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Abstract

Participants in an experiment can engage in unobservable asset integration, mentally
incorporating their own non-experimental “field” resources into an otherwise controlled
scenario. This paper extends asset integration to include intertemporal tradeoffs like
consumption smoothing. A model of “lifecycle asset integration” shows that exoge-
nous and endogenous field resources cause different interference patterns. Exogenous
resources cannot be affected by the experiment, and so their interference can be con-
trolled by accounting for their level. Endogenous resources, by contrast, are highly
substitutable with the experiment, and their interference can be controlled only by
modeling the entire experiment-field interaction. The model’s practical implications
are investigated in the context of three classic laboratory experiments on risk and time:
one static (Holt and Laury, 2002) and two dynamic (Andersen et al., 2008; Andreoni
and Sprenger, 2012). As interference worsens, decisions in these tasks tend to exhibit
a kind of attenuation bias toward less risk aversion and more patience. Interference
occurs reliably when field resources are on household scales, but amounts on the scale
of pocket change can also cause problems.
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1 Introduction

Experiments that elicit risk and time preferences are susceptible to asset integration, a design
bypass that occurs when participants mentally incorporate their own financial resources into
a supposedly controlled scenario. Because asset integration is triggered by the scenario itself,
its impacts cannot be neutralized with randomization. As an unobservable mental process,
it can introduce a particularly unfortunate confound into post hoc utility estimates.

Although asset integration was first discussed in a static context (Kahneman and Tversky,
1979), it can appear in dynamic settings just as easily. But, asset integration’s current
adaptation to time is rudimentary: the non-experimental or “field” environment consists
merely of recurring static resources. If this is the correct interpretation of asset integration,
then the confound can be eliminated rather easily by including those resource levels in the
utility argument.

However, participants almost assuredly do not regard their own field environments as
mere successions of resources that they must take as given. Instead, they sew up those
field resources into a coherent lifecycle plan. That process taps intertemporal tradeoffs
that do not emerge under the recurring-static view. A well-known example is consumption
smoothing, which distributes temporally-unbalanced resources more evenly across time. We
use the term “lifecycle asset integration” to denote the complications that arise when lifecycle
factors confound an experiment.

In this paper, we develop a model of lifecycle asset integration, and examine its impli-
cations for experiments that investigate risk and time preferences. This model is rooted
in the two-period consumption-saving framework, the canonical theory of lifecycle decision
making under risk (Dréze and Modigliani, 1966, 1972; Leland, 1968; Sandmo, 1970; Roth-
schild and Stiglitz, 1971; Kimball, 1990; Eeckhoudt and Schlesinger, 2008; Kimball and Weil,
2009). Our extension merges an experimenter’s controlled experimental incentives with a
participant’s existing field environment, producing a joint optimization problem that involves

experimental and field smoothing.



Our main theoretical result highlights a key difference in how exogenous and endogenous
field resources interact with an experiment. Exogenous resources are very much like the
recurring-static conception of the field. They have no associated smoothing instrument
(such as saving), and so they cannot be moved across time. Endogenous resources, on the
other hand, do involve a smoothing instrument, and therefore can be moved across time.
Endogenous field instruments that would be relevant in this context include participants’
credit cards and bank accounts.

An experiment has no effect whatsoever on exogenous field resources. As a consequence,
the appropriate post hoc correction for exogenous field resources is indeed to control for their
levels in the utility argument (Andersen et al., 2018). However, this simple ceteris paribus
control strategy is inadequate for endogenous field resources, because experimental and field
smoothing instruments can substitute for each other.

We argue that the marginal rate of substitution (MRS) between experimental and field
smoothing is likely to be near 1 in most circumstances, implying near-perfect substitution. In
other words, the existence of the experiment will actually alter the amount of field smooth-
ing, another component of the utility argument. Simply conditioning on pre-existing field
outcomes is insufficient in this case, because the experiment itself will change those outcomes.
The appropriate correction here is much more onerous: modeling the entire experiment-field
interaction, including the MRS.

To illustrate the practical effects of lifecycle asset integration, we numerically investigate
the model’s predictions in the context of three classic laboratory experiments: Holt and
Laury (2002)’s risk aversion task (HL), Andersen et al. (2008)’s discounting task (AHLR),
and Andreoni and Sprenger (2012)’s discounting task (AS). In each case, our first step
is to cast the experiment’s incentives into the notation of our model. This allows us to
treat the experiment on its own terms first, and then add different integration assumptions.
Specifically, we examine how the experimental predictions change as integration changes,

holding preferences constant. If the predictions are substantively different, that experiment



is not robust to lifecycle asset integration. The “controlled” experimental observations can
be easily contaminated by field interactions.

Because the dividing line between experimental and field incentives is very clear with
laboratory experiments, those three designs are relatively easy to adapt to the model. Inter-
estingly, asset integration does not spark uniform concern within the laboratory literature.
At one extreme, asset integration’s relevance to static choice-bracketing experiments has been
debated vigorously (Read et al., 1999; Rabin and Weizsécker, 2009). At the other, many
temporal experiments simply assume asset integration from the start (Coller and Williams,
1999; Cubitt and Read, 2007; Andersen et al., 2008, 2014; Andreoni and Sprenger, 2012).
Critically, all experimental gains — even the gains from static tasks — are spent within par-
ticipants’ lifecycle plans, making every experiment potentially vulnerable to lifecycle asset
integration.

Our first example, the HL task, requires participants to choose between pairs of safe and
risky lotteries. As a static decision, HL. does not have an experimental smoothing instrument,
and so it evades the substitution problem between field and experimental smoothing. It is
still exposed to the other issues.

Omitting exogenous field resources situates post hoc analysis at the wrong background
level. HL, assumes that this level is $0, but we find a strong sensitivity to that assumption.
Adding just $0.20 of exogenous field resources causes HL decisions to change. Increasing
that level to just $7 causes those decisions to be indistinguishable from risk neutrality.

Omitting endogenous field resources ignores how the task activates consumption smooth-
ing. From the perspective of a participant’s lifecycle plan, HL payoffs are an instantaneous
windfall that the participant will want to smooth across time via the field instrument. The
larger the experimental windfall, the more field smoothing will occur. We find that the
ability to smooth acts as a kind of self-insurance, allowing the participant to mitigate exper-
imental risk in the field over time. This self-insurance pushes experimental decisions toward

risk neutrality as well, even though preferences are calibrated as risk averse.



Our second example, the AHLR task, requires participants to choose between pairs of
current and future payoffs. Although AHLR does not explicitly call its decision “saving,”
we show that its decision problem nevertheless contains a latent variable corresponding
to our model’s experimental smoothing variable. AHLR is exposed to all issues posed by
lifecycle asset integration, but the omission of endogenous field resources results in two
notable complications.

First, as with HL, a participant can potentially smooth an AHLR experimental windfall
using a field instrument that the experimenter cannot observe. However, because the ALHR
decision is itself a smoothing decision, the participant can also satisfy that smoothing desire
during the experiment using the observable instrument. This fact actually underscores the
bigger problem: participants now have two highly substitutable smoothing instruments at
their disposal.

Intuitively, a participant will try to save as much as possible using the instrument that
provides the better outcome. The meaning of “better” in this context depends on the field
consumption path. If that path already has high future consumption, for example, offering
large experimental returns may not induce any saving. This is quite different from the
predictions that arise when the experimental smoothing instrument is assumed to operate
by itself.

Our third example, the AS task, can be viewed as an extension of AHLR that allows
participants to choose their own smoothing amounts. That freedom of choice very clearly
illustrates the MRS between experimental and field smoothing. In particular, it is quite easy
to drive experimental saving to its boundary values by making the experimental incentives
too stingy or too rich relative to the field. Andreoni and Sprenger do, in fact, observe an
unusually large fraction of boundary decisions in their data.

HL, AHLR, and AS each estimate deep structural parameters under expected utility
(EU). Our model uses recursive utility (RU) instead (Kimball and Weil, 2009). The main

reason is flexibility: RU allows smoothing preferences to be totally uncoupled from risk



preferences, while EU fuses them. But, because EU is a special case of RU, our framework
covers all EU-based analysis. To be clear, our main theoretical result does not hinge on
whether a participant is an EU or RU decision maker. Rather, when asset integration has
a lifecycle nature, it is easier to illustrate the interference starting from the position that
relative risk aversion (RRA) and the elasticity of intertemporal substitution (EIS) are not
functionally bound to each other. That stance allows us to calibrate each domain with
plausible values taken from its own literature.

Prior research hints at aspects of our results. Cubitt and Read (2007) discuss interference
between temporal experimental choices and field variables under EU, but risk does not enter
their assessment. Schechter (2007) performs a similar evaluation, calibrating an intertem-
poral utility function with the results of a static risk task. Coble and Lusk (2010) examine
AHLR with isoelastic RU preferences, as do Miao and Zhong (2015) when examining AS.
Both find empirical support for RU over EU, but neither include any asset integration. Ad-
ministering AS to a large Danish cohort, Epper et al. (2020) find that patience positively
correlates with wealth across the lifecycle. Below, we gather all these earlier concerns about
the experiment-field interaction, along with some new ones, into a single analytical frame-

work.

