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A C++-Python package is proposed for 3D mechanical simulations of granular geomaterials, seen as a collection of particles being in contact interaction one with another while showing complex grain shapes. Following the socalled Level Set-Discrete Element Method (LS-DEM), the simulation workflow stems from a discrete field for the signed distance function to every particle, with its zero-level set corresponding to a particle's surface. A Fast Marching Method is proposed to construct such a distance field for a wide class of surfaces. In connection with dedicated contact algorithms and Paraview visualization procedures, this shape description eventually extends the YADE platform for discrete simulations. Its versatility is illustrated on superquadric particles i.e. superellipsoids. On computational aspects, memory requirements possibly exceed one megabyte (MB) per particle when using a double numeric precision, and time costs, though also significant, appear to ˚Corresponding

Introduction

Geomaterials very often show a discrete nature which controls their solidlike strains or fluid-like strain rates while being under stress, e.g. granular soils. A proper description of that mechanical behavior is of interest to countless geo-engineering problems, e.g. the safe design of large rockfill dams [START_REF] Deluzarche | Discrete numerical modelling of rockfill dams[END_REF], possibly rising in the order of hundreds of meters after piling up decimetric pieces of rock, or the forecast of snow mechanical stability and avalanches [START_REF] Hagenmuller | Microstructure-based modeling of snow mechanics: a discrete element approach[END_REF]. Unlike the equivalent continuum descriptions classically used in engineering practice, numerical modelling approaches based on the Discrete Element Method (DEM, [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF] duly respect this granular nature by describing the time evolution of a discrete set of particles, the so-called Discrete Elements (DE), in mechanical interaction. While DEM approaches often serve for qualitative studies in discrete geomechanics (e.g. [START_REF] Guo | The signature of shear-induced anisotropy in granular media[END_REF][START_REF] Duriez | Revisiting the existence of an effective stress for wet granular soils with micromechanics[END_REF], they also are more and more often deployed for quantitative modelling (e.g. Aboul [START_REF] Aboul Hosn | Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction[END_REF], possibly in a multiscale framework where a DEM description of a Representative Elementary Volume eventually substitutes constitutive relations in a FEM-like model [START_REF] Miehe | Homogenization and two-scale simulations of granular materials for different microstructural constraints[END_REF][START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF].

On that quantitative point of view, the predictive abilities of DEM may appear as variable depending on the loading conditions [START_REF] Aboul Hosn | Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction[END_REF]. As a matter of fact, they certainly often suffer from a spherical shape assumption (adopted e.g. by [START_REF] Duriez | A discrete modeling-based constitutive relation for infilled rock joints[END_REF][START_REF] Guo | The signature of shear-induced anisotropy in granular media[END_REF][START_REF] Duriez | Revisiting the existence of an effective stress for wet granular soils with micromechanics[END_REF][START_REF] Aboul Hosn | Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction[END_REF], since such spheres constitute a very strong simplification of material particles while particle's shape has a known influence on the macroscopic behavior (e.g. [START_REF] Cho | Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands[END_REF]. Therefore, various DEM strategies towards a better shape description have been introduced, such as the use of rigid aggregates of spheres, so-called clumps, that should mimic real shapes (e.g. [START_REF] Garcia | A clustered overlapping sphere algorithm to represent real particles in discrete element modelling[END_REF][START_REF] Mede | A medial axis based method for irregular grain shape representation in DEM simulations[END_REF]; or the direct consideration of polyhedra (e.g. [START_REF] Eliáš | Simulation of railway ballast using crushable polyhedral particles[END_REF][START_REF] Gladkyy | DEM simulation of polyhedral particle cracking using a combined Mohr-Coulomb-Weibull failure criterion[END_REF].

