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Abstract

This study investigates climate change impact on hydrological extremes and performs an
uncertainty analysis. This work is applied on a French Mediterranean catchment: the Héraut
River catchment. With climate change, local water managers need an evaluation of possible fu-
ture changes in hydro-climatic variables to develop adaptation strategies. This analysis used for
the �rst time climatic projections derived from a new downscaling method: ADAMONT, with
two di�erent Radiative Concentration Pathways (RCPs). Hydrological projections are computed
with three hydrological models (GR5J, GRSD, TUW) and di�erent parameter sets obtained with
29 calibration strategies. The uncertainty analysis is based on the quasi-ergodic analysis of vari-
ance (QE-ANOVA), to evaluate the contribution of general circulation models (GCMs), regional
circulation models (RCMs), hydrological models (HMs), hydrological parameters, and the inter-
nal variability to the total uncertainty. Results for high-�ow projections with RCP 4.5 show a
signi�cant increase between 1976-2005 and 2006-2100 (from +5% to +70%), whereas with RCP 8.5
there is no clear trend (from -10% to +60%). These results are signi�cant and robust for RCP 4.5
but not for RCP 8.5, according to the principle of time of emergence. However, for low-�ow pro-
jections, results are not signi�cant, and no clear trend can be drawn. These results are discussed
compared to previous hydrological projections on the same catchment, and reveal a higher in-
crease of high-�ows over time. Moreover, the hydrological model and calibration strategy con-
tributions to the total uncertainty could be reduced for future investigations. Conclusions of this
study could be used for decision makers of the Héraut River catchment to establish adaptation
strategies on �ood risk.
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1 Introduction

Climate change (CC) impact on water resources is one of the main challenging issues for water
managers. The Intergovernmental Panel on Climate Change (IPCC) drew the last conclusions re-
garding impacts of CC to policy makers in the 4th report (IPCC, 2014). According to the IPCC :
"Freshwater-related risks of climate change increase signi�cantly with increasing greenhouse gas
concentrations". This conclusion urges stakeholders and decision makers to think water manage-
ment in a new way. The IPCC identi�es key risks about water ressources in Europe: the increase
in water restrictions due to a strong reduction in water availability, combined with an increasing
water demand. The increase in the evaporative demand causes a decrease in runo�, and this risk
is particularly high in southern Europe. Furthermore, the Mediterranean region is described as a
CC hot-spot (Di�enbaugh and Giorgi, 2012), where hydro-climatic hazards will increase with CC
(Edenhofer et al., 2011). For example the intensity of heavy precipitation events will increase under
a warmer climate on the Mediterranean region (Scoccimarro et al., 2016). In this context, the IPCC
recommends to adopt more �exible strategies, and creates plannings according to di�erent scenar-
ios, in order to create resilience to uncertain hydrological changes.

The Mediterranean region is facing di�culties in water management: growing population, agri-
cultural irrigation, and intense touristic activities, put high pressure on water resources (Milano
et al., 2012). Moreover, in autumn �ash-�ood events can be devastating. In order to adapt water
management plans, decision makers need hydrological projections. Scientists produce hydrological
projections for CC impact studies through a modeling chain, and show how CC can strongly modify
spatial and temporal distribution of water resources (Schewe et al., 2014; Haddeland et al., 2014) and
hydro-hazards (Collet et al., 2017).

These regional di�culties are particularly tangible on the Hérault River catchment according to
the water management plan (http://www.�euve-herault.fr/). According to the regional water man-
agement report (www.eaurmc.fr, 2014), the Héraut River catchment shows a high vulnerability to
climatic and antropogenic change. Moreover in a changing climate context, Collet et al. (2015)
evaluated water sustainability on the Hérault River catchment with an integrative modeling ap-
proach. Conclusions are clear: under a non-mitigation scenario, water resources sustainability will
be strongly impacted, and re�ections on strict water restriction management are now being devel-
oped. However, the hydrological projections have the same order of magnitude as the uncertainty,
which causes di�culties in the interpretation of results and on the best adaptation strategies to
adopt. Estimating uncertainties at each step of the impact modeling chain and the natural variabil-
ity of the climate system is an essential task, broached mainly in the literature over recent years (see
e.g. Hattermann et al., 2018).

This study aims to assess hydrological changes and to quantify each uncertainty sources across the
impact modeling chain, with the use of innovative and e�ective methods. In this study, we will
address the following research questions: 1) What is the impact of CC on hydrological extremes
in the Hérault River catchment using recent climatic projections? 2) What is the magnitude of
uncertainties and where do they come from ? 3) Can we draw conclusions for the decision makers ?
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2 Bibliography

2.1 Climate change impact studies in hydrology

2.1.1 Results of previous impact studies

Explore 2070 (Chauveau et al., 2013) is a reference project on CC impact on river �ow over France.
Results of this study are key to inform decision-makers and develop adaptation strategies. This
report pays particular attention to the quanti�cation of uncertainties. The assumption of a stationary
state of the catchment physical properties catchment is one of the main problems: it supposes that
the bias of the hydrological model today is the same in the future. However, this study did not
investigate all possible uncertainty sources, such as the gas emission scenario and the downscaling
process. This report shows two main trends over France: a decrease in precipitation (16% to 23%),
and a decrease in stream�ow particularly for low-�ows. Similarly, the R2D2 2050 project (Sauquet,
2015), is a CC impact study focusing on the Durance River catchment, in the southeast of France.
The authors noticed a strong uncertainty about change in precipitations, correlated to a strong
uncertainty on stream�ow in winter. A major decrease in stream�ow to the future is expected in
summer or, in other words, a decrease in water resources. Both projects highlighted the challenges
induced by uncertainty quanti�cation in a multi-model approach. Previous climate impact studies
on Mediterranean catchments indicate an impact on the hydrological regime related to the physical
characteristics of the catchment (Sellami et al., 2016), more frequent and longer low �ows according
to a decrease in precipitation (Piras et al., 2014), and a signi�cant decrease in stream�ow, wich
depends on the calibration procedure of the hydrological modeling (Lespinas et al., 2014). According
to these studies, the current methodology for uncertainty quanti�cation in impact studies is based
on a modeling chain in three steps: CC projection, downscaling process, and hydrologic modeling.
This approach will be used in this study to assess future changes in hydrological extrems on the
Hérault River catchment.