2 Lifecycle Asset Integration

To formally capture the interaction between an experimental stimulus and a participant’s
lifecycle path, we extend a two-period consumption-saving model.! The purpose of this
extension is to differentiate field incentives from experimental ones.

To that end, field elements of the model are denoted with f superscripts, and experimental

!The two-period framework permits only two temporal actions: smoothing forward in time, or backward
in time. We could certainly obtain a more nuanced time path with a multiperiod value function. But, a
model of that sort would generate essentially the same first-order conditions as ours, while greatly increasing
the difficulty of the numerical exercises (solving for policy functions instead of scalars). Moreover, we could
not appeal to the theoretical corpus for intuition, because that literature largely operates with two periods.
Because we are not concerned with the time path of field smoothing per se, but with whether that smoothing
interferes with experiments, we stick with this simpler “forward or backward” approach.



elements with e superscripts. Risky variables are denoted with tildes. By convention, risk
occurs in the second period. Field and experimental risks are considered orthogonal by
construction.

The field incentives are the first-period income y{ , the second-period exogenous risky
income gjg , and the second-period gross return to saving Rg (net return 7“5 ). The experimen-
tal incentives are analogously 3¢, 75, and R5.2 Intuitively, the field incentives are outside
the experimenter’s control, while the experimental incentives are the experimenter’s own
manipulation.

During the first period, the participant chooses field saving s{ and experimental saving
s§ to maximize the RU objective over lifecycle consumption c{ , Eg:
yl +yi=cf +s] +s
gy + 95+ SR, + 1R = &

max u (c{) + fu (C’E (Eg)) s.t. (1)
— < s <of

0 <sf <y

\

We call s{ and s{ “saving,” as does most of the literature. That terminology certainly conveys
s{ ’s and s§’s function in (1). But, those variables more precisely reflect a generic two-channel
smoothing framework that allocates consumption across time. This nuance allows us to bring
experiments under the umbrella of (1) that do not explicitly invoke the language of saving,
but nevertheless set up a latent smoothing instrument that behaves like s¢.3

RU’s notion of time preference has two ingredients: the utility discount factor 3, and the

2Limiting risk to the exogenous channels gjg and g5 greatly simplifies our discussion of risk attitudes
and risk responses. When risk exposure is endogenous with a choice variable, the lifecycle risk response
becomes quite complex (Eeckhoudt and Schlesinger, 2008). Risks on R%C and RS would be prime examples
of endogenous exposure, because the amounts at risk s{ Ré and STI:ZS would depend on the choice variables
s{ and s§. Fortunately, none of our three examples involve manipulations of return risk, and so we do not
lose much intuition by narrowing our focus in this way.

30nly a few experiments intentionally style their tasks as “saving” (Ballinger et al., 2003, 2011; Brown
et al., 2009; Filiz-Ozbay et al., 2015).



intertemporal felicity function u that controls consumption smoothing. This is an important
difference from EU, where time preference is considered to be simply [ or some variant. The

risk preference 1) determines the certainty equivalent of future consumption

cr (&) = v (Bl v (%))

Unlike u, ¢ is an EU function. RU thus contains both a utility-of-wealth function ¢, and a
utility-of-consumption function u. The special case u = 1 collapses RU to EU (Kreps and
Porteus, 1978).

In lifecycle models like this one, nearly any incentive — field or experimental — will activate
B, u, and 1 simultaneously (Gollier, 2001). That is equally true of risk (Kimball and Weil,
2009), somewhat counterintuitively. The lifecycle risk response differs from the more familiar
static risk response in two additional ways. First, a risk’s n'* moment activates the n 4 1%
utility derivative, not the n'* (Eeckhoudt and Schlesinger, 2008). The lifecycle risk response
therefore depends on v derivatives higher than ¢”. By corollary, the well-known Arrow-Pratt
coefficient —1)” /1" has nothing to say about a participant’s reaction to lifecycle risk.

The first two constraints in (1) show how experimental and field assets become integrated
into the participant’s lifecycle plan. The vehicle is lifecycle consumption. Both first-period
consumption ¢ = <y{ + yf) - (5{ + 3§> and second-period consumption ¢, = (@5 + y~§> +
<s{ R} + szS) contain a mixture of experimental and field resources.

The properties of u and ¢ that ensure (1) has a unique maximum also guarantee interior
equilibrium consumption levels c{ * and cg*. For that reason, we simply assert the equality of
the first two constraints. However, the fact that the consumption path is interior does not
mean that the saving decisions are as well. Without additional information about preferences
and incentives, the constraints on s{* and s{* must stay as inequalities.

Field saving s{ can be be positive or negative. We place a rather loose restriction on

saving and borrowing via this channel: the participant’s own lifecycle field income. We place



a much stronger restriction on experimental saving s{: the participant cannot borrow at all
during the experiment, or save more than y{. This reflects a common design constraint. For
ethical reasons, participants are typically prohibited from investing — and potentially losing
— their own field resources in an experiment. Their experimental decisions must always fit
within the resource levels endowed by the experimenter.

The interpretation of the field resources y{ and g{ is context-specific. As a rule, those
terms express incentives that the participant perceives to be relevant to the experimental
decision s{, but are not actually part of the experiment. To reiterate, these perceptions are
not entirely under the experimenter’s control, nor are they fully observable. Thus, y{ and ng
should not be read merely as attributes that the experimenter could account for in principle.
They can also reflect traits that the experimenter has no hope of observing.

Even though the experimental incentives are controlled, the participant’s experimental
and field decisions remain tightly coupled. The nature of that coupling can be seen by

writing (1)’s first-order conditions in Euler form:*

L (v(eE(@®) vieE@)) ]
. EIE|B- / ‘Rl —1Z0 (2a)
R CI R CYRY
e [ (@) @)

CUe@ ey )"

Importantly, the first Euler equation remains pertinent even if the experimental task is static

VIA

(2b)

VIA
o

(i.e., s¢ = 0), because static experimental incentives can still alter ¢] and & (and hence s7).

Individually, (2a) and (2b) are examples of a discounted-return equilibrium condition
E; (mys1Riq) § 1 that arises ubiquitously in dynamic models (Cochrane, 2005). Like that
generic condition, the left sides here take the form of discounted expected returns. The

quantity corresponding to the discount function m,; is the participant’s stochastic discount

4These conditions contain inequalities because s{ * and s¢* are not necessarily interior.



factor (SDF)
(5@ #er) .
o(d) (@)

As a system, (2a) and (2b) are akin to the first-order conditions of a multi-asset portfolio

model (Ingersoll, 1987). A key feature of that setting is the fact that all portfolio allocations
are pinned down by the same m;, ;. Our model shares this characteristic: the same SDF (3)
determines both s{ and s{. This carries an important equilibrium implication: a change to
either one of the saving amounts will alter the SDF, and thereby affect the other’s discounted
return — and hence change the other saving amount as well.

In light of that observation, the participant’s SDF (3) can be best described as the
behavioral transmission mechanism between the experiment and the field. This transmission
is regulated by 8 and two marginal rates of substitution. The one involving u captures the
consumption-smoothing implications of the joint decision, and the one involving 1) captures
the risk-aversion implications.

The fact that the SDF contains all three behavioral primitives has an important ramifi-
cation for interpreting the experimental outcome s{. Namely, the presence of lifecycle asset
integration will cause all preference dimensions — consumption smoothing, risk aversion, and
discounting — to activate simultaneously in response to any set of incentives. Hence, even
if the experimenter’s intent is to design a manipulation {y¢, g5, RS} that activates only risk
attitudes, or only smoothing attitudes, or only the pure rate of time preference, lifecycle
asset integration will nevertheless activate everything.

The participant’s elasticity of substitution between experimental and field decisions makes

10



the practical implications of the SDF transmission quite clear:®

d f e
el = 1.0 (4)
1

B dsﬁ S
2
() w(d)or (@) v (@) or ()] 3 (e m)m
- 2 i
w () + 8 [u” (&) ce (d) +w(d) e (55)} L (RS +Rs) R
The MRS ds{ /ds§| describes how well the participant’s field saving can replace experimental

saving, and vice versa. Ideally, this quantity would be 0. The experimental and field decisions
would not affect each other at all in that case, signaling that the experimenter’s manipulation
is truly exogenous.

However, the numerator and denominator of the MRS differ by only their very last terms,
R and Rg . Thus, barring any implausibly extreme experimental incentives, the MRS is likely
to be close to 1. This unfortunately means that experimental smoothing and field smoothing
can perfectly substitute for each other. In that case, the experimenter must worry about
field contamination from not only the exogenous sources y{ and g{ , but also the endogenous
source s{ Rg . The participant’s own choices during the experiment fortunately cannot affect
the former. But, per the MRS, they can affect the latter.

