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non-negative global solution as well as the existence of compact absorbing and attracting
sets for the solutions of the corresponding random system. After that, we study the
internal structure of the attracting set to obtain more detailed information about the
long-time behavior of the state variables. In such a way, we provide conditions under
which the extinction of the species cannot be avoided and conditions to ensure the
persistence of the species, which is often the main goal pursued by practitioners. In
addition, we illustrate the theoretical results with several numerical simulations.

Keywords: chemostat; random; diffusion; Ornstein-Uhlenbeck; interconnection.

AMS Subject Classification 2020: 34A12, 34F05, 34D99.

1. Introduction

The chemostat is a laboratory device used for growing microorganisms in a culture

environment. It provides a very useful tool to investigate microbial ecosystems at

steady state and possesses many applications in real life, for instance, it can be used

to study genetically altered organisms (see [40, 42]), models of mammalian large

intestine (see [21, 22]), waste-water treatment processes (see [15, 30]) and models

in ecology regarding populations of microorganisms in lakes, wetlands, rivers or

aquaculture systems (see [2, 13, 26, 27, 28, 37]).

Since its invention, thanks to Monod (see [34]) and Novick and Szilard (see [36])

simultaneously in 1950, the chemostat has been subject to a huge number of sci-

entific publications, not only in applied mathematics but also in applied sciences,

being the main focus of attention of many books and research articles.

The success enjoyed by the chemostat is mainly due to the fact that it is a quite

simple device that allows scientists to develop several different works that reproduce

the real life in a very loyal manner, in fact, it is widely used for applications in

industry. In addition, the chemostat model is very interesting as a mathematical

object as well and constitutes an active branch of biomathematics, under framework

called the theory of the chemostat.

The classical chemostat device consists of three tanks, called the feed bottle, the

culture vessel and the collection vessel, respectively, that are interconnected by

means of pumps. The substrate is stored in the first tank and pumped to the culture

vessel, where the interactions with the species take place. Moreover, another flow is

pumped from the culture vessel to the collection vessel such that the volume in the

culture vessel remains constant. Figure 1 provides a representation of the classical

chemostat device. [5]
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Fig. 1: Diagram of the chemostat device

This dynamics is described by the following differential system (see [25])

ds

dt
=

Q

V
(sin − s) − µ(s)x, (1.1)

dx

dt
= −

Q

V
x + µ(s)x, (1.2)

where s and x denote the concentration of substrate (or nutrient) and species (or

microorganisms), respectively, sin is the input concentration of substrate, Q repre-

sents the input flow rate, V describes the volume of liquid media in the culture vessel

and µ is a function describing the kinetics of the substrate is being transformed by

the microbial species. In this paper we consider the classical Monod consumption

function

µ(s) =
µ̄0s

k + s
, (1.3)

where µ̄0 is the maximal growth rate coefficient of the consumer species and k

represents the half-saturation constant. We recall that every parameter is positive.

We shall later on denote D = Q/V the dilution rate.

System (1.1)-(1.2) has been widely studied in the last decades from both the biolog-

ical and the mathematical points of view. Among the different assumptions made

when considering system (1.1)-(1.2), one is to assume that the liquid media inside

the culture vessel is perfectly mixed. This is possible by using a perfect agitator

when having culture vessels with small volumes but it becomes difficult to achieve

if the volume of the culture vessel is large, as it often happens in industrial devices

or natural reservoirs such as lakes.

This encourages scientists to think about modeling non ideally mixed chemostats.

To this end, some of the most common ways consists on considering systems of

partial differential equations (see [29, 18, 35]) or a finite number of interconnected

chemostats with different flow conditions described by systems of ordinary differ-

ential equations, as in the general gradostat model (see [38, 41, 24]).
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Concerning the existing literature, most of them consider spatial heterogeneity

only in the axial dimension of the chemostat as in tubular devices, where the cul-

ture vessel is very high and thin and the input flow is considerable large, (see

[23, 17, 19, 45, 16]) and simple gradostats (see [32, 33, 43, 39]). Nevertheless, config-

urations in parallel have been much less treated, apart from simple considerations

in chemical reaction engineering (see [31, 20]). However, it has been reported in the

literature that tanks often present dead zones that can be simply represented by a

part of the volume connected to the rest of the volume by diffusion (see [14] and

reference herein).

Hence, in this paper our aim is to consider two classical chemostats where the culture

vessels are connected in parallel by Fickian diffusion, as illustrated in Figure 2. This

amounts to have a bi-directional flow rate between the tanks, preserving constant

volumes in the tanks.

Fig. 2: Diagram of two chemostat devices connected by Fickian diffussion

Therefore, the resulting model is given by the following differential system

ds1

dt
=

Q1

V1
(sin

1 − s1) − µ(s1)x1 +
d

V1
(s2 − s1), (1.4)

dx1

dt
= −

Q1

V1
x1 + µ(s1)x1 +

d

V1
(x2 − x1), (1.5)

ds2

dt
=

Q2

V2
(sin

2 − s2) − µ(s2)x2 +
d

V2
(s1 − s2), (1.6)

dx2

dt
= −

Q2

V2
x2 + µ(s2)x2 +

d

V2
(x1 − x2), (1.7)

where si and xi denote the concentration of substrate and species in the culture

vessel i = 1, 2, respectively, sin
i is the input concentration of substrate in the culture

vessel i = 1, 2, Qi represents the input flow rate in the culture vessel i = 1, 2, Vi
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describes the volume of the culture vessel i = 1, 2 and d is the diffusion parameter.