2.1.2 Climate change projections

Climate models represent in details physical atmospheric processes at the global scale (IPCC, 2013).
Di�erent types of climate models exist. In long term CC impact studies, the GCMs (General Cir-
culation Models) are forced by greenhouse gas emission scenarios as inputs. To assess climatic
projection quality and know if these projections are suitable for long term studies, climatic simula-
tions are compared to observed data on a historical period. CMIP (Coupled Model Intercomparison
Project) has developed a standardized and strong climate model protocol, to improve the availability
and robustness of climate model outputs for scientists (https://www.wcrp-climate.org/). CMIP5 is
the 4th phase of the project and is now the reference for impact studies, while CMIP3 is out-of-date.
CMIP5 is based on RCP scenarios (Radiative Concentration Pathways) (see Moss et al., 2010). These
scenarios were developed by �rst assessing levels of radiative forcing in the atmosphere at the end of
the 21st century, and then associating the radiative trajectories with corresponding socioeconomic
and gas emission scenarios. Terray and Boé (2013) present temperature and precipitation projections
over France (Fig. 1), computed with GCM projections extracted from the CMIP5 database. A clear
trend to an increase of up to 4.5°C at the end of the century is observed on temperature projections
with RCP 8.5 (scenario without mitigation), whereas precipitations show no clear signal (Fig. 1).
For RCP 4.5 (scenario with medium mitigation), the change in temperature reaches 2°C of warming
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by the end of the 21st century. The lack of precision on rainfall projections comes from the GCM
structure: while computation of temperatures is optimized, precipitation processes are not well re-
produced by GCMs due to the complex physical, temporal, and spatial properties of these events
(Kent et al., 2015). Regional Circulation Models (RCMs) provide CC projection at a higher spatial
resolution on a speci�c region. However, the resolution is still too rough to well represent local
meteorological events (Rauscher et al., 2010, see e.g.) for impact studies.

Figure 1: Time evolution of seasonal a) temperature and b) precipitation anomalies in France. Top in winter,
bottom in summer.

Modi�ed from Terray and Boé (2013)

2.1.3 Downscaling methods

The downscaling process is an important step since the spatial resolution of GCM cells is too coarse
to take into account local meteorological processes (see e.g. Rauscher et al., 2010). GCMs have ap-
proximatively a 100km resolution, whereas RCMs (Regional Circulation Models) have a typical res-
olution of about 50km for the largest ones (see e.g. the regional climate model for the European
region EUR-44) to 12,5km for the �nest ones (see e.g. EUR-11). All EURO-CORDEX information is
available on the website: https://euro-cordex.net. Some meteorological events are not well repre-
sented at coarse resolution, especially precipitations during storm events and snow precipitation on
mountains. A �ner spatial resolution describes better the topography, which can control local me-
teorological events (Montesarchio et al., 2014). Downscaling method draw a new grid at an higher
spatial resolution. For example, in our case study, we will use the ADAMONT method (Verfaillie
et al., 2017) based on the SAFRAN reanalysis data on an 8km grid resolution (Vidal et al., 2010).
ADAMONT uses outputs from RCMs, and includes a statistical bias correction method.

There are two main categories of downscaling methods (see e.g. Duran, 2012). Dynamic downscaling
uses climate model outputs as border conditions to create projections on a new high-resolution grid.
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However, it requires a long computing time, and users need to know the physical parameters of local
meteorological processes. Statistical methods are easier and faster than dynamic methods. They are
based on a statistical relationship between climatic records at high and low-resolution. There is a
large range of statistical methods: linear scaling, advanced delta change, or quantile mapping. Seguí
et al. (2010) show that all those methods have di�erent limits because they are based on di�erent
hypotheses. The common hypothesis is the stationary state: the correction function is constant over
time, but in the CC context this assumption becomes irrelevant. It shows that the downscaled pre-
cipitation spatial patterns di�er depending on the chosen method, and seasonal temperatures can
di�er as well with the method. It can be a signi�cant source of uncertainty. The computed runo�
series diverge with the methods and seasons in terms of anomaly: methods are disagreeing on the
sign of runo� anomaly. Finally Rauscher et al. (2010) show that the amount of simulated precipita-
tion is often overestimated with statistical downscalling.

Various approaches have been developed to adjust RCM outputs to observations (analog method,
CDFt, quantile mapping...). Quantile mapping is widely used for bias correction since it is statisti-
cally e�cient to adjust precipitation distribution. Hence, adjustment quality depends on data quality
(Gudmundsson et al., 2012). In our case, for a partially mountainous catchment, the downscaling pro-
cess is challenging due to strong and localized convective meteorological events (see e.g. Rauscher
et al., 2010). In our study, we used ADAMONT (Verfaillie et al., 2017) outputs, drived from an inno-
vating statistical method for the downscaling process. ADAMONT is built on RCM outputs and uses
SAFRAN reanalysis data as model inputs (Verfaillie et al., 2017). SAFRAN is used to validate climate
model outputs on a reference period and provides a reference for CC assessment due to their good
quality and robustness (Vidal et al., 2010). SAFRAN reanalysis provides diverse climatic variables:
rainfall, snowfall, solar radiation, humidity, and wind speed, temperature. The ADAMONT method
initially developed by MétéoFrance is based on quantile mapping method, applied on the climatic
variables provided by SAFRAN, and goes beyond the current limit of the stationary problem (Ver-
faillie et al., 2017). Quantile mapping is based on the statistical distributions of observations and
simulations. Data simulation quantiles are adjusted with a transfer function, based on the quan-
tiles of observation values corresponding to the same probability (Maraun, 2016). To overpass the
stationary problem and improve the spatial-temporal consistency, this protocol was developped in
nine steps (see Verfaillie et al., 2017).

2.2 Uncertainties in climate change impact study

2.2.1 Cascade of uncertainties

Generally, all modeling outputs include a part of uncertainty. There are three primary sources of
uncertainty in a model which result in uncertainties on the outputs: 1) the model inputs; 2) the
model structure, i.e. the equations; 3) the chosen parameter set during calibration. Moreover, in
impact studies various models are used in a modeling chain, and each step generates uncertainties
as shown on Fig. 2. According to Mitchell and Hulme (1999), "The unpredictability of the climatic
and global systems introduces a cascade of uncertainty to regional climate prediction that cannot be
squeezed to the single point of the ‘single result’ approach to prediction." This concept is a reference
for CC impact studies. All the impact modeling chains include signi�cant uncertainties that are cas-
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caded from the �rst to the last stage. An evaluation of con�dence intervals of CC impact outputs is
necessary and is generally performed with an uncertainty analysis (UA). To evaluate uncertainties
a multi-model approach is the norm (Teutschbein and Seibert, 2010): multi-model approach allows
us to take into account the uncertainty due to representation of climate processes. The use of dif-
ferent hydrological models, with di�erent spatial resolutions and structures, di�erent calibration
procedures, and various couples of climatic scenarios and models is required.

Figure 2: Schematic representation of the cascade of uncertainties, based on the method use in
this study. Two RCPs used separately, three GCMs forced by RCPs, each GCM feed each RCM.
Three RCMs used, but only one bias correction method used. After three HMs feed by climatic
data to simulate stream�ows. For each HM twenty-nine calibration strategies were used. RCP:
Relative Concentration Pathway; GCM: Global Climate Model; RCM: Regional Climate Model; HM:
Hydrological Model.