Finally, because many experimental studies assume EU, it is worth noting the EU SDF’s
behavior when it is viewed as an RU special case. As a rule, EU requires the “reduction
of compound lotteries” axiom to hold in all circumstances. In lifecycle settings, this means
that the axiom must hold both within and across time. RU loosens that requirement into
“temporal consistency,” which requires conformity within time only (Kreps and Porteus,
1978; Selden, 1978). Temporal consistency materializes in the SDF (3) as the distinction
between risk substitution and intertemporal substitution.

As u and 1 become more similar, that distinction becomes irrelevant. This is reflected

5Appendix A contains the derivation of €.

11



in the SDF, which collapses to

@) v

w(d) ()

in the EU special case u = 1. In this circumstance, it notably does not matter whether the

L

felicity function is taken to be an “intertemporal preference” u or a “risk preference” 1. The
same decisions will be made under either interpretation.

That result, if valid, provides a powerful design shortcut. The experimenter can elicit
a participant’s risk preference and immediately treat it as the intertemporal preference, or
vice versa. Problematically, a good deal of empirical literature, particularly from macroe-
conomics, rejects the hypothesis that risk substitution and intertemporal substitution have

the same elasticity (Epstein and Zin, 1989, 1991; Bansal and Yaron, 2004).

3 Merging Lifecycle Asset Integration into Three Exper-

iments

3.1 Holt and Laury

As a static experiment, HL has no internal concept of time. Even so, we will motivate it
with temporal notation consistent with (1). Within the context of HL itself, that notation is
pure surplusage: nothing would be gained or lost by adding or removing it. But, including
it from the outset makes the transition to our model much easier.

Table 1 presents the baseline HL task, a multiple price list (MPL) of ten safe and risky

~e,safe sky

lotteries. The payoffs for each safe lottery 7 and each risky lottery §5"**Y remain the

same throughout the MPL. The payoffs of §5"** always have more spread than those of

~e,safe

Moving down the MPL, the probabilities increasingly favor each lottery’s high payoff.

12



Line ‘ ~§,safe <$) ‘ ~§,risky ($)
1 1/10 of 2.00 9/10 of 1.60 | 1/10 of 3.85 9/10 of 0.10
2 | 2/10 0f2.00 8/10 of 1.60 | 2/10 of 3.85 8/10 of 0.10
3 3/10 of 2.00 7/10 of 1.60 | 3/10 of 3.85 7/10 of 0.10
4 | 4/10 0f2.00 6/10 of 1.60 | 4/10 of 3.85 6/10 of 0.10
5) 5/10 of 2.00 5/10 of 1.60 | 5/10 of 3.85 5/10 of 0.10
6 6/10 of 2.00 4/10 of 1.60 | 6/10 of 3.85 4/10 of 0.10
7 7/10 of 2.00 3/10 of 1.60 | 7/10 of 3.85 3/10 of 0.10
8 8/10 of 2.00 2/10 of 1.60 | 8/10 of 3.85 2/10 of 0.10
9 9/10 of 2.00 1/10 of 1.60 | 9/10 of 3.85 1/10 of 0.10
10 | 10/10 of 2.00 0/10 of 1.60 | 10/10 of 3.85 0/10 of 0.10

Table 1: Holt and Laury’s baseline MPL

Lifecycle Variable ‘ HL “Safe” HL “Risky”
Y 0 0
S5 - -
~e,safe ~e,risk
Y2 2 ! T

R} - -

Table 2: Translation between model (1) and HL

The two lotteries have equal means at line 5. The safe lottery’s mean is higher before that
line, and the risky lottery’s mean is higher after that line.

On each line, the participant indicates a preference for the safe or risky lottery. That
decision is governed by the comparison

B v (55| 2 B (5)

Given the ordering of the MPL, a risk-neutral participant would switch from safe to risky

for good at line 5. A risk-averse participant would switch later.

6

Table 2 summarizes how these incentives translate to model (1).° Two items are of

6Because the first period is usually taken to be the “present” and the second period the “future,” a more
natural timeline might place the HL experimental resources in the first period. However, that would require

13



particular note. First, because HL does not have a smoothing instrument, the s§ aspect does
not apply. Second, HL. does not address the field at all.

The comparison analogous to (5) under lifecycle asset integration is

() (o (47 () (o5 (4°%)

Applying simplifications from Table 2 and expanding terms yields

(ol = s25) + g (9 (BB [ (3 + 5527 + sforRd) )
” (y{ fmsky) + Bu <¢—1 <E{Ef’ri8ky [¢ <y2 + y; ,risky + Sf rzskny>}>>

AIV
=

Critically, the participant’s field incentives {y{ , ng , Rg } do not change on either side of this
comparison. The question is whether the participant’s field decision s{ does.

If 3{ does not actually change, then the lifecycle comparison (6) collapses right back to
the static one. To see this, note that after simplifying and rearranging terms, the comparison

becomes

B [o (55 + (3 + o 1)) 2 BLE o (357 + (o 510) )

sk
when s507¢ = glrisky,

term wg = y2 + 51 R in the utility argument. If this is the correct assumption about s;’s

This expression is nothing more than (5) with an additional field

behavior, then the only essential refinement to HL is to include the participant’s background
field assets and risks (Heinemann, 2008; Harrison et al., 2017; Andersen et al., 2018).
However, it is more likely that each side of the comparison will yield different values of

. The reason is that the total risk ¢ 02 has different means and variances on each side. Those

either breaking (1)’s timing convention (where risk can fall only in the second period), or adding more
periods. The first option would obfuscate otherwise crisp theoretical predictions about the consumption-
smoothing and precautionary motives, while the second would result in more convoluted comparisons. Both
would add complexity that is not needed to see the intuition on HL interference from lifecycle factors. To
the extent there is an ideal way to frame the timing, the fact that our comparison (6) reduces to HL’s (5)
after removing all field resources indicates our version respects both HL and the goals of this exercise.

14



two moments

By () = B (3) + B: (35) + o] R

vi (&) =vi () + v @)

influence saving in well-known ways (Kimball, 1990; Eeckhoudt and Schlesinger, 2008; Bos-
tian and Heinzel, 2018). The most consequential response is the one to F; <6§ ), which trig-
gers consumption smoothing. The second-most consequential is the one to V; (65 ), which
triggers precaution.”

Because E{*7¢ <gj§’5af e) § Eerisky (Qg’mky>, the field saving amounts s/**/¢ and s
will generally have different consumption-smoothing components. The lottery with the
higher mean will induce more smoothing. Because the risk is dated the second period,
that lottery will have lower s{ , and thus higher c{ .

Similarly, because V;"**/¢ (g;s“f e) < Vorishy <gj§’”8ky), the field saving amounts s]**/¢

;risky

and s; will have different precautionary components as well. The risky lottery will induce

more precaution for sure. Because the risk is dated the second period, the risky lottery will
have higher s/ and thus lower ¢""**

Comparing (5) to (6) reveals two specification errors that will arise during structural
estimation by failing to include lifecycle asset integration. The root of both problems is the
omitted field term @} = § + s/ R].

The first is failing to control for the exogenous field resources gg . The error here arises
from implicitly assuming g]g = 0, thereby situating the participant’s decisions at the wrong
background level. Because HL’s 1) specification allows increasing, decreasing, and constant
RRA, centering the decision making at the correct gg level is of paramount concern.

The second is failing to account for the endogenous field resources s{ Rg . This also injects

a background-level problem, but that is not the only one. The compounded error arises from

TAll of &’s higher moments also trigger precaution, but their contributions are negligible here.
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Line | 2{ (DKK) 1§ (DKK) APR (%) [| r5 (%)

1 3000 3075 5 2.5

2 3000 3152 10 5.1

3 3000 3229 15 7.6

4 3000 3308 20 10.3
5 3000 3387 25 12.9
6 3000 3467 30 15.6
7 3000 3548 35 18.3
8 3000 3630 40 21.0
9 3000 3713 45 23.8
10 3000 3797 20 26.6

Table 3: Andersen et al.’s MPL for a six-month delay

implicitly assuming that the participant’s field saving remains the same (at s/ = 0) on both
sides of (6). This treats an endogenous field resource as if it is exogenous.

Casting endogenous resources as exogenous ones fails to appreciate the full array of
preferences operating on 5§ . The specific problem here is that the s{ Rg component of 5§ is
governed by u, not just . A structural model consisting of ) alone would thus improperly
assign all of the experimental decision to risk attitudes, when some of it is actually prompted
by smoothing attitudes. The resulting “1)” estimates would be an uninterpretable mash of
risk and intertemporal preferences.