We recall that every parameter is positive.

Even though system (1.4)-(1.7) could provide a good approximation of real devices,

it is a deterministic model and we know that phenomena in real life are subject to

random fluctuations. Then, in order to obtain a more realistic model, we go further

in this paper and consider random perturbations of the diffusion parameter.

There are many different ways to introduce randomness or stochasticity in deter-

ministic systems (see, for instance, [6]). However, in this work we use a bounded

function of the well-known Ornstein-Uhlenbeck process to ensure that the random

perturbations remain bounded in a certain interval, as it happens in real devices.

Then, we obtain the following system of random differential equations

ds1

dt
=

Q1

V1
(sin

1 − s1) − µ(s1)x1 +
d + Φ(z∗(θtω))

V1
(s2 − s1), (1.8)

dx1

dt
= −

Q1

V1
x1 + µ(s1)x1 +

d + Φ(z∗(θtω))

V1
(x2 − x1), (1.9)

ds2

dt
=

Q2

V2
(sin

2 − s2) − µ(s2)x2 +
d + Φ(z∗(θtω))

V2
(s1 − s2), (1.10)

dx2

dt
= −

Q2

V2
x2 + µ(s2)x2 +

d + Φ(z∗(θtω))

V2
(x1 − x2), (1.11)

where Φ(z∗(θtω)) denotes the noise, which will be presented in more detail in Section

2.

One may wonder about the choice of such a noise. Indeed, it has been shown to

be a relevant way of modeling real random fluctuations in chemostat models (see,

for instance [6, 44, 3, 11, 12, 9, 10], where the authors perturb different parameters in

several chemostat models and other models in population dynamics).

We remark that it would be also possible to consider, for instance, the standard

Wiener process. However, its realizations are unbounded, in fact it can take arbitrary

large values, both positive or negative, and this leads into several drawbacks from

the biological point of view. We refer to interested readers to [5, 6, 4], where the

authors explain in more detail the inconvenience found when perturbing different

chemostat models by the standard Brownian motion.

The rest of the paper is organized as follows. In Section 2 we present some prelim-

inaries about the Ornstein-Uhlenbeck process and how to model bounded random

fluctuations. Then, in Section 3 we prove the existence and uniqueness of non-

negative global solution of the random system (1.8)-(1.11). After that, in Section

4 we prove the existence of deterministic compact absorbing and attracting sets

for the solutions of the random system (1.8)-(1.11). Then, we study the internal

structure of the attracting set in Section 5 and provide conditions under which the
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extinction of the species cannot be avoided and conditions to ensure the persistence

of the species, the main goal pursued by practitioners. Next, in Section 6 we illus-

trate the theoretical results with some numerical simulations. Finally, in Section 7

we present conclusions to sum up our contributions in this work.

2. Preliminaries

In this section we present some preliminaries about the Ornstein-Uhlenbeck process,

including several properties which will be useful in the rest of the paper and we also

explain the way in which we model the random bounded fluctuations.

2.1. The Ornstein-Uhlenbeck process

In this section we present the Ornstein-Uhlenbeck (OU) process and some of its

properties. We refer readers to [3, 6, 7] for details.

Let W be a two sided standard Wiener process. Kolmogorov’s theorem ensures that

W has a continuous version, denoted usually by ω, whose canonical interpretation

is as follows. Let Ω be defined by

Ω := {ω ∈ C(R,R) : ω(0) = 0} ,

the space of continuous functions that are zero at zero, F be the Borel σ−algebra

of measurable subsets of Ω generated by the compact open topology (see [1]) and

P the Wiener measure on F . Then, we have the probability space (Ω, F , P).

In addition, to track the effect of the noise in time, i.e., each stsate ω at t = 0 with

its state after some time t, we define the mapping θt : Ω → Ω, which is called the

Wiener shift flow, given by

θtω(·) = ω(· + t) − ω(t), t ∈ R.

The OU process is a stationary mean-reverting Gaussian stochastic process defined

as the random variable

(t, ω) 7→ z(t, ω) := z∗(θtω) = −βν

0∫

−∞

eβsθtω(s)ds, (2.1)

for all t ∈ R and ω ∈ Ω, where β > 0 is the mean reversion constant representing

the strength with which the process is attracted by the mean and ν > 0 is the

volatility constant describing the variation or the size of the noise.

We note that the OU process (2.1) can be obtained as the stationary solution of

the Langevin equation

dz + βzdt = νdω. (2.2)
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Usually, the OU process (2.1) can be used to model the position of a particle by

taking into account its friction in a fluid (which is the main difference with the

typical standard Wiener process). Indeed, it can be considered as a generalization

of the standard Wiener process and provides a link between the standard Wiener

process (β = 0, ν = 1) and no noise at all (β = 1, ν = 0).

We recall in the next proposition some of its properties.

Proposition 2.1 (See [1, 8]). There exists a θt-invariant set Ω̃ ∈ F of Ω of full

measure such that for ω ∈ Ω̃ and β, ν > 0, we have

(i) the random variable |z∗(ω)| is tempered with respect to {θt}t∈R, i.e., for

a.e. ω ∈ Ω̃,

lim
t→∞

e−ηt sup
t∈R

|z∗(θ−tω)| = 0, for all η > 0.

(ii) this mapping is a stationary solution of (2.2) with continuous trajectories

(t, ω) → z∗(θtω) = −βν

0∫

−∞

eβs(θtω)(s)ds.