Clumps offer the advantage to accommodate straightforward and computationally cheap contact algorithms designed for spheres, but still present some unrealistic local roundness. On the other hand, polyhedra resort to more complex algorithms, which still remain restricted, most often, to convex surfaces [START_REF] Dubois | Numerical modeling of granular media composed of polyhedral particles[END_REF]. One can also note the potential particles (PP) or potential blocks (PB) approaches by [START_REF] Houlsby | Potential particles: a method for modelling non-circular particles in DEM[END_REF]; [START_REF] Boon | A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method[END_REF][START_REF] Boon | A new contact detection algorithm for three-dimensional non-spherical particles[END_REF], which both describe particles' surfaces resorting to the zero-level of a so-called potential. Each scalar potential is given in a set of closed-form expressions with a variable number of shape parameters, leading to rounded (PP-case) or angular (PB-case) surfaces that are necessarily convex. Then, the so-called Level Set Discrete Element Method (LS-DEM) has been recently proposed by [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF], in 3D, as another DEM extension towards realistic shapes. In LS-DEM, and with a limited similarity to PP and PB approaches, every DE's surface is implicitly described as the zero-level set of the specific signed distance function to that surface. Contributing to its generality, no closed-form equation or convexity assumptions are required in LS-DEM since Level Set and Fast Marching Methods [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Level set methods and fast marching methods[END_REF] are available to construct distance fields for arbitrary, possibly concave, surfaces and a wide class of scientific applications (e.g. [START_REF] Yang | Assessing and visualizing uncertainty of 3D geological surfaces using level sets with stochastic motion[END_REF]. [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF][START_REF] Kawamoto | All you need is shape: Predicting shear banding in sand with LS-DEM[END_REF] actually illustrated the capabilities of the LS-DEM to describe real soil grains, shapes being acquired through X-ray computed tomography, as well as its promising features to reproduce observed behaviors both qualitatively and quantitatively.

The present contribution then proposes an independent and original implementation of LS-DEM into the existing YADE open-source platform ( Šmilauer et al., 2015), which is often used for geo-mechanical simulations (e.g. [START_REF] Duriez | A discrete modeling-based constitutive relation for infilled rock joints[END_REF][START_REF] Boon | A new contact detection algorithm for three-dimensional non-spherical particles[END_REF][START_REF] Duriez | Revisiting the existence of an effective stress for wet granular soils with micromechanics[END_REF][START_REF] Aboul Hosn | Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction[END_REF][START_REF] Pirnia | ICY: An interface between COMSOL multiphysics and discrete element code YADE for the modelling of porous media[END_REF]. Example usages are furthermore provided for complex, superquadric shapes, alongside discussing computational costs in comparison with the polyhedral shape description.

Section 2 first recalls Level Set and Fast Marching Methods serving to establish distance fields for arbitrary surfaces. Then, Section 3 describes how LS-DEM uses the particles' distance fields for DEM simulations of granular soils, usually following here the initial guidelines of [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF] or [START_REF] Duriez | Precision and computational costs of Level Set-Discrete Element Method (LS-DEM) with respect to DEM[END_REF]. An original LS-DEM code is proposed accordingly and summarized in Section 4. Section 5 and 6 present a direct application to non-spherical, superquadric, shapes with illustrative simulations and a computational comparison with the use of convex polyhedra.

Level Set and Fast Marching methods

Level set formalism

Level set approaches [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Sethian | Level set methods and fast marching methods[END_REF] see interfaces Sptq as the zero-level set of a function φ t p x, tq being defined from R d ˆR into R, with R d covering the whole space of a d dimensionnality.

Evolving contours (resp. surfaces) can then be described for d " 2 (resp.

d " 3). While the interfaces evolve, propagating with a normal velocity v " F p x, tq n (where n stands for the outwards normal), all level sets evolve with an extended velocity parallel to the gradient of the level set function φ t p x, tq. Since φ t p x, tq is constant along Sptq (equal to 0 @t), the nullity of the material derivative along the interface front leads to the following level set equation:

Bφ t Bt `F || ∇φ t || " 0 (1) 
Eq. ( 1) conforms the formalism of Hamilton-Jacobi partial derivative equations [START_REF] Osher | Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations[END_REF], with the Hamiltonian H t , as a function of the spatial derivative(s) of φ t , being equal to:

H t pφ t x q " F |φ t x | for d " 1 (2) H t pφ t x , φ t y q " F b φ t x 2 `φt y 2 for d " 2 (3) 
H t pφ t x , φ t y , φ t z q " F b φ t x 2 `φt y 2 `φt z 2 for d " 3 (4) 
where f x , f y , f z stand for the spatial derivatives of any scalar function f with respect to x, y, z.