Without question, the second error requires a much more invasive correction than the
first. The solution to omitting exogenous field resources is the usual prescription for omitted-
variable bias: include those resources. Importantly, that correction does not require changing
the structural model (5). The solution to omitting endogenous field resources, on the other
hand, requires specifying how those resources interact with the experiment. Because that

interaction pulls in field smoothing, the structural model itself must change to (6).

3.2 Andersen et al.

AHLR simultaneously elicits utility discount rates and utility curvature. The discounting

task is a choice between two rewards z{ and x§ spaced 7 days apart.
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Lifecycle Variable ‘ AHLR “Early” AHLR “Late”

Yi y 1
s9 0 x5
Ys 0 0
2 5/ 7 5/

y{ W{ wi
Ya wj wi
s : :

R} : .

Table 4: Translation between model (1) and AHLR

Table 3 presents the MPL for 7 = 180 days. On each line, the earlier payment z§ is DKK
3,000, and the later payment x§ is higher than DKK 3,000. Moving down the MPL, x rises.
With an analogy to saving in mind, the design requires the percentage increase from z§ to
x5 to be larger than any conceivable field interest rate 7’5 over the same 7 interval.

On each line, the participant indicates a preference for the earlier or later option. That

decision is governed by the comparison

a(oirel)+ () w(@) 2u(@)+ (25) u(m+ad) @

where 4 is the utility discount rate, and w/ and w are field resources. Andersen et al.’s version
of (7) also includes a breakdown of how long the participant draws out the consumption of z
and z§. Because that detail is tangential to our interference question, we focus on a special
case where consumption is immediate in both periods.

As a temporal task, AHLR is relatively easy to adapt to (1). First, we can set the
discounting parameter to § = (&—5)7. Next, we can continue the saving analogy: instead
of taking x{ during the first period, a participant can defer that amount and take z§ in the
second. We refer to these as the “early” and “late” options.

Table 4 summarizes how these incentives translate to model (1). The first option is to

take the earlier payment y¢ = ¢, thus saving s©“* = 0 and earning nothing later. The
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second option is to save s¢'* = y¢ thus taking nothing early, but earning

e
e _ elate ﬁ

e __ _elate pe
T5 =8 S = Xy =8 RS
Ty

later. The quantity R = x§/x{ is the gross increase in the payment, exactly our notion of
return. In both cases, y5 = 0.

Applying those notational changes to (7) yields the comparison

U ((yff — si’e“ﬂy) + w{) + Bu (3?6‘”@}25 + wg) E (8)

u (v = st") o) + Bu (53R + ] )

We have intentionally left alone the obvious simplifications in this expression. The reason
is that (8) clearly draws out the latent smoothing variable s{, which has a direct analog in
(1). Thus, AHLR’s core comparison does indeed involve smoothing, even though it restricts
the smoothing options to the extremes s§ € {0, y¢}.

This task therefore activates the participant’s intertemporal preference v and discounting
B. To provide additional utility variation outside (§’s influence, AHLR also includes a HL
task. That identification is problematic from an RU perspective, because HL’s riskiness
activates 1. This extra HL data generates the intended supplemental variation only when
u =1 — the EU special case.

AHLR structural estimates do indeed assume EU. If that is the correct framework, then
both tasks identify the same u = v preference. If not, then the restriction u = v results in
estimates that mash together risk and intertemporal attitudes.

The final quantities to reconcile are the field assets. Comparing (8) with (1), the models
match exactly when w{ = y{ — s{ and a;{ = @75 + 3{ Rg . But, because AHLR does not include
any notion of field smoothing or field risk, its internal conception of field assets is simply

f

Wy = y{ and (I)g = yg . That is, only the exogenous field assets are relevant.

Indeed, Andersen et al. describe w{ and wg as “the optimized consumption stream based
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on wealth and income that is perfectly anticipated before allowing for the effects of the money
offered in the experimental tasks.” In other words, the field assets are frozen in place before
the experiment starts, and the experiment cannot subsequently affect them. This begs the
question of endogenous resources altogether.

The elasticity between field and experimental decisions underscores the problem with
that interpretation. If the experiment truly cannot affect the field, this elasticity is 0. But,
that outcome is difficult to square with (4): field smoothing is likely to be highly elastic with

experimental smoothing if any lifecycle asset integration is present.

3.3 Andreoni and Sprenger

AS elicits utility discount rates using a task that is more open-ended than an MPL. The
participant must split a money budget m® into current and future payoffs using tokens ¢{

and t5. This split takes place along the constraint
me = pity + pals

under token prices p{ and p5.
Unusually, AS’s structural model has Stone-Geary utility:

max u (pit - wf ) +om7u (psts —wf) st ome = pits + pits (9)

t§,t5

The field resources w{ and wg are interpreted as a minimum amount of background consump-
tion that the participant must acquire in each period. The parameter v reflects present bias,
and 7 the daily utility discount factor. As with AHLR, this last aspect can be reconciled
with (1) by setting 5 = vn".

Reconciling the rest requires converting token units to saving units (money). Table 5

summarizes the translation to model (1). Normalizing the constraint in (9) by p§ reveals an
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Lifecycle Variable ‘ AS Variable

Yi m’
s p5t5
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Table 5: Translation between model (1) and AS
incentive that looks like a return:

3§:ﬁ+@g — 15 =15 + Ryts (10)
P1 P1

The ratio RS = pS/p$ is the gross increase in the token price between the two periods.
Unfortunately, this return applies to tokens, not to money as in (1).

Even though this is not the exact match we need, the normalized form (10) provides
some useful clarifications that help to translate (9) into (1). First, it casts the seemingly
atemporal money endowment m® into a first-period resource: the normalized endowment .
This is the maximum possible number of first-period tokens that could possibly be bought.
It is analogous to the initial money endowment, but in tokens.

Second, the normalization shows that one of AS’s decision variables is redundant. Per-
forming the substitution t§ = #¢ — R5tS casts the problem purely in terms of future tokens.
This is the variable that most closely resembles our saving decision. Helpfully, like the ex-
perimental saving constraint 0 < s§ < yf, the normalized equation ensures that the number

of future tokens stays in bounds: 0 < t§ < #5/R5.

Third, whenever it is necessary to operate in money units rather than tokens, the nor-

20



malization can be undone by multiplying by p{ throughout:

15 =10+ R5ts  —  pit; = pit] + Ropits
Ee efe
0<tr<o - 0 < pitg < B

2 2

Once again, we have not made the obvious simplifications here. The reason is that this
denormalization suggests an analogy to monetary saving in (1): 5§ = p{t§ is the current
opportunity cost of buying ¢§ future tokens.

After making that substitution and simplifying, (9) becomes

max u ((m6 — 51R5) —w{) + Bu <§§R§ —w§> st. 0<38§7< =

51

Comparing this to (1), the exogenous experimental resources now match by setting y§ = m®

and 75 = 0. The endogenous resources posed in RS terms, on the other hand, still do not
have a natural analog. The money return in (1) appears in the future alone, but this token
return appears in both periods.

The monetary implications of RS can be reconciled with (1) by normalizing RS = 1 and
setting s§ = 3¢ RS:

max u ((m‘3 —s7) — w{) + pu (s‘f - ag) st. 0<s)<me (11)

: =~
51

This formulation shows that AS, like AHLR, sets up a latent smoothing variable s{. However,
AS’s version does not entail a money return (r§ = 0). The token return R§ ultimately acts
as an exchange rate between tokens and money, not as a return on saving. Importantly, in
situations like this where r§ = 0, the participant’s only reason to save is to smooth out the
experimental windfall y§ = m®. Saving has no investment use.

Formulation (11) underscores that AS’s main source of experimental variation is me.

Every m® results in a unique saving amount s§, no matter the token prices. (Given s, those
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prices can be used to back out the token quantities.) Hence, changing the token prices while
keeping m® constant would simply pose the same smoothing question to the participant in
different ways.

Because this task involves no risk, it activates only the intertemporal preference u and
discounting 5. It makes no statement about the other RU component, the risk preference .

AS can be viewed as an extension of AHLR that allows participants to select their own
saving amount, not just the extreme amounts s§ € {0,y{}. Interestingly, participants seem
to prefer those extremes anyway: over half of Andreoni and Sprenger’s decisions fall on the
boundaries. Formulation (11) suggests two reasons this might occur.

First, participants cannot use experimental saving as an investment. This eliminates one
of the main reasons to save, and can lead to s{ = 0. Second, if participants are on a skewed
field consumption path, they will use experimental saving to force as many experimental
resources as possible into the disadvantaged period. This can lead to either s = 0 or
s{ = yf, depending on which period needs more support. As we show in the numerical
exercises below, the balance of field and experimental incentives needed to sustain an interior
s{ in AS is actually quite delicate.