2.2.2 Probabilistic approach

To quantify the uncertainties and evaluate the rank of the contribution of each modeling step, two
main approaches are generally used: historically, deterministic approaches have been widely used
(Davies et al., 2009); (Dobler et al., 2012). This method is a simple screening method to explore
sources of uncertainty one by one, and then rank the di�erent uncertainty sources. Disadvantages
of this method are various: interactions between parameters are not taken into account, and the
ranges are not normalized. A better alternative is the use of probabilistic approaches, such as the
one used by Vidal et al. (2016). The authors considered several possible scenarios and hydrological
models (HMs), to generate with a stochastic approach a variable set for each combination (4 GCMs
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and 3 downscaling methods). That was made possible by the large amount and sources of available
data. After a re-sampling, they calculated hundreds of time-series projections for six di�erent hydro-
logical models. A speci�c index was calculated for low-�ows and model uncertainties components
were estimated with an ANOVA. This study improved the comprehension of uncertainties, as they
found predominant uncertainty sources in internal variability at large and small scales for low-�ow
projections. Similarly, Parajka et al. (2016) studied hydrological models (HMs) and climate scenar-
ios uncertainties in low-�ow projections in Austria. They adopted a probabilistic approach coupled
with an ANOVA. Di�erent climatic scenarios, calibration procedures, and hundreds of catchments
across Austria were used to compute a low-�ow index. They concluded on di�erent uncertainty
sources contribution to low-�ow projections according to the seasons. In summer, uncertainty is
largely dominated by climate scenario gaz emission scenario (GES), whereas in winter contribution
of HMs is of the same order of magnitude. Not only low-�ow projections are studied in CC context
but high-�ows are studied too. Collet et al. (2017) assessed uncertainties on extreme �ows in CC
context with a probabilistic approach. To investigate events with a high return period, they used
the extreme value theory and return period analysis, and quanti�ed uncertainties related to the ex-
treme value models and the climate model parameters. They concluded that uncertainty related to
climate model and extreme value model are of the same order of magnitude, and that these sources
of uncertainty need to be accounted for in impact studies.

2.2.3 The QE-ANOVA analysis

The quanti�cation of di�erent uncertainty sources are investigated with a multi-model approach
ensemble of simulations resulting from a multi-scenario multi-model chain. In this study for a given
GCM/RCM couple, an ensemble of HM projections is used to analyze future changes in hydrological
response.

Firstly, time series of the variables of interest need to be provided by all the di�erent GCM/RCM
couples used. However, climatic projections can be missing for some GCM/RCM couples. In this
case, the incomplete matrix of GCM/RCM projections used is challenging, and the quanti�cation
of uncertainties based on a parametric method like ANOVA can be biased, because some climatic
models are more represented than others. To tackle this issue, Evin et al. (2019) developed the
QUALYPSO method that deals with an incomplete matrix of climate model outputs. The approach
is based on a data augmentation processe and it is adapted to hydrological projections.

The second challenging aspect of this procedure is how an ANAOVA analysis on uncertainties is
conducted. A climatic projection can be considered as the sum of the climate response of a model at
time t, and the deviation from the climate response obtained with a member of the modeling chain
(Fig. 3). This highlights that the total uncertainty for an ensemble of projections is the combina-
tion of the uncertainties from the climate model response and the noise due to the climate natural
variability (internal variability) (Eq. 1).

Y (g, s, t) = y(g, s, t) + ν(g, s, t) (1)

x(g, s, t) = y(g, s, t)− y(g, s, tC) (2)

With Y the climatic model output, y the climatic trend, and ν the residue of the �t of the climatic
trend (deviation from the climatic response), g: GCM used, s: RCM used, h: HM used. The
di�erence of climatic variable trend between the historical and the future period. This anomaly x is
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used as the variable of interest for the uncertainty analysis. The quasi-ergonic ANOVA (QE-ANOVA)
developed by Hingray et al. (2019); Evin et al. (2019) is based on this concept of climate response
over time. QE-ANOVA improve the precision of estimations compared to previous ANOVA methods
(e.g single time ANOVA), used to evaluate uncertainties in climate impact studies. However, some
issues resulted from these approaches, especially the lack of temporal coherency.

The quasi-ergonic assumption establishes a time average along each trajectory that is described by
a linear function; in the QE-ANOVA case, the trend model estimates the climatic response of the
chain. According to Hingray et al. (2019) the general principles of QE-ANOVA are: �rst estimating
a trend model over time, second determining the climate response, and �nally, estimating the cli-
mate model internal variability. The climate response is de�ned as the trend model at the year of
interest, and the internal variability is the variance over the time of residuals. The QE-ANOVA ap-
proach is chosen to characterize model uncertainty variance and estimate the contributions of each
modeling step. Samples of interest are de�ned in di�erent groups, and one observation is made on
each group combination. In this study multi-modeling chain steps are considered as groups. This
statistical method can determine whether group means di�er, and which one di�ers from the others.
Hingray et al. (2019) used QE-ANOVA on climatic projections (e.g. temperatures and precipitations)
to evaluate uncertainties, but as shown by Vidal et al. (2016), QE-ANOVA is also adapted to hydro-
logical projections. Vidal et al. (2016) examined the e�ects of: GCMs, bias correction method, and
hydrological models. The corresponding ANOVA model is de�ned by the following equation (Eq.
3):

x(g, s, h, t) = µ+ α(g, t) + β(s, t) + γ(h, t) + ε (3)

where x is the variable of interest, µ is the overall mean, α, β, γ, are the main group e�ect, and ε

is the residual, or "error" between individual observation and combined groups e�ects.

Figure 3: Schematic representation of the decomposition of the climatic signal with the QE-ANOVA
method. Modi�ed from Hingray framework.
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3 Material and Methods

3.1 Study area : The Hérault River catchment

3.1.1 Geographical context

The Hérault River is located in the south of France (see Fig. 5). The outlet is located in Agde, in
the Mediterranean Sea. The basin is delimited in the north by the Cévennes mountain range, Mont
Aigoual (1 565m), which is the source of the Hérault River. The population living on the basin is
around 170k inhabitants in 2012, on an area of about 2500 km2. On the upstream part, the basin
is characterized by fractured bedrock. On the middle part, a karst system is well developed. On
the downstream part, an alluvial system is dominant. Fig. 5c shows land use of the catchment: the
downstream area is largely occupied by fruit and vineyard production, highly irrigated, while forest
cover is dominant on the upstream part.

3.1.2 Hydrological and meteorological context

The hydrological dynamic of this catchment is typical of Mediterranean catchments (Fig. 4), with
an in�uence from the Cévennes Mountains. We observe high precipitations in autumn and spring,
where rainfall events can be intense due to the Cévennes mountains, and the spatial distribution of
annual precipitations is widely contrasted from upstream to downstream, as shown in Fig. 5a (from
above 1500mm/year in the upstream part, to reach less than 600mm/year in the downstream part).
Precipitation on the Cévennes Mountains occurs during Mediterranean storms in autumn, and can
cause impressive �ash �oods. In terms of temperatures, the regional mean is mild in winter (above
5°C) whereas summers are dry and hot (above 20°C). There is also a spatial pattern shown on Fig.
5c, with higher temperatures downstream and lower ones downstream. Hydrologic stations were
chosen according to the hydrogeological context, the land cover, and the available time series. The
downstream part of the catchment plays an essential role in water supply in the region Fig. 5b.
Moreover for CC impact studies it is recommended to use 30-year records according to the World
Meteorological Organization guidelines. For this CC impact study, four hydrological stations were
chosen, each providing data on a 30 years period: The Arre River at Le Vigand, The Vis River at
St-Laurent-le-Minier, The Hérault River at Laroque, and The Hérault River at Gignac see Fig. 5c.
The baseline period is de�ned from 1990 to 2018.
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Figure 5: Maps of the Hérault River catchment: a) temperatures distribution, b) precipitation distribution, c)
land use. Sources: SAFRAN, and Corine Land Cover 2018.