(iii) for any ω ∈ Ω̃ one has

lim
t→±∞

|z∗(θtω)|

t
= 0; lim

t→±∞

1

t

∫ t

0

z∗(θsω)ds = 0;

lim
t→±∞

1

t

∫ t

0

|z∗(θsω)| ds = E [|z∗|] < ∞.

From now on we consider β and ν fixed.

2.2. Modeling random bounded fluctuations

In this section we present a way to model bounded random fluctuations which has

been proved to be very useful when modeling real random disturbances in biological

models (see [3, 9, 10, 12]) fitting the real devices.

Let us consider an interval [d, d̄], where 0 < d < d < d̄ < ∞.

Define now the function Φ : R→ [−α, α] given by

Φ(z) =
2α

π
arctan(z), (2.3)

where α = d̄ − d = d − d > 0.

Then, the random diffusion parameter satisfies

d < d + Φ(z∗(θtω)) < d̄ for all t ∈ R, (2.4)
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i.e., d + Φ(z∗(θtω)) remains positive and bounded in the interval [d, d̄] for every

time.

In addition, we have the following ergodic property which will be very useful.

Proposition 2.2 (See [12]). Let be Φ(z) = 2α
π

arctan(z) defined as in (2.3). Then

lim
t→+∞

1

t

∫ t

0

Φ(z∗(θsω))ds = 0, a.s. in Ω. (2.5)

Remark 2.1. We would like to notice that (2.5) remains true as long as Φ is an

odd measurable function such that

lim
z→+∞

Φ(z) = α > 0.

Remark 2.2. It worth mentioning that the random systems obtained when us-

ing the previous way to model bounded random perturbations, generate random

dynamical systems and then we could use the very well-known theory of random

dynamical systems and pullback attractors (see [7]) to study the corresponding

random models. However, in this paper we investigate the random chemostat (1.8)-

(1.11) for every fixed realization of the noise ω ∈ Ω since it allows us to prove every

result in forward sense, which is more natural than the pullback one in this case.

3. Existence and uniqueness of non-negative global solution

In this section we prove that the random chemostat model (1.8)-(1.11) has a unique

global solution which remains non-negative for every non-negative initial condition.

From now on, we denote X := {(s1, x1, s2, x2) ∈ R4 : s1 ≥ 0, x1 ≥ 0, s1 ≥ 0, s2 ≥ 0}

the positive cone in R4.

For the sake of clarity, we present in Table 1 some new notations which will allow

us to simplify the expressions in what follows. We posit Di = Qi/Vi and di = d/Vi

for i ∈ {1, 2}.

Dmax = max{D1, D2}

Dmin = min{D1, D2}

dmax = max{d1, d2}

dmin = min{d1, d2}

V max
inv = max

{
1

V1
,

1

V2

}

V min
inv = min

{
1

V1
,

1

V2

}

Table 1: Definition of some new parameters
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Theorem 3.1. For any initial value u0 := (s10, x10, s20, x20) ∈ X and ω ∈ Ω, the

random chemostat model (1.8)-(1.11) possesses a unique global solution

u(·; 0, ω, u0) := (s1(·; 0, ω, u0), x1(·; 0, ω, u0), s2(·; 0, ω, u0), x2(·; 0, ω, u0)),

where u(·; 0, ω, u0) ∈ C1([0, +∞), X ), with u(0; 0, ω, u0) = u0, s10 = s1(0; 0, ω, u0),

x10 = x1(0; 0, ω, u0), s20 = s2(0; 0, ω, u0) and x20 = x2(0; 0, ω, u0).

Proof. To prove this theorem, we first rewrite system (1.8)-(1.11) as

du

dt
= L(θtω) u + F (u),

where u := (s1, x1, s2, x2)t, L(θtω) is given by




−D1 − d1(θtω) 0 d1(θtω) 0

0 −D1 − d1(θtω) 0 d1(θtω)

d2(θtω) 0 −D2 − d2(θtω) 0

0 d2(θtω) 0 −D2 − d2(θtω)




,

where di(θtω) := (d + Φ(z∗(θtω)))/Vi, i ∈ {1, 2}, and

F (u) =




D1sin
1 − µ(s1)x1

µ(s1)x1

D2sin
2 − µ(s2)x2

µ(s2)x2




.

Since z∗(θtω) is continuous with respect to t, thanks to Proposition 2.1 (ii), and Φ is

continuous, then L(θtω) is continuous with respect to t and generates an evolution

system on R4. Moreover, F (u) is continuously differentiable with respect to s1, x1,

s2 and x2, then it is locally Lipschitz with respect to s1, x1, s2 and x2. Hence,

system (1.8)-(1.11) possesses a unique local solution.

Now, we prove that every solution of system (1.8)-(1.11) remains in X for every

initial value in X . To this end, we consider s1 ≥ 0, x1 ≥ 0, s2 ≥ 0 and x2 ≥ 0.
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Then, we have

ds1

dt

∣∣∣∣
s1=0

= D1sin
1 +

d + Φ(z∗(θtω))

V1
s2 > 0,

dx1

dt

∣∣∣∣
x1=0

=
d + Φ(z∗(θtω))

V1
x2 ≥ 0,

ds2

dt

∣∣∣∣
s2=0

= D2sin
2 +

d + Φ(z∗(θtω))

V2
s1 > 0,

dx2

dt

∣∣∣∣
x2=0

=
d + Φ(z∗(θtω))

V2
x1 ≥ 0,

whence we have that every solution starting in X remains there for every t ≥ 0.