AS’s field assets w{ and wg , like AHLR’s, are considered exogenous. The specification
errors we discussed for AHLR therefore apply to AS as well, but the Stone-Geary form raises
a new concern. Because Stone-Geary utility is not even defined before reaching the w{ and
wg consumption levels, those amounts are effectively exempted from smoothing. That is not

the way consumption smoothing is usually understood. Indeed, when Andreoni and Sprenger

estimate these quantities rather than imputing them, they do not always find negative values.

4 Robustness to Lifecycle Asset Integration

Having placed HL, AHLR, and AS into the framework of (1), we next examine their ro-

bustness to various integration assumptions. That analysis involves numerically changing
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the levels of field resources, without paying much attention to what those resources mean.
To provide some context in that regard, we begin by summarizing how the literature on

background resources in the utility function has evolved to date.

4.1 Literature on Background Resources

In the theory of choice under static risk, decision makers evaluate their utility with respect to
a terminal criterion. That framework conveniently compacts temporal problems into static
ones whose goal resolves during a “final period.” In such settings, parameters like w{ and wg
are considered to be background wealth levels (Pratt, 1964; Arrow, 1971; Binswanger, 1981;
Heinemann, 2008).

That formulation of utility carries some problematic implications. In critiques based on
the terminal-wealth interpretation of EU, Hanssen (1988) and Rabin (2000) show that the
assumption of reasonable risk aversion at low stakes implies absurd forms of risk aversion
at high stakes. Both Rabin and Rabin and Thaler (2001) consider this inconsistency to be
serious enough to warrant scrapping EU.

Cox and Sadiraj (2006) show that this troublesome issue does not arise if utility is
evaluated with respect to changes in wealth. Those changes are usually interpreted as
income. As a practical matter, incorporating those changes requires adding a wealth baseline
to the utility argument.

Adopting that notion of background wealth, Andersen et al. (2018) investigate the rele-
vance of asset integration in a static risk experiment. Their wealth baseline is defined quite
broadly: it includes durable goods, real estate, and debt service; but not cash, equity in pri-
vate companies, or non-tradeable assets. They find that participants integrate those baseline
assets with experimental cash incentives quite weakly.

In the theory of lifecycle choices under risk, by contrast, w{ and wg are often considered
to be background consumption levels. Experiments with a temporal aspect usually assume

that asset integration originates from background consumption (Cubitt and Read, 2007). For
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example, AHLR and AS each take utility to be consumption-based rather than wealth-based,
and they each include a background parameter in the utility argument.

Somewhat confusingly, both consumption- and wealth-based utility are amenable to time
interpretations. For example, the multiperiod portfolio model has a terminal-wealth objec-
tive, while the multiperiod saving model has a lifecycle-consumption objective. Both have
first-order conditions that take the canonical dynamic form FE; (m1Riy1) § 1 discussed
earlier. However, their respective outcomes are governed by very different utility features.

As a consequence, it is critical to be able to identify a model as consumption- or wealth-
based. Eeckhoudt and Schlesinger provide a reliable way to do this, by observing what
happens when an n'*-order risk is added to the utility argument. This will activate the n'”
derivative if utility is wealth-based, and the n+ 1" derivative if it is consumption-based. For
EU (u = v), that reduces to determining whether the response to a second-order variance
risk is governed by the Arrow-Pratt coefficient —” /¢, or the Kimball coefficient —"”' /4)".

Meyer and Meyer (2005) discuss another tricky feature of the utility argument: its ability
to create paradoxes in lifecycle models. For example, the equity-premium and riskfree-rate
puzzles manifest as inconsistencies among intertemporal substitution, equity premia, and
riskfree rates. These inconsistencies can be traced to artifacts of the utility specification.

The EU model at the root of the problem has isoelastic consumption utility and an
isoelastic wealth value function. It also defines consumption quite broadly, while binding
consumption tightly to wealth. That set of assumptions ultimately proves to be incompatible
with US data.

When consumption is only a fraction of wealth (as in the US), consumption utility can
be isoelastic only if wealth utility exhibits increasing elasticity, and vice versa. Keeping both
aspects isoelastic requires defining wealth more narrowly than consumption. Because that
redefinition would make wealth and consumption incoherent, Meyer and Meyer recommend
using utility functions that are more flexible than isoelastic ones.

RU is one route to that flexibility. The version we use has a utility-of-wealth func-
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tion that ranks risky consumption possibilities via the certainty equivalent, and a utility-of-
consumption function that allocates the certainty equivalent across time. These two functions
admit different risk and intertemporal elasticities by default. Those concepts could certainly
be disentangled in other ways, but this method results in an intuitive SDF (3) where each

attitude is governed by its own marginal rate of substitution.

4.2 Holt and Laury

HL implements 1) as the expo-power function®

1 ct=pv
00= g e (e =)

Consistent with Meyer and Meyer’s stress on flexibility, the expo-power form permits increas-

ing, decreasing, and constant RRA. Exponential utility (p, = 0) and isoelastic power utility
(ay — 0) are special cases. Our baseline calibration uses Holt and Laury’s representative-

agent estimates oy, = 0.03 and p,, = 0.73, a combination that generates IRRA.

Exogenous Field Resources

A risk-neutral participant facing the baseline MPL in Table 1 would switch from the safe
lottery to the risky one at line 5. Holt and Laury’s cohort switches further down the MPL
on average, signalling risk aversion. But, the position of that switch point is highly sensitive
to the the level of exogenous resources yJ.

Figure 1 shows how the baseline switch-point prediction changes as yg increases. At HL’s
assumed level y{ = $0, the switch-point prediction is line 8.° That prediction remains intact
only up to yg = $0.10 of exogenous resources. It falls to line 7 by yg = $0.20, and to line 6

by yg = $2. Line 5 — full risk neutrality — occurs by yg = 7.

8HL’s expo-power function is actually slightly less flexible than this one (Xie, 2000). HL’s a and r
parameters can be reconciled with oy and py, by setting oy = a and py, =1 — 7.

9HL also includes decision error by adding a discrete-choice framework on top of the structural comparison
(5). To make our model’s predictions as crisp as possible, we abstract from these sorts of errors throughout.
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Figure 1: Predicted HL switch points as exogenous field resources increase

As a consequence, the original HL structural estimates are probably strongly predicated
on the assumption of no asset integration. It is hard to imagine that participants did not
consider the consequences of a mere $0.20 of field resources during that task. If they did,
they would have had to almost purposefully erect a mental divider between the experiment
and the field.

HL also presents participants with a second MPL at a multiple of the original payoffs.
Figure 1 repeats the baseline analysis at multiples of 20x, 50x, and 90x. This shows that
the interference can be postponed, but not escaped, by scaling up the payoffs. Risk-neutral
decisions eventually occur around yJ = $100 at 20x, and around 4 = $700 at 90x.

In exercises not shown here, we scale the exogenous field assets instead of the lottery
stakes. We examine yzf = $1,000 and $5,000, two amounts that could easily reflect a house-
hold’s monthly resources. Risk-neutral decisions occur all the way up to the 137x MPL in
the first case, and up to the 611x MPL in the second.

HL’s salience thus depends strongly on the relative levels of field and experimental re-
sources. Because HL is a risk task, this finding can be partly contextualized within the

Rabin critique. Namely, as exogenous field resources push the domain of experimental deci-

26



sion making to higher wealth levels, participants no longer make risky experimental decisions,
even though they are truly risk averse. Unlike some of Rabin’s examples, however, the in-
terference here does not require large or infinite amounts. The consequences manifest at low

levels of field resources, levels that probably describe many real participants.

Endogenous Field Resources

To investigate the role of endogenous resources in HL, we must first parameterize the partic-
ipant’s field smoothing environment. We consider the time interval to be monthly, so that
field resources are relatively small. We set the baseline field return to 7‘5 = 1% for a similar
reason.

To keep s{ ’s behavior within the scope of existing theoretical results, we limit risks to
mean-preserving spreads (MPS). We construct an MPS starting from a balanced income
stream y/ = B, <gj§ ) We then create a two-outcome lottery centered around the future
mean, which has 50-50 probabilities. The lottery payments are thus E; (g{ > + Ayg , where
Ayl is the spread.

We must also flesh out the other two preference domains. We parameterize the discount-
ing parameter with 8 = 0.999, which corresponds to an annual parameter of 0.988. We

implement the smoothing preference v with another expo-power function

1 1=p
u(c)——{l—exp (—ozu-lc >]
Qy, — Pu

The analog to RRA for u is the relative resistance to intertemporal substitution (RRIS), or

inverse EIS. We set the baseline parameters to o, = 0 and p, = 2, a power utility function
in the neighborhood of macroeconomic estimates.

We illustrate the interference from endogenous field resources using the 20x MPL. We
set the field income levels to yf = F, (gjg > — $100, and omit field risk for clarity (Ayd = 0).