Figure 4: Annual hydrological dynamic of the Héraut River catchment

3.1.3 Data

The gauging stations and the time periods with available data are presented below in Table 1. We
used the hydro-SAFRAN daily data set aggregated by IRSTEA, UR HYCAR (Delaigue et al., 2019).
Météo-France provides climate data sets from 1958 to 2018 (SAFRAN meteorological reanalysis (Vi-
dal et al., 2010)) and HYDRO DB provides stream�ow records (Leleu et al., 2014). The climatic vari-
ables included: temperature, liquid and solid precipitations, and evapotranspiration. In this study
the Penman-Monteith evapotranspiration was used. Hydrological data were available on four gaug-
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ing stations, from 1986 or 1990 (see Tab. 1). Climatic projections are presented in Table 2, with the
names of the di�erent institutes, models, and scenarios. The spatial resolution of these projections
is 0.11 degree (12.5km). Results were analyzed on a reference period (1976-2006) and future period
(2006-2100), the Gignac station was used as the outlet of the catchment for the lumped HMs (GR5J,
TUW), while the other stations were also used for the semi-distributed approach (GRSD).

Table 1: Available data for each gauging station.

Station name Station code Baseline period
The Arre River at Le Vigand Y2015010 01/08/1986 - 31/07/2018
The Vis River at St-Laurent Y2035010 01/08/1986 - 31/07/2018
The Hérault River at Laroque Y2102010 01/08/1986 - 31/07/2018
The Hérault River at Gignac Y2142010 01/08/1990 - 31/07/2018

Table 2: GCM-RCM couples used in this study. Source: https://www.hzg.de/ms/euro-cordex/

Institute name RCM name Driving GCM name RCP scenarios
CNRM (France) ALADIN53 CNRM-CM5 RCP 8.5 and 4.5
IPSL-INERIS (France) WRF331F IPSL-CM5A-MR RCP 8.5 and 4.5
SMHI (Sweden) RCA4 CNRM-CM5 RCP 8.5 and 4.5
SMHI (Sweden) RCA4 IPSL-CM5A-MR RCP 8.5 and 4.5
SMHI (Sweden) RCA4 MPI-ESM-LR RCP 8.5 and 4.5

3.2 Hydrological models

3.2.1 GR5J Cema Neige

GR5J (Le Moine, 2008) is a lumped conceptual rainfall-runo� model, with 5 parameters : the maxi-
mum capacity of production store (X1) in mm, the groundwater exchange coe�cient (X2) in mm/d
(X2 can be positive for a gain and negative for a loss of water), the capacity of routing store (X3)
in mm, the unit hydrograph time constant (X4) in days, and another parameter to improve the rep-
resentation of inter-catchment transfer with groundwater (X5), dimensionless (Fig. 6a). X1 is used
to calculate the net precipitation input and the net evaporation output, then the water quantity in
the production store is calculated with a balance equation. Next, the percolation is estimated with
a classical stream�ow equation, derived from the net precipitation and X1. The quantity of per-
colation is then split into two parts, and driven by two separate hydrographs: 90% of the �ow are
routed by the time hydrograph unit X4, and 10% are routed with a unit hydrograph. Stream�ow is
the sum of these two outputs. In order to represent stream�ows seasonality due to snow process,
GR5J was coupled with a snow routine, Cema Neige. The Cema Neige module has two parameters
Ctg dimensionless and Kf (mm/°C), to represent snowmelt and snow accumulation.

3.2.2 GRSD

GRSD (Lobligeois et al., 2014) is a semi-distributed model based on GR5J (Fig. 6b). The main goal of a
semi-distributed model is to take into account the spatial heterogeneity of the catchment, compared
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to a lumped model. The studied catchment was divided into various sub-catchments, and each sub-
catchment was fed with model inputs (meteorological data) and observed stream�ow (De Lavenne
et al., 2016, 2018). A lumped modeling process is applied on each sub-catchment or cell, to compute
stream�ow at the outlet of each cell and take into account the heterogeneity of the whole catchment
(Fig. ??). GRSD has seven parameters, �ve are the same as GR5J. Compared to GR5J, GRSD has two
hydraulic additional parameters: C for celerity in m/s, and L for river length in m . The cells were
created on each gauging station and used di�erent parameter sets. According to De Lavenne et al.
(2016) the performance of the is not necessarily better than the lumped model. Lobligeois et al.
(2014) showed that GRSD semi-distributed model was more adapted for catchments with high rain-
fall spatial variability, in the case of high-�ow studies, such as the Cévennes and the Mediterranean
regions (substantial improvement was demonstrated for the Hérault River at Gignac).

a b

Figure 6: Presentation of a) GR5J and b) GRSD models (from Lobligeois et al., 2014)

3.2.3 TUW

TUW (Parajka et al., 2007) is a lumped conceptual rainfall-runo� model with 15 parameters (Fig. 7),
and it is composed of three distinct modules:
- The snow routine has �ve parameters (SCF, DDF, Tr, Tm, and Ts), respectively a snow correction
factor (demensionless), a degree-day factor (mm/°C/day), and three thresholds temperature (°C) to
de�ne liquid precipitation, solid precipitation, and snow melting. The snow routine computes the
accumulation or the snow melt according to threshold temperatures. The precipitation and the snow
melt (Pm) are routed to the soil moisture reservoir.

- The soil moisture routine has three parameters (LPrat, FC and Beta). The �rst one de�nes the limit
of potential evapotranspiration (dimensionless); the second one is the soil moisture capacity called
�eld capacity, and the third one is a runo� parameter. This routine computes the soil moisture with
the amount of precipitation, meltwater, and evapotranspiration from the previous time step. The
soil moisture routine control the actual evapotranspiration (EA). EA is calculated from the poten-
tial evapotranspiration and a linear function of the soil moisture. When the maximum FC (mm) is
reached the routine generates runo�.
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- The hydrological routine has seven parameters (k0, k1, k2, lsuz, cperc, bmax and cr free). k0, k1
, and k2 (mm) are storage coe�cients, for the very fast, fast, and slow response respectively. lsuz
(mm) is a threshold to start very fast runo�, cperc is the percolation coe�cient (mm/day) , bmax
(days) is the maximum base for low-�ows and cr free a scalling parameter (days2/mm). For more
details and to have the description of the equations, see Parajka et al. (2007).