To finish the proof, we consider the variable y := s1 + x1 + s2 + x2 which satisfies

the following random differential equation

dy

dt
= D1sin

1 + D2sin
2 − D1s1 − D1x1 − D2s2 − D2x2

+
d + Φ(z∗(θtω))

V1
(s2 + x2) +

d + Φ(z∗(θtω))

V2
(s1 + x1)

−
d + Φ(z∗(θtω))

V1
(s1 + x1) −

d + Φ(z∗(θtω))

V2
(s2 + x2). (3.1)

From (3.1), it is not difficult to obtain

dy

dt
≤ D1sin

1 + D2sin
2 + ((V max

inv − V min
inv )(d + Φ(z∗(θtω))) − Dmin)y, (3.2)

where V max
inv , V min

inv and Dmin are defined as in Table 1.

We note that, in order to obtain (3.2), we used (a) Di ≥ Dmin, where i = 1, 2, (b)
1
Vi

≤ V max
inv for i = 1, 2, (c) 1

Vi
≥ V min

inv , with i = 1, 2, and (d) d + Φ(z∗(θtω)) > 0

thanks to (2.4).

As d + Φ(z∗(θtω)) is bounded from above by d̄, we can directly use the Gronwall

Lemma to conclude that

y(t; 0, ω, y0) ≤ y0e
−(Dmin+d(V min

inv
−V max

inv
)t−(V min

inv
−V max

inv
)
∫

t

0

Φ(z∗(θτ ω))dτ

+ (D1sin
1 + D2sin

2 )

∫ t

0

e
−(Dmin+d(V min

inv
−V max

inv
)(t−s)−(V min

inv
−V max

inv
)
∫

t

s

Φ(z∗(θτ ω))dτ
ds

(3.3)

for every ω ∈ Ω, y0 := s10 + x10 + s20 + x20 > 0 and t ≥ 0.

From (3.3), we notice that y ≥ 0 does not blow up at finite time, then s1, x1, s2

and x2 do not blow up at finite time either. In addition, every state variable remain

non-negative for every time. Then, the unique local solution is a global one.
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4. Existence of absorbing and attracting sets

In this section we to study the existence of compact absorbing and attracting sets

for the solutions of the random system (1.8)-(1.11).

Theorem 4.1. Assume that

Dmin + d̄(V min

inv
− V max

inv
) > 0 (4.1)

holds true. Then, for every ε > 0, the deterministic set

Bε := {(s1, x1, s2, x2) ∈ X : y∗
l − ε ≤ s1 + x1 + s2 + x2 ≤ y∗

u + ε} (4.2)

is a compact absorbing set for the solutions of the random chemostat model (1.8)-

(1.11), where y∗
l and y∗

u are given by

y∗
l :=

D1sin
1 + D2sin

2

Dmax + d̄(V max

inv
− V min

inv
)

and y∗
u :=

D1sin
1 + D2sin

2

Dmin + d̄(V min

inv
− V max

inv
)
. (4.3)

Proof. We split this proof into two parts. The first one focuses on obtaining the

upper bound y∗
u. To this end, we notice that V min

inv − V max
inv < 0 whence −(V min

inv −

V max
inv ) > 0. In addition, thanks to (2.4), we know that d + Φ(z∗(θtω)) ≤ d̄ for every

t ∈ R. By taking into account these considerations, from (3.3) we deduce that

y(t; 0, ω, y0) ≤ y0e−(Dmin+d̄(V min

inv
−V max

inv
))t

+
D1sin

1 + D2sin
2

Dmin + d̄(V min
inv − V max

inv )

[
1 − e−(Dmin+d̄(V min

inv
−V max

inv
))t

]
(4.4)

for every t ≥ 0, ω ∈ Ω and y0 > 0.

Hence, thanks to (4.4), as long as (4.1) is satisfied, for any ε > 0, ω ∈ Ω and

every initial value u0 ∈ F , where F denotes a bounded set, there exists some time

TF (ω, ε) > 0 such that

y(t; 0, ω, y0) ≤
D1sin

1 + D2sin
2

Dmin + d̄(V min
inv − V max

inv )
+ ε

for every t ≥ TF (ε, ω).

The second part of the proof focuses on obtaining the lower bound y∗
l . To this end,

from (3.1), similarly to the first part, we obtain

dy

dt
≥ D1sin

1 + D2sin
2 + ((V min

inv − V max
inv )(d + Φ(z∗(θtω))) − Dmax)y, (4.5)

where V min
inv , V max

inv and Dmax are given as in Table 1.

We notice that, in order to have (4.5), we used (a) Di ≤ Dmax, then −Di ≥ −Dmax,

where i = 1, 2, (b) 1
Vi

≥ V min
inv for i = 1, 2, (c) 1

Vi
≤ V max

inv , whence − 1
Vi

≥ −V max
inv

with i = 1, 2, and (d) d + Φ(z∗(θtω)) > 0 thanks to (2.4).



12 Tomás Caraballo, Javier López-de-la-Cruz and Alain Rapaport

As d + Φ(z∗(θtω)) is bounded from below by d, we can directly use the Gronwall

Lemma to conclude that

y(t; 0, ω, y0) ≥ y0e
−Dmaxt−(V max

inv
−V min

inv
)
∫

t

0

(d+Φ(z∗(θτ ω)))dτ

+ (D1sin
1 + D2sin

2 )

∫ t

0

e
−Dmax(t−s)−(V max

inv
−V min

inv
)
∫

t

s

(d+Φ(z∗(θτ ω)))dτ
ds (4.6)

for every t ≥ 0, ω ∈ Ω and y0 > 0.