We assume first that no field smoothing instrument exists, and then that a field smoothing
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No field saving r] =1% i =10%
Line S{,safe S{,'risky S{,safe S{,m’sky 8{,safe S{,m’sky
1 0 0 33.60 46.66 | 33.50 45.71
2 0 0 33.22 4432 | 33.15 43.46
3 0 0 32.84 4181 | 32.79 41.07
4 0 0 32.45  39.10 | 3243 3849
) 0 0 32.06 36.16 | 32.06 35.69
6 0 0 31.66 3291 | 31.68 32.61
7 0 0 31.26  29.25 | 31.30 29.15
8 0 0 30.84 2499 | 30.92 25.13
9 0 0 30.43  19.68 | 30.53  20.18
10 0 0 30.00 11.64 | 30.13 1291
Switch Point | 8 | 6 6

Table 6: HL 20x decisions with and without a field saving instrument (y{ = yg = $100)

instrument exists and pays returns of 7§ = 1% and 10%.

Table 6 presents the switch points under each assumption, as well as the hidden field
saving amounts s7"® and sI"** that arise on each line of the MPL. Several features of
this table are important. First and foremost, just by assuming that the participant has some
form of field smoothing, the switch-point prediction rises from line 8 to line 6. This occurs
because 35 represents a second-period windfall that the participant would like to smooth
back to the first period, but that option was previously unavailable.

To reiterate, when field smoothing is impossible, the participant tolerates the second
period’s lopsided but risk-averse consumption outcome. But, when field smoothing is allowed,
the participant seemingly becomes less risk averse. This is very strange: we have not touched
¥ (or any other preference domain), and so we know for a fact that the participant’s risk
attitude is the same in both cases.

This movement up the MPL occurs because field smoothing allows the participant to
self-insure by moving funds from the first period to the second. This “hedge across time”
ends up being much more powerful than the “hedge within time” afforded by static risk
aversion. The ability to self-insure with lifecycle resources ultimately allows the participant

to engage in more MPL risk.
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Figure 2: Predicted HL switch points for other v specifications

Second, as our theoretical discussion suggested, each side of the utility comparison (6)
does indeed entail a different amount of field saving. The increase from s to s/"*** on
each line is due to the classic smoothing and precautionary responses. Specifically, the change
in the smoothing response is triggered by the difference in §5°/*’s and §5"**"’s means, and
the change in the precautionary response is triggered by the difference in their variances.

Third, for each value of rg , s{ always decreases moving down the MPL. This occurs
because the highest payoff becomes increasingly more assured, and so less field saving is
needed to guarantee a good consumption path.

Thus, HL decisions are also sensitive to whether the participant has a field smoothing

instrument. A participant who seems to be risk neutral per the MPL may be truly risk

averse, but self-insuring outside the experimenter’s view.

Other Considerations

Figure 2 re-examines interference from exogenous field resources under two rather extreme
risk attitudes. These exercises illustrate how «; and py act together to explain decisions at
very different payoff scales.

The left panel plots decisions under CARA. For this attitude, the only aspect of risk
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that matters is the level of y5’s payoffs. Because that level is fixed for a given scaling, and
because yg is not risky, the switch point within a scaling never varies with yg .

Under this CARA parameterization, the switch point at the baseline scaling is line 5,
completely indistinguishable from risk neutrality. The 20x scaling now yields the switch
point at line 8. And, no switches ever occur at 50x and 90x. CARA thus implies a huge
amount of risk aversion at large stakes.

The right panel repeats this exercise under much stronger IRRA. Unlike the CARA
results, these switch points do eventually change as yg increases. Thus, py’s role in the
expo-power function is to tamp down ay’s explosive tendencies at large amounts, and to

provide some risk aversion at small amounts.

4.3 Andersen et al.

Andersen et al.’s baseline estimates entail an isoelastic u with p, = 0.74, and an annual pure
rate of time preference of 10%.

We illustrate the interference from lifecycle asset integration using the annual percentage
rate (APR) structure in Table 3 at intervals of 1, 3, 6, and 12 months. We construct a
two-period environment by breaking those intervals into two equally long segments.

To keep the units uniform across our examples, we convert DKK to USD at 6.55 to
1, Andersen et al.’s reported exchange rate. This places y§ at about $450. Because u is
isoelastic, multiplicatively scaling its argument by the exchange rate does not affect any of

the switch-point predictions.

Exogenous Field Resources

Figure 3 presents the switch-point predictions as exogenous field resources increase. Andersen
et al. calibrate their exogenous field resources to a government consumption survey that
finds average daily field consumption to be DKK 118. In Figure 3’s units, one day’s worth

of background consumption is about $20, and three months’ worth about $1,600.
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Figure 3: Predicted AHLR switch points as exogenous field resources increase

The switch points in the left panel are certainly sensitive to y{ and yg . The switch point
moves from line 8 at y{ =y = $0 to line 3 at y/ = yJ = $1,000. That prediction evolves in
essentially the same way at different 7 intervals.

Because u is estimated in conjunction with a supplemental HL task, it is not entirely
surprising that Andersen et al. find p, to be close to Holt and Laury’s p, (0.74 vs. 0.73).
But, it is important to remember that those parameters address different attitudes: p,
measures u’s RRIS, while p,, measures ¢’s RRA. Thus, the same numerical estimate signals
something different in AHLR’s intertemporal context than it does in HL’s static context.
For AHLR, this estimate means that RRIS is 0.74, and so EIS is 1/0.74 = 1.35.19

Problematically, elastic EIS is hardly ever found in macroeconomic data. So, the right
panel of Figure 3 repeats this exercise under p, = 2, the same inelastic value used in the
HL analysis. These switch-point predictions move much more sharply than the elastic ones.
They do not even dislodge from the bottom of the MPL until about y{ = yg = $100, but they
still reach line 3 by y{ = yg = $1,000. There is slightly more separation in the predictions

at different time intervals, but they largely move in tandem as before.

0This distinction between RRA and RRIS cannot be extinguished by forcing them to be “mathematically
equivalent” by setting u = 1. In this intertemporal context, that equivalence simply collapses RU to EU. It
does not somehow compress RRA and RRIS into a single attitude. Both of those elasticities are still present
under EU — they just take the same value.
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No field saving r; =1% i =10%
Line S{,early S{,late S{,early S{,late Sf,early S{Jate
1 0 0 209.37 -252.19 | 240.82 -201.37
2 0 0 209.37 -258.14 | 240.82 -206.76
3 0 0 209.37 -264.16 | 240.82 -212.21
4 0 0 209.37 -270.26 | 240.82 -217.72
5 0 0 209.37 -276.43 | 240.82 -223.31
6 0 0 209.37 -282.67 | 240.82 -228.96
7 0 0 209.37 -288.99 | 240.82 -234.67
8 0 0 209.37 -295.38 | 240.82 -240.45
9 0 0 209.37 -301.84 | 240.82 -246.30
10 0 0 209.37 -308.37 | 240.82 -252.21
Switch Point | 3 | 1 \ 4
Table 7: AHLR 6-month decisions with and without a field saving instrument (y{ = yJ =

$500)

Importantly, many switch-point predictions can be rationalized under either elasticity
assumption. For example, line 5 arises at about y{ = yg = $10 under the elastic u, and at
about y; = y{ = $300 under the inelastic u. This illustrates that AHLR, like HL, is sensitive
to the level of exogenous resources. In this case, as field resources increase, the participant
appears to be more patient.

Unlike HL, this loss of salience cannot be attributed to the Rabin critique. Because
AHLR has no risk, it evades that concern entirely. Here, the loss is wholly a consequence
of the participant using the experiment to smooth out the field consumption path. When
field resources are large enough, the desired smoothness always results in choosing the early

option.

Endogenous Field Resources

Table 7 presents the switch-point predictions for the six-month MPL, with and without the
assumption that the participant has a field smoothing instrument. We again set field returns
to rg = 1% and 10%. We set field resources to y{ =L <yg) = $500, and continue to omit

field risk (Ayj = 0).
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As with HL, the AHLR switch-point predictions change just by assuming that the par-
ticipant has a field smoothing instrument. The no-field-smoothing prediction is line 3. This
rises to line 1 when 7“5 = 1%, and actually falls to line 4 when rg = 10%.

Also like HL, the amount of field smoothing changes markedly on each side of the AHLR
comparison (8). The value of 3{ is always positive for the early option, indicating that the
participant will smooth forward some of the early experimental windfall. Similarly, s{ is
always negative for the late option, indicating that the participant will smooth back some
of the late windfall.

The move from line 3 to line 1 when r{ = 1% makes the participant appear more patient.
But, because we have not changed anything about preferences, we know that this outcome
arises from some sort of substitution. In this case, the ability to smooth in the field allows
the participant to support a seemingly more patient outcome in the MPL. That “patience”
is nothing more than opting for the larger late experimental payment, and smoothing some
of it back with the field instrument.

