (>20%) tended to coin-
cide with positive RF index values, particularly along the east coast 
(Figure 4b; Table S5). Overall, effects associated with developed 
land use in summer were positive in the northeast and negative in 
the west and southwest (Figure 4). Shrubland (97% of sites overall), 
agriculture (66% of sites overall), and evergreen forest (69% of sites 
overall) negatively affected the RF index in the west and southwest 
regions (Figure 4), whereas evergreen forest produced significant 
positive effects in the southeast (Figure 4; Table S5; Supplemental 
file S1).

Land-use change (i.e., change between 1970 and 2011) pro-
duced significant negative and positive effects on the RF index in 
summer (Table S6; Supplemental file S1). Decreases in forest were 
significantly positively correlated with the RF index in parts of the 
south (54% of sites positive, 22% significant; Figure 5; Table S6; 
Supplemental file S1). Decreases in evergreen forest in the western 
half of the United States significantly influenced the RF index pos-
itively (Figure 5; Table S6; Supplemental file S1). Changes in shru-
bland, agriculture, and developed land had significant effects on the 
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RF index in the west (Figure 5; Table S6; Supplemental file S1), with 
53% of sites associated with a negative effect in summer (Table S6; 
Supplemental file S1).

In winter, mixed forest sites in the Midwest and Southwest 
had a significant negative effect on the RF index (60% of sites, 
Figure 4c; Table S5; Supplemental file S2). Developed land use 
in winter also produced significant negative effects on RF in the 
Midwest and southeast (Figure 4c; Table S5; Supplemental file S2). 
Developed land, agriculture, and forest produced significant pos-
itive effects on the RF index in the northeast (Figure 4; Table S5; 
Supplemental file S2). Shrubland (70% of sites) and evergreen for-
est produced positive effects in winter for the southwest, but they 
were not statistically significant (Figure 4; Table S5; Supplemental 
file S2). Increases in developed land produced significant negative 
effects in the Midwest (53% of sites; Table S6; Supplemental file 
S2). Increases in shrubland and mixed forest in Florida produced 
significantly positive effects on the RF index (Figure 5; Table S6; 
Supplemental file S2).

4  |  DISCUSSION

Albedo, surface roughness, partitioning of latent and sensible heat, 
evapotranspiration, wind speed, and atmospheric turbulence are 
land-surface properties well known to affect atmospheric water 
availability and temperature. Several studies have shown clear 
trends between soil moisture and rainfall probability (Taylor et al., 
2011; Tuttle & Salvucci, 2016). Of the physical parameters likely to 
influence rainfall for periods of up to several weeks, feedback related 
to soil moisture remain a possible explanation. Short- and long-term 
soil moisture memory has been documented to occur anywhere 
from 24-h (Tuttle & Salvucci, 2016) to several months (Dirmeyer 
et al., 2009; Kumar et al., 2019; McColl et al., 2019; Nicolai-Shaw 
et al., 2016). For instance, McColl et al. (2019) characterized short-
 and long-term soil moisture memory using satellite observations. 
They found that soil moisture memory typically lasts for <10 days in 
the United States. Dirmeyer et al. (2009) found evidence for longer 
periods of soil moisture memory (~30–70 days). However, this was 

F I G U R E  1  Rainfall feedback 1960–
2010 for summer and winter [Colour 
figure can be viewed at wileyonlinelibrary.
com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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F I G U R E  2  Effect of independent variables on RF for summer and winter. Horizontal axes represent the effect of the variable on RF (GWR 
coefficient × variable value). Black points correspond to which GWR coefficients were significantly different from 0, whereas gray points 
were non-significant

F I G U R E  3  Contribution of non-land-use predictor variables to the RF index in summer and winter [Colour figure can be viewed at 
wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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mainly positively correlated with evapotranspiration in the Great 
Plains during winter and spring months (i.e., December–February 
and March–May).

Bioaerosols produced as a result of rainfall have also been im-
plicated in persistent RF where perceptible increases in cumulative 

precipitation events have occurred over a 3-week period (Morris 
et al., 2017). Importantly, although trends consistent with feed-
back involving interactions between the landscape and atmosphere 
are readily discernable from climatic data analysis, our results do 
not provide information on the coupled abiotic-biotic mechanisms 

F I G U R E  4  Response of RF to land-use: proportion of that land-use type by site (a), effect of that land-use type in summer (b), and winter 
(c) [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  5  Response of RF to changes in land-use from 1960 to 2010: proportional change of that land-use type by site (a), effect land-
use change had in summer (b), and winter (c) [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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amplifying these effects. Hence, the objective of this study is to pro-
vide the rationale for designing experiments that consider land use 
to test specific hypotheses on the physical and biological mecha-
nisms that influence RF.