Recall now that V max
inv − V min

inv > 0 then −(V max
inv − V min

inv ) < 0. Moreover, thanks to

(2.4), d + Φ(z∗(θtω)) ≤ d̄ for every t ∈ R. Then, from (4.6), it is not difficult to

check that

y(t; 0, ω, y0) ≥ y0e−(Dmax+d̄(V max

inv
−V min

inv
))t

+
D1sin

1 + D2sin
2

Dmax + d̄(V max
inv − V min

inv )

[
1 − e−(Dmax+d̄(V max

inv
−V min

inv
))t

]
(4.7)

for every t ≥ 0, ω ∈ Ω and y0 > 0.

Then, thanks to (4.7), for every given ε > 0, ω ∈ Ω and y0 > 0, there exists some

time TF (ε, ω) > 0 such that

y(t; 0, ω, y0) ≥
D1sin

1 + D2sin
2

Dmax + d̄(V max
inv − V min

inv )
− ε

for every t ≥ TF (ε, ω).

Hence, the deterministic set Bε, given as in (4.2), is a compact absorbing set for the

solutions of system (1.8)-(1.11) as long as (4.1) holds true.

Remark 4.1. We remark that the absorbing set Bε in (4.2) is deterministic, i.e.,

it does not depend on the realization of the noise, which is a nice property.

Remark 4.2. Let us highlight that the absorbing set Bε in (4.2) is well defined,

i.e.,

y∗
l =

D1sin
1 + D2sin

2

Dmax + dmax − dmin ≤
D1sin

1 + D2sin
2

Dmin − dmax + dmin = y∗
u. (4.8)

Indeed, notice that Dmax+2d̄V max
inv ≥ Dmin+2d̄V min

inv , i.e., Dmax +d̄V max
inv +d̄V max

inv ≥

Dmin + d̄V min
inv + d̄V min

inv , whence Dmax + d̄V max
inv − d̄V min

inv ≥ Dmin + d̄V min
inv − d̄V max

inv

and then Dmax + d̄(V max
inv − V min

inv ) ≥ Dmin + d̄(V min
inv − V max

inv ), whence (4.8) follows

easily.

Thanks to Theorem 4.1, we have the following corollary ensuring the existence of

a deterministic compact attracting set for the solutions of the random chemostat
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model (1.8)-(1.11).

Corollary 4.1. As long as (4.1) holds true, where y∗
l and y∗

u are defined as in (4.3),

the compact deterministic set

A := {(s1, x1, s2, x2) ∈ X : y∗
l ≤ s1 + x1 + s2 + x2 ≤ y∗

u} (4.9)

is an attracting set for the solutions of system (1.8)-(1.11) in forward sense, i.e.,

lim
t→+∞

sup
u0∈F

inf
b0∈A

|u(t; 0, ω, u0) − b0|X = 0.

The proof of this corollary is straightforward and follows from Theorem 4.1.

5. Internal structure of the attracting set: extinction and

persistence of the species

In this section we study the internal structure of the attracting set (4.9) in order

to obtain more detailed information concerning the random dynamics of system

(1.8)-(1.11). In this way, we are able to provide conditions under the extinction of

the species cannot be avoided and conditions which ensure the persistence of the

species.

We present first the case of the extinction of the species.

Theorem 5.1. Provided

µ̄0 + d(V max

inv
− V min

inv
) < Dmin, (5.1)

the following limit holds true for every ω ∈ Ω and every initial value u0 ∈ F

lim
t→+∞

(x1(t; 0, ω, u0) + x2(t; 0, ω, u0)) = 0,

which means the extinction of the species in both culture vessels.

Proof. Define a new state variable x := x1 + x2 describing the total concentration

of species, which satisfies the following differential inequalities

dx

dt
= −D1x1 + µ(s1)x1 +

d + Φ(z∗(θtω))

V1
x2 −

d + Φ(z∗(θtω))

V1
x1

− D2x2 + µ(s2)x2 +
d + Φ(z∗(θtω))

V2
x1 −

d + Φ(z∗(θtω))

V2
x2

≤ −Dmin(x1 + x2) + µ̄0(x1 + x2) + V max
inv (d + Φ(z∗(θtω)))(x1 + x2)

− V min
inv (d + Φ(z∗(θtω)))(x1 + x2)

=
(
µ̄0 + d(V max

inv − V min
inv ) − Dmin + (V max

inv − V min
inv )Φ(z∗(θtω))

)
x, (5.2)

where V min
inv , V max

inv and Dmin are defined in Table 1.
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Recall that we used (a) Di ≥ Dmin then −Di ≤ −Dmin for i = 1, 2, (b) 1
Vi

≤ V max
inv

for i = 1, 2, (c) 1
Vi

≥ V min
inv then − 1

Vi
≤ −V min

inv for i = 1, 2 and (d) the ergodic

property in Theorem 2.5.

Now, we multiply by

e
−(µ̄0+d(V max

inv
−V min

inv
)−Dmin)t−(V max

inv
−V min

inv
)
∫

t

0

Φ(z∗(θτ ω))dτ

and then we integrate over [0, t]. Then, we obtain

x(t; 0, ω, x0) ≤ x0e(µ̄0+d(V max

inv
−V min

inv
)−Dmin)t+(V max

inv
−V min

inv
)
∫

t

0

Φ(z∗(θτ ω))dτ
(5.3)

for every ω ∈ Ω, x0 := x10 + x20 ≥ 0 and t ≥ 0.