Those same smoothing attitudes are present when 7’{ = 10%. But, this situation raises
another consideration: the high return on field saving makes it a very attractive investment.
That countervailing factor causes the participant to opt for the earlier experimental payment,
and save it with the field instrument. The switch point therefore moves down the MPL
instead of up.

So, the mere ability to smooth in the field can also result in different AHLR predictions.
Saving’s smoothing use can be triggered with fairly small field returns. Larger returns can

also pull in saving’s investment use.

Other Considerations

Even though AHLR involves no experimental risk, a participant could still be exposed to field
risk. We explore those implications by again setting y{ =L <y§ ) = $500, and varying the

MPS spread Ayg from $0 to $500. For clarity, we assume away endogenous field resources.
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Figure 4: Predicted AHLR switch points under RU, for MPS of ! (y/ = B, <g§> = $500)

Because this set of incentives will activate both risk preferences and smoothing prefer-
ences, we use a full RU specification. We set 1 to Holt and Laury’s IRRA estimates, and u
to the previous power function with p, = 2. To reiterate our earlier note on the difference
between RRA and RRIS, it would be unwise to impute v with Holt and Laury’s estimates.
Those values would imply IRRIS, which would eventually send the EIS all the way to 0.

Figure 4 plots the resulting switch points. As Ayg increases, the switch point moves up
the MPL. Because this exercise involves pure changes in risk, that movement comes from
the participant’s precautionary motive alone. The precautionary motive, as a rule, offsets
higher future risk with more saving. In the context of AHLR, “more saving” means “choosing
the late option.”

So, because participants can potentially use experimental smoothing to mitigate field
risk, the experimenter should also have a good grasp on how much field risk participants

face. Higher field risk will lead to more experimental smoothing.
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Figure 5: Predicted AS saving amounts when exogenous field resources are construed as
positive or negative

4.4 Andreoni and Sprenger

Because the nature of AS interference does not depend on Andreoni and Sprenger’s specific
m¢ values, we keep AHLR’s payoff structure for the AS exercises. In other words, we ask
what decisions AHLR participants would have made if the incentives had been presented as
an AS task with m® = DKK 3,000. This allows us to easily compare the AS findings to the

results above.

Exogenous Field Resources

An obvious difference between AHLR and AS is AS’s Stone-Geary treatment of exogenous
field resources. Figure 5 plots the predicted AS saving amounts s{ assuming that y{ and yg
can be positive or negative. This shows that Stone-Geary inverts the standard relationship
between saving and field resources.

The downward-sloping lines reflect the usual understanding of that relationship, where
the propensity to save falls as the participant holds additional positive resources. This occurs
because those extra resources push the consumption interval away from the highly curved

parts of u, thereby diminishing the desire to smooth.
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The upward-sloping lines reflect the Stone-Geary conception. Because the movements
along the utility function now operate in reverse, the propensity to save rises. As the partic-
ipant receives additional negative resources, a greater part of the consumption interval falls
into the very curved areas of u. Because those areas reflect undesirably lumpy outcomes,
the participant saves more to smooth out the consumption path.

Because AS entails r§ = 0, experimental saving has no investment use here. Figure 5
shows that participants will save anyway. This illustrates that saving does indeed have
a meaningful smoothing function separate from its investment function. Unfortunately,
Figure 5 also shows that the field resources y{ and yg can once again interfere with the
experimental decision s{. As the participant’s field resources increase, the desire to save in

the experiment falls.

Endogenous Field Resources

Figure 6 repeats this exercise assuming that the participant has field smoothing instruments
that return 75 = 1%, 5%, and 10%. These plots provide the clearest illustration yet of the
elasticity (4) between experimental and field smoothing: whenever s falls, s{ simultaneously
rises to compensate.

Because rg is always greater than r§ = 0 in Figure 6, that tradeoff always moves in the
direction of substituting experimental saving with field saving. Importantly, the fact that
field saving has a higher return does not necessarily mean that the participant will forego
experimental saving. Instead, up to about y{ = yg = $200, the participant saves using both
instruments. That mixture allows the participant to trade some experimental saving for
better-returning field saving, while also keeping the consumption path sufficiently smooth.

Past y{ = yg = $200, however, the participant does forego experimental saving. In
fact, the participant would like to borrow from the experimenter and save that money in

the field, but the rules forbid doing so. As a consequence, a participant with more than

$200 of field resources will always choose s§ = 0 in AS. Importantly, the experimenter will
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Figure 6: Predicted AS saving amounts when a field saving instrument is present
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Figure 7: Predicted AS saving amounts if s has a return (rg =1%)

not be able to determine ex post whether that boundary outcome has been generated by

the participant’s preferences (e.g., strong impatience or high RRIS) or by this interference.

Those explanations are observationally equivalent.

Elasticity (4) can cause problems at the upper bound just as easily. Figure 7 contains a

similar exercise assuming that the AS task could be modified to pay experimental returns

r5 = 5% and 10%, while the participant’s field return is rg = 1%. This change makes

the experiment a better investment than the field, and so the MRS operates in reverse.

Experimental saving now reaches its upper bound s = m® at about y{ = y2f = $200. The

participant compensates for higher experimental saving by borrowing in the field.

In sum, AS is sensitive to endogenous field resources in a way that naturally results
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in boundary decisions. Notably, interference from these resources can result in higher or
lower experimental saving. The former is like the attenuation towards patient outcomes that

occurs with AHLR.

5 Discussion

This paper overlays a thought experiment onto the design of risk and time experiments:
what would happen if participants treated an experiment not as a wholly isolated task, but
as an injection of resources into their existing lifecycle plans? In the three classic designs
we examine — encompassing static and dynamic tasks, risk and time manipulations, as well
as menu and free responses — experimental decisions change markedly when participants are
permitted to trade off experiment and field resources, versus not. In other words, inferences
in these experiments are not robust to lifecycle asset integration. Moreover, because field in-
terference occurs reliably, and with small amounts, we suspect the inference problem extends
beyond these three settings.

We reach those conclusions by wrapping each experiment into a meta-model that rep-
resents a participant’s unified experiment-field environment. The underlying two-period
framework is a workhorse in intertemporal choice theory, with well-studied properties. It
allows us to sidestep a major confound that would arise in any empirical examination of
lifecycle asset integration: participants’ preferences. Within our theoretical sandbox, we can
absolutely ensure that preferences are held constant while field resources change, and thereby
establish definitively that lifecycle asset integration causes interference.

In reality, experimenters will not be able to observe the mental act of asset integration.
They will therefore be unable to detect interference from just a cursory examination of their
data. Helpfully, our theoretical framework provides a way to envision how this unobservable
might impact many tasks.

The inference problem can be seen with a simple AHLR illustration. Suppose that an
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experimenter observes switchpoints at rows 5, 6, and 7 of the AHLR task menu. Under the
standard interpretation of those data, the row-5 switchpoint reflects the most patient prefer-
ences, the row-7 switchpoint reflects the least patient preferences, and the row-6 switchpoint
reflects preferences in between. In other words, switching further down the menu implies
less patience.

Once lifecycle asset integration is admitted as a possibility, however, the experimenter
faces a quandary. Per our analysis, those same switchpoints can now be interpreted in three

conflicting ways:

1. If participants have not integrated anything, the standard interpretation of rows 5-7 is

correct.

2. If participants have integrated exogenous field resources, rows 5-7 will reflect prefer-
ences that are less patient than the standard interpretation. Very problematically,
the straightforward relationship between rows and patience will almost surely break
if different participants have integrated different amounts. For example, a participant
with low patience and moderate integration could switch at row 5, while one with
similarly low patience but little integration switches at row 7 as before. Participants’
intertemporal preferences, which smooth field and experimental resources collectively,

are responsible for this divergence.

3. If participants have integrated endogenous field resources, rows 5-7 will reflect prefer-
ences that are either more or less patient than the standard interpretation, depending
on the size of the field return. When that return is small, issues like those stemming
from exogenous resources will occur. When that return is large, rows further down
the table might actually imply more patience. For example, a participant with high
patience and moderate integration could switch at row 7, while one with similarly high
patience but little integration switches at row 5 as before. Participants’ intertemporal

preferences are responsible once again, but the intertemporal tradeoffs are complicated
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by the fact that the field return makes a very good investment.

These interpretations are all observationally equivalent: experimenters cannot tell whether
the switchpoint data have been generated by the preferences targeted by the task, or by life-
cycle asset integration. We find similar instances of observational equivalence in the static
HL risk task, and in the free-response AS saving task. Field resources on the scale of $100
to $1,000 almost always cause problems, but resources on the scale of $10 frequently do too.
The usual outcome is a kind of attenuation bias that pulls data toward risk neutral and
patient interpretations, even though preferences are solidly risk averse and impatient.