4.1  |  Potential biotic effects on rainfall feedback

There are multiple ways that biological processes could exert in-
fluence on meteorology and RF patterns. The response of organ-
isms to environmental change and properties associated with the 
bioaerosols they produce provide opportunities for ecosystems to 
exert influence on synoptic conditions that promote or suppress 
rainfall. Increased moisture in plant and soil ecosystems from rain 
stimulates microbial growth (Hirano et al., 1996), and the emission of 
cloud-active bioaerosol particles [i.e., giant cloud-condensation nu-
clei (GCCN) and ice-nucleating particles (INPs)] has been observed 
to increase over a several week period following rainfall (Bigg et al., 
2015; Huffman et al., 2013; Iwata et al., 2019).

For example, increased moisture can facilitate the germination 
and growth of fungal rust urediospores, and Morris et al. (2013) 
showed that urediospores are effective INPs. Because urediospores 
are large (20–50  μm long-axis diameter), hygroscopic particles, 
they also probably serve as efficient GCCN. Germination of uredi-
ospores triggered by elevated moisture and new spore production 
as part of its life cycle should occur over an interval of a week or 
two (Huffman et al., 2013; Teng & Close, 1978). Thus, rainfall may 
affect subsequent rainfall by enhancing physical conditions (e.g., in-
creased soil moisture, evaporation, and rain splash; Anderegg et al., 
2019; Eltahir, 1998) that can persist in the local environment for sev-
eral days (Tuttle & Salvucci, 2016). Like GCCN, biological INPs with 
freeze-catalyzing activities at >−15°C are rare aerosols (DeMott & 
Prenni, 2010; Murray et al., 2012), so rain-induced changes in their 
atmospheric concentrations could have important meteorological 
consequences. In general, the more GCCN and INPs within a cloud, 
the more precipitation that is formed, and vice versa (DeMott et al., 
2010). However, high concentrations of GCCN and INPs may form 
small cloud droplets and/or freeze a large portion of them, making 
the formation of precipitation less efficient (Fan et al., 2009; Khain 
et al., 2008).

Bigg et al. (2015) concluded that microbial life cycles influenced 
by moisture availability were the most probable explanation for 
the increase in the cumulative INP concentration of air after rain in 
the wheat belts of western and south-eastern Australia (Bigg et al., 
2015). In this scenario, positive RF patterns may result from condi-
tions that promote biological productivity, growth, and subsequent 
emission of cloud-active bioaerosols. Invoking biotic processes to 
explain negative RF is less straightforward since it could be the con-
sequence of having too few or many cloud-active particles in the 
atmosphere. Cloud-seeding experiments have explored the effect 
of too many INPs for precipitation formation. For example, Neyman 
et al. (1969) observed reduced rainfall due to the reduced size of ice 
crystals caused by competition for water vapor, with many of the ice 

crystals evaporated before reaching the ground. A similar effect was 
observed in experiments attempting to enhance rain using the co-
alescence process by adding salt particles (Murty et al., 2000). When 
GCCN were added to relatively shallow clouds, the clouds dissipated 
due to fallout and evaporation of the many small drops produced.

Large increases in aerosols, including INPs and GCCNs, have 
been documented in boundary layer air from a North American 
forest ecosystem during and in the hours directly following rain 
(Huffman et al., 2013; Iwata et al., 2019; Prenni et al., 2013), but the 
increases are short-lived (~1 to 12 h) compared with the timescale 
that RF is observed (Bigg et al., 2015; Morris et al., 2017). However, 
cumulative changes in INP concentration with durations of 20 days 
have been reported in regions of southeastern and southwestern 
Australia (Bigg et al., 2015). The timeframe for elevated emissions 
is in the range for observed RF indices following rain (Morris et al., 
2017) and may be due to rainfall increasing soil moisture that fosters 
microbial growth in the source ecosystem. Although rainfall induces 
an observable biotic response with a duration from hours to days, 
more data are needed to better understand the temporal production 
of bioaerosols by different vegetation types following rain.