From (5.3), as long as (5.1) holds true, we have that

lim
t→+∞

(x1(t; 0, ω, u0) + x2(t; 0, ω, u0)) = 0.

Proposition 5.1. Condition (5.1) can be replaced by

µ(y∗
u) + d(V max

inv
− V min

inv
) < Dmin, (5.4)

which is more refined than (5.1), where y∗
u is given as in (4.3) and V max

inv
, V min

inv
and

Dmin are defined in Table 1.

Proof. Recall that, for every time large enough, from Theorem (4.1) we have

si ≤ s1 + x1 + s2 + x2 ≤ y∗
u + ε

for i ∈ {1, 2}. Then, as µ is an increasing function, we obtain

µ(si) ≤ µ (y∗
u + ε)

for i ∈ {1, 2}. Hence, it is possible to redo the proof of Theorem 5.1. To be more

precise, (5.2) becomes

dx

dt
≤

(
µ(y∗

u + ε) + d(V max
inv − V min

inv ) − Dmin + (V max
inv − V min

inv )Φ(z∗(θtω))
)

x,

whose integration gives

x(t; 0, ω, x0) ≤ x0e(µ(y∗

u
+ε)+d(V max

inv
−V min

inv
)−Dmin)t+(V max

inv
−V min

inv
)
∫

t

0

Φ(z∗(θτ ω))dτ
(5.5)

for every ω ∈ Ω, x0 > 0 and t large enough.

From (5.5), as long as (5.4) holds true, it is possible to consider ε > 0 small enough

such that

µ(y∗
u + ε) + d(V max

inv − V min
inv ) < Dmin

and then we also obtain

lim
t→+∞

(x1(t; 0, ω, u0) + x2(t; 0, ω, u0)) = 0.
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Now, we focus on providing conditions under which we can ensure the persistence

of the species in both culture vessels in the random chemostat model (1.8)-(1.11).

Theorem 5.2. As long as

µ̄0
Dis

in
i

Di + d̄i

− (Di + d̄i)(k + y∗
u) > 0 (5.6)

holds true for some i ∈ {1, 2}, where d̄i := d̄/Vi, we have that

lim inf
t→+∞

xi(t; 0, ω, u0) ≥ x̄i > 0 (5.7)

for any ω ∈ Ω and every u0 ∈ X , where

x̄i :=
Dis

in
i

Di + d̄i

−
1

µ̄0
(Di + d̄i)(k + y∗

u), (5.8)

which means the persistence of the species in the corresponding tank i ∈ {1, 2}.

Proof. We first study the evolution of the sum of the concentrations of substrate

and the microbial biomass in each culture vessel.

Let us start with the first one. To this end, we consider (1.8) and (1.9), whence we

have the following expression

d(s1 + x1)

dt
= D1(sin

1 − s1 − x1) +

(
d1 +

1

V1
Φ(z∗(θtω))

)
(s2 + x2)

−

(
d1 +

1

V1
Φ(z∗(θtω))

)
(s1 + x1)

≥ D1sin
1 −

(
D1 + d1 +

1

V1
Φ(z∗(θtω))

)
(s1 + x1), (5.9)

where we used that
(

d1 + 1
V1

Φ(z∗(θtω))
)

(s2 + x2) ≥ 0.

By integrating now (5.9), we obtain

s1(t; 0, ω, u0) + x1(t; 0, ω, u0) ≥ (s10 + x10)e
−(D1+d1)t− 1

V1

∫
t

0

Φ(z∗(θτ ω))dτ

+ D1sin
1

∫ t

0

e
−(D1+d1)(t−r)− 1

V1

∫
t

r

Φ(z∗(θτ ω))dτ

dr

≥ (s10 + x10)e
−(D1+d1)t− 1

V1

∫
t

0

Φ(z∗(θτ ω))dτ

+ D1sin
1

∫ t

0

e−(D1+d̄1)rdr

= (s10 + x10)e
−(D1+d1)t− 1

V1

∫
t

0

Φ(z∗(θτ ω))dτ

+
D1sin

1

D1 + d̄1

[
1 − e−(D1+d̄1)t

]
(5.10)
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for every t ≥ 0, ω ∈ Ω and u0 ∈ F .

Then, from (5.10), for any ε > 0, ω ∈ Ω and every initial value u0 ∈ F , there exists

some time TF (ω, ε) > 0 such that

s1(t; 0, ω, u0) + x1(t; 0, ω, u0) ≥
D1sin

1

D1 + d̄1

− ε (5.11)

for every t ≥ TF (ω, ε).

Repeating the same steps with (1.10) and (1.11) we conclude that, for every ε > 0,

ω ∈ Ω and every initial value u0 ∈ F , there exists some time TF (ω, ε) > 0 such that

s2(t; 0, ω, u0) + x2(t; 0, ω, u0) ≥
D2sin

2

D2 + d̄2

− ε (5.12)

for every t ≥ TF (ω, ε).

Once reached this point, we can investigate the equation describing the dynamics

of the species in the first culture vessel x1. To this end, from (1.9), for every time

large enough we have

dx1

dt
= −D1x1 + µ(s1)x1 −

d + Φ(z∗(θtω))

V1
x1 (5.13)

≥ −D1x1 + µ(s1)x1 − d̄1x1

= −(D1 + d̄1)x1 +
µ̄0s1

k + s1
x1

≥


−(D1 + d̄1) +

µ̄0

(
D1sin

1

D1 + d̄1

− ε − x1

)

k + y∗
u + ε


 x1, (5.14)

where we used (5.11).

