

Association and Linkage Mapping of Walnut (Juglans regia L.) Phenological Traits

Anthony Bernard, Annarita Marrano, Armel Donkpegan, Patrick J Brown, Charles A Leslie, David B Neale, Fabrice Lheureux, Elisabeth Dirlewanger

▶ To cite this version:

Anthony Bernard, Annarita Marrano, Armel Donkpegan, Patrick J Brown, Charles A Leslie, et al.. Association and Linkage Mapping of Walnut (Juglans regia L.) Phenological Traits. International Plant & Animal Genome XXVIII, Jan 2020, San Diego, United States. hal-03358866

HAL Id: hal-03358866 https://hal.inrae.fr/hal-03358866

Submitted on 29 Sep 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTERNATIONAL PLANT & ANIMAL GENOME XXVIII JANUARY 11-15, 2020 SAN DIEGO, CA, USA

Anthony Bernard Annarita Marrano Armel Donkpegan Patrick J. Brown Charles A. Leslie David B. Neale Fabrice Lheureux Elisabeth Dirlewanger

Association and Linkage Mapping of Walnut (*Juglans regia* L.) Phenological Traits

2

China > California > Iran France: 7th with 40,000 tons Area of orchards: 2nd French fruit crop

2

China > California > Iran France: 7th with 40,000 tons Area of orchards: 2nd French fruit crop

3

Walnut breeding goals in France: increased yield, larger nut size, ease of cracking, adaptation to climatic conditions (late spring frosts) → phenology

Effect of climate change, but breeding possible since phenology-related traits are also controlled by genetic background

2

China > California > Iran France: 7th with 40,000 tons Area of orchards: 2nd French fruit crop

3

Walnut breeding goals in France: increased yield, larger nut size, ease of cracking, adaptation to climatic conditions (late spring frosts) → phenology

Effect of climate change, but breeding possible since phenology-related traits are also controlled by genetic background

2

China > California > Iran France: 7th with 40,000 tons Area of orchards: 2nd French fruit crop

3

Walnut breeding goals in France: increased yield, larger nut size, ease of cracking, adaptation to climatic conditions (late spring frosts) → phenology

5

Axiom[™] J. regia 700K SNP array (Marrano et al., 2019) GWAS on walnut: in-shell walnut and kernel traits (Arab et al., 2019), water use efficiency (Famula et al., 2019), and yield, lateral bearing, pellicle color, leafing date and harvest date (Marrano et al., 2019)

Goals: study of *Juglans regia* genetic resources for the implementation of a marker-assisted selection

- → basic research: genetic diversity and structure evaluation of INRA germplasm repository (Bernard *et al.*, 2018), and genetic architecture deciphering of main traits of interest
- ightarrow applied research: establishment of necessary tools for marker-assisted selection

1

Goals: study of *Juglans regia* genetic resources for the implementation of a marker-assisted selection

- → basic research: genetic diversity and structure evaluation of INRA germplasm repository (Bernard *et al.*, 2018), and genetic architecture deciphering of main traits of interest
- \rightarrow applied research: establishment of necessary tools for marker-assisted selection

2

Action plan:

- → phenotyping: 2017, 2018, 2019, 2020 for many traits related to phenology, nut in-shell and kernel
- → genotyping: using SSRs and Axiom[™] J. regia 700K SNP array
- → plant material: F₁ progeny (78 individuals) segregating for phenology + unique genetic resources corecollection (170 accessions)
- \rightarrow GWAS, combined with QTLs detection for phenology
- ightarrow marker validation on other plant material
- \rightarrow choice of genitors

Phenotypic evaluation of phenology and data analysis

Phenotypic evaluation of phenology and data analysis

2

Best Linear Unbiased Predictions (BLUPs) $\rightarrow P_{ik} = \mu + Y_i + g_k + e_{ik}$

- P_{ik} observed phenotype of the k^{th} accession in the i^{th} year;
- μ mean value of the trait; Y_i fixed effect of the *i*th year;
- g_k -random effect of the k genotype; and $e_{i(j)k}$ residuals of the model

 \rightarrow Ime4

Descriptive statistics and heritability, a case study with budbreak date

Descriptive statistics and heritability, a case study with budbreak date

Descriptive statistics and heritability, a case study with budbreak date

2

Broad-sense heritability
$$\rightarrow$$
 H² = $\sigma_G^2 / [(\sigma_G^2 + (\sigma_\epsilon^2 / n_{obs/g})]$
where σ_G^2 - genotypic effect variance;
 σ_ϵ^2 - variance of residuals;
and $n_{obs/g}$ - number of observations by genotype

→ 0.93

Step 1. To keep SNPs of high resolution from Axiom® Analysis Suite

			■ 4.45 (06) (2.46) ■ 8.8 (02) Generatinger △ A.84 (06)		
Conversion Type		* x	V H ((1)) V H ((1)) Hypere O H O H	Number of markers	Percentage of markers
PolyHighResolution	105 ·		AB Viter Postation	397,921 ^ª	65,27
NoMinorHom				75,564 ^a	12,39
MonoHighResolution				36,684 ^a	6,02
CallRateBelowThreshold		٠		27,761	4,55
OffTargetVariant	53			4,787	0,79
Other				66,941	10,98
Total of retained SNPs	s 45	0 Contrast	15 3	510,169	

Step 2. To keep SNPs with mendelian inheritance using F_1 progeny

SNPs having no mendelian inheritance	661			
Total of retained SNPs	509,508			
Step 3. To keep SNPs having genotyping rate >90%				
SNPs having genotyping rate <90%	13,993			
Total of retained SNPs	495,515			
Step 4. To keep SNPs having minor allele frequency >5%				
SNPs having minor allele frequency <5%	123,751			
Total of retained SNPs	371,764			
Step 5. To delete duplicated SNPs				
Duplicated SNPs	7,489			
Total of retained SNPs	364,275			
^a SNPs of high resolution				

609,658 **→** 364,275 = 59.8%

Structure analysis shows clustering according to geographical origin

K2: one group with accessions from Western Europe and America, other with accessions from Eastern Europe and Asia

K3: highlights hybrids

Structure analysis shows clustering according to geographical origin

1

K2: one group with accessions from Western Europe and America, other with accessions from Eastern Europe and Asia

K3: highlights hybrids

2

Structure also investigated with PCA Cryptic relatedness calculated using kinship matrix may account for structure → Best number of PCs to include = 0 (Bayesian Information Criterion)

GWAS results for budbreak date

Co-localization GWAS/QTLs for budbreak date

6,009,859

trichome <u>bire</u>fringence-like

13 protein

,887,060

probable trehalosephosphate phosphatase D

31,887,998

Association and Linkage Mapping of Walnut (Juglans regia L.) Phenological Traits – Fruits/Nuts Workshop

2

1

96 unreleased breeding line accessions from WIP, University of California, Davis

1

96 unreleased breeding line accessions from WIP, University of California, Davis

INTERNATIONAL PLANT & ANIMAL GENOME XXVIII JANUARY 11-15, 2020 SAN DIEGO, CA, USA

Anthony Bernard Annarita Marrano Armel Donkpegan Patrick J. Brown Charles A. Leslie David B. Neale Fabrice Lheureux Elisabeth Dirlewanger

> Thank you for your attention ! Any questions?