The lone bit of prima facie evidence for lifecycle asset integration appears to be large
numbers of boundary decisions. Because asset integration involves substituting between
experimental and field resources, experimental incentives that are quite stingy or quite rich
relative to the field can result in minimal or maximal uptake. It may be tricky to elicit
interior decisions in free-response designs as a consequence. In the past, we ourselves have
dismissed large numbers of boundary decisions in experimental runs as some sort of generic
design flaw. In light of these results, that flaw is likely very specific.

It is also not fatal, at least conceptually. If experimenters suspect that asset integration
will occur, they can implement mitigation strategies both ex ante during design, and ez post
during statistical analysis. Fx ante, experimenters can pre-screen participants to appraise
field resources. Doing so gives experimenters a better chance of matching their incentives
to participants’ lifecycle assets. Incentives that match poorly are predestined to yield little
data variation, due to lifecycle asset integration’s attenuating effects.

FEx post, experimenters should bear in mind that this attenuation reduces the sensitivity
of statistical tests. It will thus shrink a priori the differentials underpinning basic comparison
tests, and promote false negatives. To reiterate, the data generating those differentials cannot
by themselves reveal whether the attenuation is enough to ruin a test.

For studies that estimate preference parameters, the structural equations should start

from something like the joint system (2a) and (2b), which captures the entire experiment-field
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interaction.!! This is a much taller order than the oft-used method of eliciting preferences
on a “one task per attitude” basis, and then uniting those tasks into a structural likelihood

resembling

likelihood = smoothing likelihood + risk-aversion likelihood + discounting likelihood

Besides omitting the field, this method weighs all three preferences equally, but those pref-
erences do not actually have equal weights in the decision model (1) generating the data.
SDF (3), embedded in (2a) and (2b), inherently provides the correct weighting.?

Many structural models assume EU. In our experience, this opens up the experimenter to
confusing RRA and RRIS, particularly when an assortment of tasks on risk and time has been
assembled together. Helpfully, the RU preferences in (1) make plain that some descriptions
of risk aversion just do not make sense as elasticities of intertemporal substitution. For
example, Holt and Laury’s IRRA estimate would not make a good RRIS, because IRRIS
eventually implies no intertemporal elasticity.

The benefits of an RU stance toward modeling are not rooted in the RU functional form
per se, but in contextualizing experimental design within the trio of discounting, risk aversion,
and intertemporal substitution by default. Lifecycle asset integration will activate all of those
preferences at once — no matter what preference the task is ostensibly designed to trigger
— and RU-style framing faithfully captures that activation pattern. RU-style framing also
clarifies which field data would serve as appropriate controls for the resulting experimental
interference. If, after viewing an experiment in this light, the experimenter determines that
simplifications are warranted (e.g., EU or a smaller set of field resources), those can certainly
be made.

Each of our examples is a “laboratory experiment” in the sense of its having been orig-

1When an experiment does not include anything resembling a smoothing decision, a single structural
equation like (2a) is enough.

12Tn a numerical decomposition of saving into its smoothing motive (controlled by u) and precautionary
motive (controlled by 1), Bostian and Heinzel (2018) find that, under a wide range of risky scenarios, more
than 80% of saving is attributable to smoothing.
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inally conducted in a laboratory. Because laboratory experiments cleanly segregate the
experimenter’s manipulation from all other incentives, those examples fit neatly into our
meta-model. At the same time, that model’s explicit link between experiment and field calls
out an uncomfortable limitation of the laboratory paradigm: a laboratory room does not
necessarily wall off the field. Unquestionably, participants can mentally incorporate their
own field resources into a task conducted inside a laboratory.'?

This, in turn, suggests that the standard taxonomy’s distinctions between laboratory,
field, artefactual, and natural experiments (Harrison and List, 2004) start to blur for risk
and time designs. Indeed, our analysis shows that trying to make those designs “more
realistic” with large, field-scale incentives does not change anything. Field-scale lifecycle
asset integration will interfere in those situations too. Because interference can occur at any
scale, experimenters should have a good understanding of their participants’ field resources
when implementing these tasks. Neglecting the diversity of lifecycle assets across cohorts
could be a source of replication failure (Camerer et al., 2016).

The notable prior successes of these experiments may be fortuitously linked to their
subject pools, which usually contain students or other groups with small amounts of lifecycle
assets. Our model contains this scenario as a special case, and grants that designs will
largely work as planned when field resources are low. But, the model also stresses that the
external validity of this special case should not be reflexively inflated, because lifecycle asset

integration can intrude easily.
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A Derivation of the First-Order Conditions and ¢/

The Lagrangian underpinning (1) is

L=u (c{) + fu (C’E <E§>)
o (y] +vf = el = sl = )
o (9 + 35 + s RS + s - )
—|—/\10{
+ Ao
+ M (sl i)
+o! (o] = o)
+ \°s]

+0° (Y1 — 57)

The choice variables are c{ , 5{ , s{ , and s§. Instead of relying on Kuhn-Tucker shortcuts, L

spells out every Lagrange multiplier. We will shortly collapse the choice variables to just
s{ and s§, but starting from this expanded perspective illustrates why that simplification is

warranted.
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L’s first-order conditions are

c{:u'(c{)—uqu)\l =0
- pu (C’E (ég)) CE <E§> — fi2 + Ao =0
s{:—u1+u2R£+)\f—vf =0
87t = + pe RS+ A —0° =0
poyl + = —s] = >0
[ G + 5+ sSRS + IR — & >0
A c{ >0
Ao @ & > ()
Nosl -1 >0
ol iyl — o] >0
A sy >0
v Y] — 8] >0

The properties of w and v that satisfy L’s second-order conditions (Gollier, 2001) also guaran-
tee c{ " Eg* > 0, and that the two resource constraints hold with equality. As a consequence,
,u{ " ug* > 0 and A}, \; = 0. Because the consumption path is then fully determined by state

variables and saving amounts, c{ and Eg become redundant choice variables.
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Applying those simplifications yields the shorter Lagrangian

c=u(yl +ui—sl—s5) +0u(CE (i + 55+ s{ R + 5iR3)
+ N (] - of)
+ 0! (o] = o)
XSS

+v° (yf — s%)

with first-order conditions

sho—u <c{> + Bu' (é;) CFE' (65) R+ )N —of =0
s§ —u <c{> + B (65) CE' (65) RS + X\ —° =0
Mol — gl >0
ol iyl — 8] >0
A 56 >0
v ry] — 85 >0

Conveniently, £ recasts L’s consumption-saving tradeoffs in terms of saving decisions alone.
This is the mathematical motivation for (1).

The Lagrange multipliers on those saving variables cannot be characterized in general.
However, because experimental incentives are usually smaller than field incentives, s{ * should
be interior to lifecycle field income in most cases. That would imply \* v/* = 0. But,
one can certainly think of circumstances where that assumption might not hold (e.g., an
experiment conducted in a developing country where y{ is on the scale of several months’
field income).

To illustrate how this setup admits boundary values of s{, Figure 8 contains two related
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Figure 8: Two visualizations of \* and v® using the marginal utilities from s{’s first-order
condition

visualizations of the Lagrange multipliers \* and v°. The first is rooted in an intuitive de-
composition of s{’s first-order condition into its current and future marginal utility (MU)
components, which is plotted as a supply-and-demand system (Carroll and Kimball, 2005;
Bostian and Heinzel, 2018). Under this reading, the participant’s future self demands re-
sources via saving, which its current self supplies. The second is the first-order condition
itself: given the supply-and-demand interpretation, this equation can be viewed as the net
MU (“consumer surplus”) from the participant’s mental trade.

As these graphs show, interior values of s{* occur when the participant’s current self
can exactly supply the saving that its future self demands (equivalently, when net MU is 0).
But, if current MU is always higher than future MU within the allowed saving interval [0, y§],
the participant chooses s{* = 0, and the utility gap A** > 0 appears on the left boundary.
Similarly, if future MU is always higher than current MU within that interval, the participant
chooses s{* = y{, and the utility gap v®* > 0 appears on the right boundary.

Figure 8 illustrates these gaps by shifting future MU alone. Such shifts could be caused
by changes to 5, yg , RS or Rg . Of course, these rather simplistic shifts are not the only

way to create boundary decisions. As a rule, any experimental incentives that are too stingy
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relative to the field will result in s{* = 0, and any that are too rich will result in s{* = .

The elasticity (4) of s/ with respect to s¢ can be developed from the usual definition

f
dn(sf) asd s

S = 7 —
dln(s§)  ds§ sf

The derivative ds! /ds¢ can be extracted from L’s first-order conditions. Summing the s/

and s§ conditions yields

O=—u (c{) + B (55) CE' (ag) (Rg + R;) + % (M =) + % (N — %) =0

DN | —

The derivative follows by applying the implicit function theorem to O:

ds|  00/0s;
dsf 00 /ds]

where

20 _ <C{> + 8 {u (55 ) CE (65 )2 o (65) CE" (65 )

S0 = (d) v [ (d) om (&) 4w () op (@

} .

VA
N———
—_
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