It is easy to check that the sign of the last term in (5.14) (depending on x1) coincides

with the sign of the parabolic function given by

f(x) = α2x2 + α1(ε)x,

where α2 and α1(ε) are given by

α2 := −µ̄0,

α1(ε) := µ̄0
D1sin

1

D1 + d̄1

− (D1 + d̄1)(k + y∗
u) − ε(D1 + d̄1 + µ̄0). (5.15)

Define

x∗
1(ε) :=

D1sin
1

D1 + d̄1

−
1

µ̄0
(D1 + d̄1)(k + y∗

u) −
1

µ̄0
(µ̄0 + D1 + d̄1)ε. (5.16)
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On the one hand, α2 < 0. On the other hand, thanks to (5.6), one can find ε > 0

small enough such that α1(ε) > 0. Then, f(x) > 0 for x ∈ (0, x∗
1(ε)), f(x) < 0 for

x > x∗
1(ε) and f(0) = f(x∗

1(ε)) = 0, where ε > 0 small enough.

As a result, we deduce that

dx1

dt

∣∣∣∣
x1=x̃1

> 0

for every x̃1 ∈ (0, x∗
1(ε)), where ε > 0 small enough.

Thus, by taking limit when ε goes to zero, we have that

lim inf
t→+∞

x1(t; ω, u0) ≥ x̄1 > 0 (5.17)

for every ω ∈ Ω and any u0 ∈ X , where

x̄1 :=
D1sin

1

D1 + d̄1

−
1

µ̄0
(D1 + d̄1)(k + y∗

u). (5.18)

From (5.17), x2 cannot goes to zero and we have an analogous result when condition

(5.6) is fulfilled for i = 2 instead of i = 1. More precisely, we obtain that

lim inf
t→+∞

x2(t; ω, u0) ≥ x̄2 > 0

for any ω ∈ Ω and every u0 ∈ X , where

x̄2 :=
D2sin

2

D2 + d̄2

−
1

µ̄0
(D2 + d̄2)(k + y∗

u). (5.19)

Remark 5.1. It is worth mentioning that, if a condition that ensures persistence

in one tank is fulfilled, one has immediately persistence in the other thank since, as

d > 0, the washout in the other tank is repulsive.

Thanks to the previous theorem, we provide practical conditions under which the

persistence of species in both culture vessels can be ensured, which is often a goal

pursued by practitioners.

Remark 5.2. It is not difficult, but laborious, to prove that the lower positive

bounds x̄1 and x̄2 found in Theorem 5.2 are consistent with the previous theoretical

results, that is,

x̄1 + x̄2 ≤ y∗
u. (5.20)

To prove that, it is enough to write the definition of x̄1 in (5.11), x̄2 in (5.12) and

y∗
u in (5.20) and expand every term. After some lengthy calculations, the reader can

check that this inequality is fulfilled.



18 Tomás Caraballo, Javier López-de-la-Cruz and Alain Rapaport

6. Numerical simulations

In this section we present some numerical simulations to illustrate the theoretical

results proved in the previous sections.

In Fig. 3 we depict a realization (in blue color) of the perturbed diffusion parameter

d, where the red dashed line represents its deterministic value. As we explained in

the preliminary section, it remains positive and bounded in a certain interval for

every time. In this case we consider d = 0.5, α = 0.4 and we take β = 1 and ν = 1.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

Fig. 3: Realization of the perturbed diffusion parameter. Values of the pa-

rameters: d = 0.5, α = 0.4, β = 1 and ν = 1.

Now, we present in Fig. 4 the case in which the species in both culture vessels

become extinct. To this end, we consider sin
1 = 4, sin

2 = 1, k = 4, µ̄0 = 0.1, Q1 = 1,

V1 = 1.1, Q2 = 1.4, V2 = 1.4, α = 0.4, d = 1, we set β = 1 and ν = 1 and we take

x10 = 5, s10 = 4, x20 = 2 and s20 = 5 as initial values.
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0 10 20 30 40 50
0

5

0 10 20 30 40 50
0

1

2

Fig. 4: Extinction of the species in both culture vessels. Values of the pa-

rameters: sin
1 = 4, sin

2 = 1, k = 4, µ̄0 = 0.1, Q1 = 1, V1 = 1.1, Q2 = 1.4, V2 = 1.4,

α = 0.4, d = 1, β = 1, ν = 1, x10 = 5, s10 = 4, x20 = 2 and s20 = 5

It is easy to check that condition (4.1) to ensure the existence of the deterministic

compact absorbing set Bε, given by (4.2), holds true. In addition, since (5.1) is also

verified, then we observe the extinction of the species in both culture vessels, as

proved in Theorem 5.1.

In Fig. 5 we plot the case in which we have persistence of the species in both

culture vessels. We present two different panels. The one in the top illustrates the

dynamics of the species in the first culture vessel and the one in the bottom focuses

on the dynamics of the species in the second culture vessel. In each one we simulate

different realizations. In addition, in both panels we include another little one with

a zoom of the dynamics around the final time.