Figure 7: Presentation of the TUW model. P: Precipitations, PS: solid precipitations, PM: water result-
ing from snow-melting, PR: liquid precipitations, E: Evapotranspiration, EP: Potential evaporation,
EA: Actual evaporation Q: Stream�ow, FC: Field capacity

3.3 Modeling approach

3.3.1 Calibration-validation procedure

Di�erent calibration procedures were used to generate multiple parameter sets in order to assess
uncertainties due to model parametrisation:

• The split-sample test procedure was used. The input records and observed stream�ow were
divided into two periods of equal length, then the �rst one was used to calibrate and the second
one to validate the model, and vice-versa. This procedure resulted in two parameters sets.

• The whole record was then used for one additional calibration and provided one parameter
set.

• An alternative approach was used: the rolling calibration approach. For this procedure, the
model was calibrated on a 10-year period, and the rest was used for validation, then the 10-
year period was moved along 1 year, etc... It allows taking in account the variability due
to temporal change, with di�erent parameter sets (see e.g. De Lavenne et al., 2016). This
procedure provided 19 parameter sets.
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• The cross-validation procedure was used. We divided the records in n sub-periods, to calibrate
on n-1 periods, and validate on the last one. This provide an estimation of the uncertainties
in the estimation of parameters. This procedure provided 5 parameter stets.

• In order to evaluate uncertainties due to climate contrast between periods, two contrasted
periods, the wettest and driest one, were de�ned. Then models were calibrated on each perio,
resulting in two more parameter sets. According to Brigode et al. (2013) contrasted climatic
periods have a huge in�uence on uncertainties for parameters transferring. Wet and dry peri-
ods were built based on the cumulative sum of monthly precipitation anomaly (Francois et al.,
2018)(shown in appendix Fig. 24). Notice that the contrasted calibration periods are short.

In total this calibration protocol resulted in 29 di�erent parameters sets, with di�erent calibration-
validation procedures to assess the model robustness. For each procedure a two-year warm-up
period was used, to have a good initialization of the model internal variables.

We tested di�erent stream�ow transformations for the calibration/validation procedure (with Q the
stream�ow): Q, 1/Q, sqrt(Q) and a composite function (Q; 1/Q): Each of them has advantages: Q is
more adapted for high-�ows while 1/Q is more appropriate to low-�ows. The objective function
was chosen to be good enough for both low and high-�ows, and the composite function (Q; 1/Q)
seemed to be a good compromise.

In order to assess the quality of simulations, the Kling-Gupta E�ciency (KGE) (Gupta et al., 2009)
was chosen (see Eq. 4), as a criteria for performance and robustness. This objective function was
used for GR5J, GRSD, and TUW model for evaluation of parameters variability.

KGE = 1− ED (4)

ED =
√

(r − 1)2(α− 1)2(β − 1)2 (5)

Where r is the coe�cient of correlation, α is the ratio between the standard deviations of simulations
and the standard deviation of observations, and β is the ratio between the mean of simulations and
the mean of observations.

The composite function (C.F) can be written as follow:

C.F =
KGE(Q) +KGE(1/Q)

2
(6)

3.3.2 Hydrological projections analysis

Hydrological projections are realised on the all period from 1992 to the horizon 2085. For the climatic
projections the data observed are on the period 1992-2006, and compared to the future from 2006 to
2085. A rolling mean over 30 years was computed on these period to analyse the signal without the
natural variability, indeed climate models are not suited to represent annual variability.

A yearly hydrological indicator was choosen for the QE-ANOVA on high and low-�ows. For high-
�ows, the yearly threshold, de�ned with the upper 95th percentile (a stream�ow value exceeded 5%
of the time) was computed. For low-�ows, the yearly Mean Annual 7-day Minimum �ow (MAM7)
was computed. The MAM7 is a yearly indicator used for low-�ow analysis. The advantage of such
indicator is that the mean of 7 days eliminates part of the daily variability.

15



3.3.3 Uncertainty analysis

The projected changes in stream�ow were analyzed to compute the uncertainties on high and low-
�ows. A rolling average over 30 years was computed on the future horizon (2006-2100). This process
was used to limit the inter-annual variability. The QUALYPSO method was used to �ll the incomplete
matrix of the di�erent factors (GCMs, RCMs, HMs, Parameters) and to partition the total uncertainty.
In the QE-ANOVA, the signi�cance of each factor was tested, and four group e�ects were choose:
GCMs, RCMs, HMs, and parameters. The factor levels of each group provided di�erent outputs, and
these responses were used to quantify sources of uncertainty and the relative importance of each
factor over time. The residual variance, which is the part of the total variance that the ANOVA model
can not explain, is included in the outputs. This residual variance is due to the model interactions.

The corresponding ANOVA model is de�ned on the following equation, the factor parameter set is
now included in the QE-ANOVA :

x(g, s, h, p, t) = µ+ α(g, t) + β(s, t) + γ(h, t) + δ(p, t) + ε (7)

where x is the variable of interest, µ is the overall mean, α, β, γ, δ are the main group e�ect, and
ε is the residual, or "error" between individual observation and combined groups e�ects.

4 Results

4.1 Calibration procedure

This section shows results of the calibration procedure for the three hydrological models over 1990-
2018. The quanti�cation and the assessment of the simulation quality is presented here, as well as
the parameter sets resulting from the calibration procedure. Furthermore, the performance of the
models and the obtained parameter sets are explored for di�erent hydrological indicators, particu-
larly for high and low-�ows.

4.1.1 Annual stream�ow

Simulations on di�erent calibration-validation periods at the daily time step over 1990-2018 were
compared to investigate the performance of the models and di�erent calibration strategies. The
comparison is based on C.F (Eq. 6) criterion with graphical representations of the rolling mean,
shown on Fig. 8, Fig. 9, Fig. 10, for GR5J, GRSD, and TUW respectively. Simulations with GR5J
and GRSD show a small envelope around the observations; and a good performance, with values
between 0.5 and 0.9. It shows a good capacity of adaption to di�erent calibration periods, in other
words these models show a high performance. However for TUW model, simulations show lower
criterion values. The graphic (Fig. 10) shows di�culties for the model to simulate �ood peaks. The
criterion has a large range of variation, from below 0.4 to 0.7. The TUW model calibrations present
both unsatisfactory (0.4 < KGE < 0.6) and satisfactory simulations (0.65 < KGE < 0.75).
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4.1.2 The parameter sets

Then we explored the parameters variability in accordance to the calibration-validation periods.
The parameters were normalized with the upper and lower bounds, and shown on Fig. 8 for GR5J,
Fig. 9 for GRSD, and Fig. 10 for TUW, to estimate the robustness of the calibration. The larger the
variability of parameter sets over the calibration periods, the less they are capable of explaining the
di�erences over the calibration periods. GR5J (Fig. 8b) shows for X3 a large variability, while X1
and X5 show a small variability, and X4 seems stable. X2 presents one extreme value, related to the
parameter calibrated during the dry period. With GRSD (Fig. 9b) the distribution is di�erent: X1,
X2 and X3 have a greater variability compared to GR5J. The distributions of X4 and X5 are stable
across the calibration procedures. The variability of parameters for TUW model is shown, but the
parameters are di�erent, so they are not comparable.