Biological processes are not easily incorporated into land–
atmosphere models and are not typically represented, which has 
hampered understanding of the interactions and feedback between 
biota and climate. For example, plant physiological traits related to 
water transport have been shown to be important predictors of 
land-surface feedback that affect drought intensification (Anderegg 
et al., 2019). However, studies that have examined plants as ef-
fectors of atmospheric conditions are limited to behaviors such as 
evapotranspiration or the release of volatile organic compounds 
(Anderegg et al., 2018; Franks et al., 2017; Kim, 2005) and have not 
considered the full spectrum of aerosols they emit. Previous studies 
hypothesized that RF is related to land-use type and the cloud-active 
bioaerosols emitted by the vegetation (Bigg et al., 2015; Morris et al., 
2016, 2017). To disentangle tightly coupled processes in the land–
atmosphere system and enhance understanding of the underlying 
biological interactions potentially at play, we used a modeling ap-
proach to identify the spatial influence of predictor variables that 
contribute to the observed patterns of RF (Figure 1). In addition, 
we provide a rationale to generate hypotheses for future studies 
that seek to identify the mechanisms that produce the RF patterns 
observed.

4.2  |  Explanatory variables with the largest 
influence on predicting rainfall feedback

Of the 24 explanatory variables examined at sites in the United 
States from 1960 to 2016 (Table S3), those with the largest effect on 
the RF index (Figure 2) were associated with temperature and pre-
cipitation. A decrease in maximum temperature change (∆ ~1°C) had 
a significant influence on negative RF in the southeast, potentially 
due to cooler summers that were also wetter on average (Figures 
2 and 3; Supplemental file S1). This contrasts with observations of 
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cooler average temperatures and wetter conditions in winter that 
generally corresponded with positive RF (Figure 2). The homeo-
static tendency that extremes in precipitation have on the RF index, 
whereby increased aridity increases the probability for rainfall, and 
vice versa, is similar to observations in previous studies from Africa 
(Taylor et al., 2011) and other regions with relatively heterogenous 
soil moisture (Guillod et al., 2015; Hsu et al., 2017; Taylor et al., 2012; 
Zhou et al., 2021). The summer RF index was positively correlated 
to the minimum precipitation change and negatively correlated to 
maximum precipitation. However, in winter, lower values for mini-
mum precipitation were associated with a positive effect on RF for 
most of the United States, with sites in southern states being the 
exception (Figures 2 and 3). Higher maximum precipitation values 
generally coincided with negative effects on RF (Figure 2), except 
for the northeast. This could be due to the increase in soil moisture 
following rainfall, which alters the surface energy balance, damp-
ening atmospheric instability, and inhibiting the vertical movement 
of air parcels (Cook et al., 2006; Tuttle & Salvucci, 2016). However, 
this is unlikely to be sole explanation as such conditions do not per-
sist for the upper-bound duration of observed RF (~20 days; McColl 
et al., 2019). Nevertheless, our results indicate that precipitation can 
create unsuitable conditions for future rainfall, similar to the obser-
vations of Yang et al. (2018) for certain land types, locations, and 
seasons.

Although differences in temperature and precipitation can 
partially explain the dependence of RF on season, the relation-
ships between land-use variables on RF vary across space (i.e., 
intrinsic spatial nonstationarity; Figures 2–5), implying land-use 
drivers that operate at smaller spatial and/or temporal scales than 
the modelled climate. Plants influence atmospheric processes in 
multiple and dynamic ways (Hartley et al., 2016). For instance, 
plant physiological responses to water stress that decrease rates 
of evapotranspiration influence local weather (Anderegg et al., 
2018, 2019). And as atmospheric sources of cloud-active bioaero-
sols (Ziemba et al., 2016), vegetated landscapes also have the po-
tential to influence cloud development and precipitation (Morris 
et al., 2014). In this study, mixed forest, developed land use, and 
agricultural biomes had a positive influence on the summer RF 
index, whereas it was negatively affected at shrub and evergreen 
forest sites (Figure 4a,b). The trends for the effect of land-use 
variables on RF were similar to those for changes in land use (be-
tween 1970 and 2011). For example, the modest increase in area 
of evergreen and mixed forest during this period (0.97% and 4.3%, 
respectively) nevertheless produced a positive and negative effect 
on RF, respectively (Figure 5; Table S6). Conifer leaves have not 
been shown to be a significant source of microbial INPs (Lindow 
et al., 1978); however, conifer pollen can serve as CCN and are 
also associated with ice nucleation active macromolecules (Amato 
et al., 2007; Pummer et al., 2012; Steiner et al., 2015). Hence, this 
possibility means that a biotic response by the vegetation itself 
(e.g., pollen formation), and not just members of its associated mi-
crobiome, may have direct involvement in atmospheric processes 
that effect RF.