In this case we consider sin
1 = 0.5, sin

2 = 0.4, k = 0.04, µ̄0 = 10, Q1 = 0.3, V1 = 1.7,

Q2 = 0.5, V2 = 1.9, α = 0.4, d = 0.5, we take β = 1, ν = 1 and we choose x10 = 4,

s10 = 1, x20 = 5 and s20 = 3 as initial values.
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0 5 10 15 20 25 30 35 40
0

5

0 5 10 15 20 25 30 35 40
0

5

39.96 39.97 39.98 39.99 40

0.452

0.454

0.456

39.98 39.99

0.426

0.428

0.43

Fig. 5: Persistence of the species in both culture vessels. Values of the

parameters: sin
1 = 0.5, sin

2 = 0.4, k = 0.04, µ̄0 = 10, Q1 = 0.3, V1 = 1.7, Q2 = 0.5,

V2 = 1.9, α = 0.4, d = 0.5, β = 1, ν = 1, x10 = 4, s10 = 1, x20 = 5 and s20 = 3

Notice that condition (4.1) is satisfied in this case as well, whence we have existence

of a deterministic compact absorbing set. In addition, as (5.6) in Theorem 5.2 holds

true for i = 1, 2, then we can guarantee the persistence of the species in both culture

vessels, as observed in the figure.

Finally, in Fig. 6 we depict again some numerical simulations in the case of per-

sistence of the species in both culture vessels. Nevertheless, in this case we set

sin
1 = 3.5, sin

2 = 4.4, k = 1, µ̄0 = 5, Q1 = 0.7, V1 = 4.7, Q2 = 0.4, V2 = 4.9, α = 0.5,

d = 0.8, we take β = 1, ν = 1 and we choose x10 = 2, s10 = 8, x20 = 1 and s20 = 10

as initial values.
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0 10 20 30 40
0

5

10

0 10 20 30 40
0

5

10

Fig. 6: Persistence of the species in both culture vessels. Values of the

parameters: sin
1 = 3.5, sin

2 = 4.4, k = 1, µ̄0 = 5, Q1 = 0.7, V1 = 4.7, Q2 = 0.4,

V2 = 4.9, α = 0.5, d = 0.8, β = 1, ν = 1, x10 = 2, s10 = 8, x20 = 1 and s20 = 10

In this case, for the sake of clarity, we present in Fig. 7 a zoom around the final

time of the previous figure.

43.2 43.4 43.6 43.8 44 44.2 44.4 44.6 44.8

3.74

3.76

3.78

44.6 44.65 44.7 44.75 44.8

3.98

4

4.02

Fig. 7: Persistence of the species in both culture vessels. Values of the

parameters: sin
1 = 03.5, sin

2 = 4.4, k = 1, µ̄0 = 5, Q1 = 0.7, V1 = 4.7, Q2 = 0.4,

V2 = 4.9, α = 0.5, d = 0.8, β = 1, ν = 1, x10 = 2, s10 = 8, x20 = 1 and s20 = 10
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We notice that conditions (4.1) holds true, whence we have existence of the deter-

ministic compact absorbing set. Moreover, since (5.6) is also satisfied for i = 1, 2,

from Theorem 5.2, we have that the species in both culture vessels persist.

It worth mentioning an interesting fact concerning the numerical simulations in Figs.

5, 6 and 7. Notice that, even though the system in study is random (see, for instance,

Fig. 3 to observe how the random diffusion parameter behaves), the dynamics of the

concentration of the species in both culture vessel seems to be almost deterministic

even though the noise amplitude is not so small. Le us underline that, differently

to disturbances on the input term Q as considered in [9, 10, 11, 12], the noise acts

on an internal term d of the dynamics.

7. Conclusions

We recall that we consider two chemostat models connected by Fickian diffusion in

this paper, where the diffusion parameter is perturbed by a bounded noise which

essentially is a function of the well-known Ornstein-Uhlenbeck process.

As a first step, we proved the existence and uniqueness of non-negative global solu-

tion of the resulting random system in Theorem 3.1 and we also proved the existence

of compact absorbing and attracting sets in Theorem 4.1 which, in addition, were

deterministic. We notice that this is a nice property since such a sets do not depend

on the realizations of the noise.

After that, we are interested in studying the internal structure of the deterministic

compact attracting set in order to obtain more detailed information about the long-

time dynamics of the random system in study.

To this end, Theorem 5.1 proves that the extinction of the species in both culture

vessels cannot be avoided as long as condition 5.1, which is given by

µ̄0 + d(V max
inv − V min

inv ) < Dmin,

holds true.

Notice that condition 5.1 is quite logical since it means that the minimum of the

dilution rates Dmin is greater than the growth rate coefficient of the consumer

species µ̄0 and the diffusion parameter d.

Apart from that, we are also interested in investigating conditions to ensure the

persistence of the species in both culture vessels, which is the main goal pursued by

practitioners. To this end, we present Theorem 5.2 where we ensure the persistence

of the species i = 1, 2 as long as condition (5.6), which is given by

µ̄0
Dis

in
i

Di + d̄i

− (Di + d̄i)(k + y∗
u) > 0,

holds true.
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Notice that condition (5.6) can be verified when increasing the growth rate coeffi-

cient of the consumer species µ̄0 and decreasing both the dilution rates Di, i = 1, 2,

the half-saturation constant k and the parameters d̄i, i = 1, 2. This is not surprising

since it means that the consumption of species should be large, in comparison with

the dilution rate and the diffusion parameter.

Finally, we provide in Theorem 5.2 positive lower bounds for the concentration of

the species in both culture vessels.

In this work we have considered noise on the diffusion term d that can be consid-

ered as internal to the dynamics of the overall chemostat seen a spatialized system

composed of the two tanks. Future work might consider the effects of having noise

simultaneously on the input and the diffusion.
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