Figure 8: Calibration results for GR5J: The Hérault River at Gignac. a) Rolling mean values of stream�ows
over 1990-2018. Observations are in black and the colored curves represent distinct calibration-validation
srategies. Colors indicate the goodness of criterion. b) Normalized parameters distribution. Color indicate
the type of calibration procedure.
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Figure 9: Results of the calibration procedure for GRSD: The Hérault River at Gignac. Same legend as the
previous �gure.

Figure 10: Results of the calibration procedure for TUW: The Hérault River at Gignac. Same legend as the
previous �gure. Notice that we plot only hydrological parameters except for cr free (the less sensitive one),
and we added the soil moisture parameter.
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4.1.3 High-�ow and low-�ow projections

This section compared simulated and observed stream�ows over the reference period. It allows
getting a better understanding of the bias generated by hydrological models and the choice of
parameters. If GR5J and GRSD have shown excellent performances for their di�erent parameters
sets, it is not the case for all the parameter sets of TUW. However, for this study, the use of the three
models is essential to analyze uncertainties related to hydrological models in a CC impact study.
The hydrological model performance analysis is important to know which hydrological criterion
is suitable and robust for assessing the evolution of discharges driven by climatic projections and
make reasonable interpretations of results.

The hydrological models performance were explored in details for high and low-�ows. We com-
puted mean high-�ow and low-�ow indicators (i.e. Q95 and MAM7 respectively), for the di�erent
simulations resulting from di�erent parameter sets and models. The �ow duration curve (FDC) was
computed for the models to show the quality of the representation of the extreme �ows (Fig. 11).
Moreover, time series of maximum and minimum simulated stream�ows were built from the multi-
ple simulations, to estimate the simulation range around the observed stream�ow. The FDC of GR5J
and GRSD present a small range between maximum and minimum values, whereas FDC of TUW
shows a large range between both extrema. For GR5J and GRSD, high-�ows are well simulated,
while low-�ows seem less well represented. For TUW, all the parameter sets can not represent the
extreme �ows.

Figure 11: FDC for GR5J, GRSD, and TUW, for the Hérault River at Gignac. The maximum and minimum
time series were built with the di�erent simulations from all parameter sets.
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Figure 12: Comparison index, the ratio of means for high-�ows and low-�ows and the ratio of standard
deviation for a) high-�ows, and b) low-�ows. Each dot represents one parameter set.

An index was calculated to estimate if the simulation is an underestimation or an overestimation.
The index was the ratio of the simulated mean to the observed mean. Results are described in Fig.
12. If the index is below 1, simulations underestimate the stream�ow and vice versa, if the index
is above 1, simulations overestimate the stream�ow. The most part of ratios computed with GR5J
and GRSD outputs are included between -10% and, +10%. Low-�ows computed with GR5J present
a small underestimation, whereas high-�ows computed with GRSD present a small overestimation.
But the TUW model shows strong underestimations and overestimations for the di�erent parameter
sets. TUW model presents an overestimation of stream�ows. For the low-�ows 8 simulations are
above 10%, 8 simulations are above 50%, and 2 simulations are above 100%. For the high-�ows
20 simulations included between +10% and +50% for high-�ows. The relative di�erence is more
important for low-�ows, but the absolute di�erence in volume is largely stronger for high-�ows.

4.2 Hydro-climatic projections

4.2.1 Climatic projections

Mean temperature and mean precipitation projections on the Héraut River catchment are shown in
Fig. 13, to assess the main future trend of these climatic variables. For RCP 4.5, the mean trend of
temperature projections (Fig. 13a) is increasing over time, to reach a mean anomaly of +1.6°C by
the end of the century (con�dence bounds: +1.4°C to +1.8°C); and the mean trend of precipitation
projections (Fig. 13c) shows a decrease over time to reach a daily mean anomaly of -0.25 mm/day
by the end of the century. For scenario RCP 8.5, the mean trend of temperature (Fig. 13b) shows a
higher increase of +3.5°C (con�dence bounds: +2.8°C to +4.2°C). Regarding precipitation projections
(Fig. 13d), the mean trend presents a decrease of -0.3mm/day by the end of the century. However,
large uncertainties on precipitation projections make unclear the change in precipitations: the lower
con�dence bound shows no anomaly in precipitation, and the upper bound shows an important
anomaly of -0.5 mm/day. The lack of signi�cant changes in precipitation projections on the Héraut
River catchment is an important conclusion for the interpretation of hydrological projections.
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Figure 13: Mean trend over time of a) temperature projections, b) precipitation projections

4.2.2 Hydrological projections

Annual hydrological extreme projections are shown on Fig. 14. Looking at these two representa-
tions it don’t allow us to note any speci�c trends or di�erences between RCPs used. Using these
observations, the rolling mean over 30-years was computed, to have a mean trend and to conduct
the uncertainty analysis with the QE-ANOVA method.

Figure 14: Annual hydrological projections a) for low-�ows (MAM7), and b) for high-�ows (Q95).

4.3 Uncertainty analysis

The total variance is decomposed following each source of uncertainty, and their relative contribu-
tion is represented in Fig.(15,and 16). The contribution of each source of uncertainty is changing
over time. For RCP 4.5 Fig.(15) at the short lead time (before 2020), internal variability (in orange),
HMs (in blue), and residual variance (in grey) are the main sources. The e�ect of GCMs (in yel-
low), RCMs (in green), and parameters (in purple) are minor. But at the end of century (2085), the
residual variance becomes the main source of uncertainty. The contribution of HMs and Internal
variability is decreasing over time, to becomes minor contribution. Unlike uncertainties related to
GCMs, RCMs and parameters are increasing over time. However for RCP 8.5 (Fig. 16) the change
in the contribution of each source of uncertainty is di�erent. At the short lead time, RCMs, HMs,
Internal variability and residual variance are the main contributors for uncertainties. This pattern
is conserved over the time at the end of century HMs is the imprtant source of uncertainty followed
by the residual variance and the RCMs. GCMs have only a small in�uence, and parameters too.
The Fig.(15; 16) shows the mean trend of the 30-year average changes in high-�ows. For the RCP
4.5 Fig.(15), the trend is not representing any clear variation, the con�dence bounds are covering
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negative and positive anomaly, in the same proportion. So at the end of the century the anomaly
on low-�ow changes is not signi�cant, no clear conclusion can be draw. The same observation can
be made for low-�ow projections with RCP 8.5, but the mean trend is negative, to reach -10% at the
end of century, a small anomaly, not signi�cant, due to the large con�dence bounds.

Figure 15: Uncertainty analysis on low �ows RCP45.