The influence of agriculture on the summer RF index from 1960–
2010 was generally positive on the east coast and negative west of 
the Mississippi River (Figure 4b). Most of the cropland area is lo-
cated in the western United States (USDA & NASS, 2012; sites with 
>60% agricultural land use; Figure 4a), and the RF index regression 
coefficients negatively correlate with the total proportion of land 
used for agriculture (Figure S2). This observation suggests that more 
expansive and contiguous farms may influence land–atmosphere in-
teractions in ways that reduce rainfall frequency in summer and that 
there is potentially a threshold effect. Western sites in agricultural 
regions had a positive influence on RF in winter, while those from 
the Midwestern Corn Belt to the east coast produced a negative ef-
fect (Figure 4c). Intriguingly, the negative effect overlaps with the 
cultivation of soft red winter wheat in the Midwest. Since the early 
1900s, crops in the wheat belt, and in particular in the Midwest, 
suffer regular epidemics of disease caused by the rust fungi 
Puccinia (Eversmeyer & Kramer, 2000; Hamilton & Stakman, 1967). 
Urediospores of rusts are ice nucleation active at relatively warm 
temperatures (warmer than −10°C) and specifically adapted for ae-
rial dissemination and transport over long distances at altitudes of 
several kilometers (Amato et al., 2005; Bauer et al., 2002; Bowers 
et al., 2009). Rusts are capable of co-transporting microorganisms 
that inhabit the surfaces of wheat leaves and remain attached to the 
spores, including ice nucleation active strains of Pseudomonas syrin-
gae (Morris et al., 2013). The positive effects in the south and north-
east coincide with the end of the growing season and loss of crop 
canopy (Figure 4c). These results indicate that certain land-use types 
are significant predictors of RF at particular sites, with the influence 
of season and associated changes in vegetation strongly implicating 
a role for plant ecosystems in this interaction.

In addition to the monocultures associated with agricultural 
land use, natural and managed forest ecosystems also represent 
large sources of aerosolized microbial INPs and GCCN (Garcia et al., 
2012; Huffman et al., 2013; Suski et al., 2018). Developed regions 
associated with forests (Nowak et al., 2001) (i.e., urban forest) have 
similar canopy coverage to that of mixed forest (U.S. Department 
of Agriculture, 2012). Urban forests in the south and northeast US 
coast with a high percentage of tree cover (>50%; Figure 4) coin-
cided with locations that had positive effects on RF during the sum-
mer (Figure 4b).

A key observation from this study is the unearthing of a potential 
threshold effect on the RF index for developed land use. Sites with 
>40% development were positively correlated with the RF index in 
summer (Figure S3), whereas those with <40% were negatively cor-
related. In summer, the stimulation of growth and emission of bio-
aerosols from the urban forest canopy following rain could promote 
sufficient atmospheric fluxes of GCCN and/or INPs, thus contribut-
ing to an effect on RF (Huffman et al., 2013). When the deciduous 
canopy is absent in winter, the flux of aerosolized particles from the 
ground surface becomes the more dominant aerosol source to the 
atmosphere (Nguyen et al., 2015). The RF effect change in winter is 
consistent with a lack of leaves as a source and with plant processes 
that differ between growing and dormant seasons. These results 
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provide motivation to generate new hypotheses, that when tested, 
can aid in better understanding the dynamics of land–vegetation–
atmosphere interactions that affect rainfall frequency.

5  |  CONCLUSIONS

Analysis of historical data sets were used to appraise the role of 
land use and climate on RF patterns in the United States during 
the last three centuries. The results provide a context for design-
ing field-based studies that aim to determine the biotic and abiotic 
contributions to feedback that influence rainfall frequency. Based 
on this approach, we infer that climate and land use are the most 
important predictors of patterns in RF observed in the United States 
since 1960. The tendency of landscapes to have negative or positive 
effects on RF is dependent on the type of land use, proportion of 
land-use type, and season (i.e., summer vs. winter). Although the way 
in which landscapes and their terrestrial biota exert specific control 
remains obscure, alteration of the emission of cloud-active bioaero-
sols from sources associated with vegetation and soil ecosystems 
provides one plausible explanation for the patterns observed with 
changes in land use and season. Given that RF patterns are widely 
observable, but the underlying mechanisms are currently specula-
tive, a fundamental understanding of the abiotic–biotic processes 
involved warrants more detailed investigation. For example, studies 
that examine the temporal effect of rainfall events on soil moisture 
memory versus bioaerosol emission fluxes from the different land-
use types and sites identified in this study (Figure 4) could provide 
the data needed to evaluate the contribution of physical versus 
biological mechanisms. Improving understanding of the linkages 
between RF, terrestrial biomes, and the atmospheric processes that 
affect rainfall provides the context necessary for predicting these 
behaviors in the 21st century climate system and for managing land 
use in ways that optimize water use and contribute to food security.
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