Figure 16: Uncertainty analysis on low �ows RCP85.

The total uncertainties on high-�ow projections until the end of the century compared to the his-
torical periods, for two di�erent RCPs. Fig. 17 shows the relative contribution of each source of
uncertainty over time, for the rolling average over 30-years of high-�ow changes with the RCP 4.5.
The internal variability and the residual variance contribute for the most of the total uncertainty in
the short lead time, they account respectively for less than 50% in 2020. Whereas at the end of the
century the major source of uncertainty is the residual variance and HMs, they account respectively
for 40% and 38%. The factor "Parameters" has a poor contribution to the total variance. GCMs and
RCMs also have a small contribution. For RCP 8.5, results are shown on Fig. 18, at the short lead
time the in�uence of GCMs/RCMs is larger than for RCP 4.5 (20% in 2020), whereas the part due
to the residual variance is higher (30% in 2020), and the internal variability is the most important
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(around 50% in 2020). For the end of century, GCMs/RCMs contribute for 15%, internal variability
for 10% and residual variance for 50%, futhermore HMs and "parameter sets" contribute for 25% to
the total uncertainty.

Fig. 17 for RCP 4.5, shows the mean trend of the 30-year average changes in high-�ows. The �gure
shows an increase of high-�ows over time, and the con�dence bounds (90%) are increasing over
time. At the end of the century, the anomaly computed is strictly positive and included between
+5% to +70%. The simulated anomaly is strictly positive. Fig. 18 for RCP 8.5, shows the same trend,
but not the same anomaly. The anomaly computed is included between an upper bound of +60% and
a lower bound of -10%, but the mean trend is positive (+25%), the change in high-�ow projections is
not strictly positive.

Figure 17: Uncertainty analysis on high �ows RCP45.

Figure 18: Uncertainty analysis on high �ows RCP85.
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5 Discussion

5.1 Sources of uncertainty analysis

To show how GCMs and RCMs can be a source of uncertainty it is interesting to look closer the
relative di�erence in precipitation, and the di�erence in temperature between GCMs, and between
RCMs, in the Héraut River basin. For the precipitations (Fig. 19) with the scenario RCP 4.5 MPI-
ESM-LR is the driest model after 2060, but in the mid lead time, it is IPSL which is the driest one.
The wettest GCM is CNRM-CM5. For RCP 8.5 (Fig. 20) the driest GCM is IPSL and the wettest is
CNRM-CM5, they present an opposite behavior and an opposite relative di�erence. On (Fig. 20), the
�gures show an absolute di�erence of temperatures, for RCP 4.5 IPSL is the hottest GCM, and the
other GCMs are very similar (Fig. 19). This trend is the same with the RCP 8.5. The data available
were restricted to this three GCMs, but for future investigations, it is recommended to test more
models in order to better quantify the part of uncertainties due to GCMs. The same analysis was
done with the RCMS, note that for ALADIN53 and RCA4 are both wetter and hotter than WRF33IF,
and are convergent.

Figure 19: Relative di�erences between GCMs for RCP 4.5
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Figure 20: Relative di�erences between GCMs for RCP 8.5

5.2 Hydrological models performance and robustness

In order to better understand changes in the hydrological projections, low and high-�ow indicators
were compared for the three di�erent hydrological models and their parameters (Fig. 21; Fig. 22).
Four di�erent periods are computed, the baseline, short lead time, mid lead time, and long lead
time. As shown on the �gure the evolution of the threshold (Q95), the indicator increase over the
four periods and for the three hydrological models. For high-�ow indicators the change is of same
order of magnitude for the three hydrological models. However for low-�ows, the change is not in
the same magnitude for the three hydrological models, TUW model shows strong di�erences. For
GR5J and GRSD the medians are decreasing according to the periods, and the medians are included
between +15% and +10%, whereas for TUW the medians are closer to +20%, and the distribution of
MAM7 are more extended to high values.

The lack of e�ciency of TUW was shown in the results of calibration. With more investigation
on this point, it appears that the objective function was not the optimal choice for this model. In-
deed low-�ow projections are better represented when the log transformation of stream�ow with
nash-sutcli�e is used as an objective function. Another point comes from the algorithm used for the
optimization of the objective function (Ceola et al., 2015). It is a di�erent algorithm compare to GR5J
and GRSD. Finally, the TUW model structure is undoubtedly not very adapted to this Méditeranean
catchment compare to GR models, but better adapted for mountainous catchment with a high con-
tribution of snow-melt process, and not dry summer. The main di�erence between lumped model
(GR5J) and semi-distributed model (GRSD) for hydrological projections is the simulation of more
extreme values with GRSD compare to GR5J (Fig. 21; Fig. 22). Even if a model give more robust sim-
ulations, for a probabilistic approach it is necessary to consider di�erent models, otherwise it will
be a deterministic approach. Finally the contribution of parameters drove from di�erent calibration
strategies on the total uncertainties is never predominant (small for high-�ow and non negligible
for low-�ow), previous studies awarded on the potential strong contribution of the parameters to
the total uncertainty in climate change context, but this caution is correct for regions with a future
decrease in among of precipitation around 20% (Dakhlaoui et al., 2017).
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Figure 21: Hydrological models e�ect on threshold Q95 on di�erent periods, with the di�erent pa-
rameter sets

Figure 22: Hydrological models e�ect on MAM7 on di�erent periods, with the di�erent parameter
sets

5.3 Signi�cance of results: time of emergence

The QE-ANOVA is based on the normality assumption, but this statistical model is robust for large
data sets. In order to check the validity of the assumptions, statistical tests were performed. The
distributions of the residuals in all cases were analyzed, and large deviations from the normal dis-
tribution were found. The non-linearity of the hydrological models make sure of that, even if the
rolling mean on precipitations show a normal distribution over time. Moreover, the statistical tests
are sensible to the length of data, and can easily detect the variation. In order to conclude on the
signi�cance of results, the authors of the QE-ANOVA advise using another method called time of
emergence.
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Time of emergence, is a concept that was introduced by Hawkins and Sutton (2012), the ratio signal
on noise is computed over time. The noise is de�ned as the root squared of the total variance and
the signal as the mean trend over time. If the ratio is higher than one (or fewer than minus one), the
signal is clear, and the results are robust. The ratio signal/noise was computed for the hydrological
projections on high and low-�ows (Fig. 23). Fig. 23a and Fig. 23b, show the ratio for high- �ow
projections, with the RCP 4.5 the ratio is increasing over time and becomes higher than one around
2050, so the projections are robust and signi�cant after 2050. However, this is not the case for RCP
8.5, the ratio is increasing over time, but it still below to one. Finally for the low �ow indicators (Fig.
23c, and Fig. 23d the ratio does not show any signi�cant trend, but only a small decrease over time.
Results are not signi�cant for low-�ows; it could be due to the sensibility of the catchment. Indeed
the upstream the Gignac gauging station, the Hérault river catchment seems not to be sensitive
to an increase in temperature, and low-�ows are poorly a�ected by this change. These results are
supported by the fact that the outlet of the study is located at Gignac (in the upstream part of the
Héraut River catchment), because of on the downstream part of the basin is an alluvial plain, where
the stream�ows are a�ected by an increase of temperature. A large part of the upstream basin is
coupled to a karstic system, wich could explain a low-�ow replenishment during dry season.

Figure 23: Ratio signal/noise for 30-years rolling averages of high-�ow projections for a) RCP 4.5
and b) RCP 8.5. And of low-�ows projections for c) RCP 4.5 and d) RCP 8.5.

5.4 Limits and contributions

In this study, the internal variability is assessed with only one run per GCM/RCM couple, so the
estimation of the internal variability is biased. According to Hingray et al. (2019), it is preferable to
use various run of the same climatic model to have a better estimation of the contribution of the
internal variability to the total variance. For the next investigation, even if the QE-ANOVA can be
carried out with only one run for each GCM/RCM couple, it is important to collect more members
available for each GCM/RCM, in order to improve the assessment of the internal variability.
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One step of the cascade of uncertainties that is not evaluated in this study is the downscaling method.
All the climatic projections were downscaled with the same methods, ADAMONT. For future works,
it is recommended to use multiple downscaling method to have di�erent factor levels for the QE-
ANOVA and assess the contribution of the downscaling step. However, users need to choose a down-
scaling method taking in account the characteristics of the catchment, and the stationary issues. For
example, to represent local event (e.g Cevenol events) the downscalling method need to take in ac-
count the topography. For the future investigations it is recommended to use di�erent downscaling
method, to analyse all uncertainty sources. Another limit of this study is the hydrological indicator
used to analyze the hydrological extremes. For future investigations, it is recommended to use a
multi-factorial de�nition, and consider the frequency, the magnitude and the duration of the hydro-
logical extremes (Collet et al., 2018).

The QE-ANOVA model used to quantify the contribution of each source of uncertainty has an im-
portant part of the total variance non-explained by the di�erent factors, it is the residual variance.
For the future investigations we have to test, the in�uence of the non-normality distribution of the
hydrological indicators, and the number of factor levels used in the QE-ANOVA. The QE-ANOVA
is driven with the rolling mean of hydrological indicators over 30-years to approach a normal dis-
tribution, but the normal distribution is not well reproduced, this implies to adapt the QE-ANOVA
procedure to deal with non-normality. The levels of factors are very di�erent: GCMs, RCMs, HMs
have each 3 levels (3 models), but calibration strategies have 29 levels, this is a di�erence of one
order of magnitude. This major di�erence can increase the interactions between factors and bias
the statistical analysis.

The study has brought new results with the use of innovative methods. The previous projections
on the Héraut River catchment, produced by Explore 2070 show di�erent results: for high-�ows
(Q05), the relative change in the future (2046-2065), was estimated to decrease by 7% (min: -38% to
max: +11%). In our study the trend is di�erent, the new projections show an increase of the mean
trend of high-�ow indicators (based on the upper 95th percentile), the increase is around 20% in
2060 (min: 0% to max: 40%) for RCP 4.5 and, 10% in 2060 (min: -10% to max: 30%) for RCP 8.5. For
low-�ows projections our study shows no robust change, +10% to -15% in 2060 for RCP 4.5 and for
RCP 8.5 +15% to -30%. Explore 2070 showed only -1% to -3%. The lower 10th percentile was used
in Explore 2070, whereas we chose the MMA7, which could explain part of the di�erences. But the
main di�erence is the methodology: Explore 2070 did not use RCPs, rather SRES, the ADAMONT
method used in our study was not available when Explore 2070 was conducted, and the hydrological
model used for the Héraut River basin is a physical based model ISBA-MODCOU. Finally Explore
2070 did not use the QE-ANOVA. This comparison highlights the di�erences in the hydrological
projections between Explore 2070 and our study, and these di�erences come from the methods and
the tools used. The technical improvement of tools and models did not reduce the uncertainties
on hydrological projections. However the use of the time of emergence, allowed us to compute
signi�cant impact on high-�ow for decision makers whereas it highlights the di�culties to have
clear conclusions for low-�ows due to the sensibility of the catchment.

The previous study which used the same method is described by Vidal et al. (2016), the authors used
the QE-ANOVA on the Durance River catchment, to study uncertainties on low-�ows projections.
They found a large contribution to the total uncertainties from the internal variability. But as ex-
plained above our estimation of the internal variability is biased due to the lack of available runs
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for a given GCM. They didn’t compute the part of uncertainties due to hydrological parameters,
while our results show that parameter sets can have a non-negligible contribution. But our results
are poorly signi�cant on low-fow projections, as the change signal has he same magnitude than the
noise. In the work of Vidal et al. (2016), they showed a decrease in yearly low-�ows of about 20%,
and their results are validated with the time of emergence analysis. The Héraut River catchment is
less sensible than the Durance River catchment, to climate change impact on low-�ows. An increase
of temperature on the Méditeranean basin does not have the same consequence than for an Alpine
water catchment. Our study highlights the di�erences in climate impact study due to the di�erent
hydrological processes in catchments.

6 Conclusion

This report described the methodology and the results of the new hydrological projections on the
extremes, for the Héraut River catchment. The methodology used in the study was built to partition
and to quantify the uncertainties on the projections, with the QE-ANOVA methodology.1) What is
the impact of CC on hydrological extremes in the Hérault River catchment using recent climatic
projections? The results show an increase in high-�ow in the future, which could increase the �ood
risk. The relative increase of high-�ow criterion is estimated to +5% to +70% at the end of the
century with the RCP 4.5. For RCP 8.5 the anomaly is estimated to +60% to -10%. However for the
low-�ows and the related drought risk no clear trend is drawn, an anomaly of -10% for the mean
trend with RCP 8.5, with large con�dence intervals (+15% to -35%, relative anomaly). 2) What is the
magnitude of uncertainties and where do they come from? High-�ow projections with the RCP 4.5
are signi�cant, but not robust with the RCP 8.5 as explained by the concept of time of emergence.
The uncertainty sources weight are changing over time, over scenarios, and between high or low-
�ows. For high-�ows evolution, HMs have a strong in�uence on the projections at the end on
century, whereas internal variability and GCMs/RCMs have a higher in�uence at the short lead
time. The contribution of uncertainty sources are di�erent for low-�ows, hydrological parameters
seem to have a non-negligible in�uence, as well for HMs, and GCMs/RCMs. The internal variability
presents poor contribution at the end of the century. 3) Can we draw conclusions for the decision
makers? These results can be useful for the stakeholders to implement hydrological risk adaptation
strategies, especially for high-�ows, if they based their decision only on the previous studies they
would not take into account the increase of high-�ows with the climate change. In order to accelerate
the adaptation to climate change, water managers need useful results, that include uncertainty, for
their di�erent managed basins.
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7 Appendix: additional �gures

Figure 24: Cumulative sum of daily anomaly in stream�ow compare to the monthly mean
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