The signed (shortest) distance to Sptq is a typical choice for the function φ t , with the convention of a negative, resp. positive, distance when being inside, resp. outside, of Sptq. Doing so, and for a constant and uniform speed F p x, tq " F , one can relate φ t to T p xq, the arrival time of S at x:

φ t p x, tq " F pT p xq ´tq (5) 
Inserting Eq. ( 5) into the level set equation ( 1), one easily re-obtains the so-called Eikonal equation:

F || ∇T || " 1 (6)
With respect to the use of φ t and the level set Eq. ( 1), the consideration of T and the Eikonal Eq. ( 6) forms another description of evolving interfaces, adapted to the case of a constant and uniform sign for the normal velocity.

Doing so, the current interface Sptq is the t-level set of T and no time variable enters the partial differential equation ( 6). That stationary perspective can be finally complemented by the consideration of φp xq, the distance to Spt " 0q:

φp xq " φ t p x, 0q " F T p xq (7)
with the following form for the Eikonal equation:

|| ∇φ|| " 1 ô Hpφ x , ..q " 1 (8)
Similar to Eqs. ( 1)-( 4), Eq. ( 8) can be cast in the form of a Hamiltonian Hpφ x , ..q " 1 with:

Hpφ x q " |φ x | for d " 1 (9) Hpφ x , φ y q " b φ x 2 `φy 2 for d " 2 (10) Hpφ x , φ y , φ z q " b φ x 2 `φy 2 `φz 2 for d " 3 (11)

A Fast Marching Method for the stationary perspective

Looking for the distance field φ to a given, constant, surface S, the Eikonal equation ( 8) can be efficiently solved using a so-called Fast Marching Method (FMM, [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF][START_REF] Sethian | Level set methods and fast marching methods[END_REF]. Space being discretized on a grid, the Eikonal equation makes the φ-value at some gridpoint x i being directly dependent upon surrounding φ-values at adjacent gridpoints, as can be seen from finite difference expressions for the spatial derivatives in Eqs. ( 9) to (11). Accounting for the monotonous nature of φ, which strictly increases (in absolute value) when x goes away of S, the FMM eventually gives the full discrete field φp x i q starting from an initial set of gridpoints being along, or close to, the surface and serving as boundary conditions. In more details, the FMM recursively applies Eq. ( 8), in the form of Eqs. ( 9) or (10) or (11) depending on gradient's dimensionnality, and adopting gradient expressions decentred to low and known φ-values. Recursive applications actually go in a downwind direction away from the surface, until the whole spatial grid has been handled. The key point of the FMM is to go through the grid points in the right order, following at each step the minimal value of distance.

The FMM for instance directly applies to any surface S showing a scalar inside/outside function f p xq, being positive (resp. negative) for x located outside (resp. inside) the surface and null along the surface. In such a case, boundary conditions gridpoints are easily identified as all gridpoints being outside of the surface and having a grid neighbor inside and they can be assigned the following φ-value:

φp xq " f p xq || ∇f p xq|| for x close to S (12) 
By construction, Eq. ( 12) is a first order approximation to φ, obviously obeying φ " 0 along S and also verifying the Eikonal equation ( 8) close to S, provided that ∇p1{|| ∇f ||q is finite. This constitutes the initialization of the distance function on the grid points close to the interface, before applying the recursive operations of the FMM.

Figure 1 illustrates the distance output of such a FMM procedure, herein implemented in a DistFMM C++ class presented in Section 4.1, when applied to the following "flake-like" inside/outside function:

f p xq " r ´rR `∆R sinp5θq sinp4ϕqs (13) 
In Eq. ( 13), pr, θ, ϕq refer to spherical coordinates with θ P r0; πs measured from z axis and ϕ P r0; 2πs measured in ( x, y) plane.

LS-DEM formulation

For any DEM mechanical simulation to progress in time, it is first necessary to describe the shapes of the bodies, i.e. DEs, and detect their pos- 13), with pR; ∆Rq " p3; 1.5q, after executing a FMM on a 0.1-spaced isotropic grid sible contact interactions with neighbors. Then, contact-scale constitutive relationships express forces and torques so that rigid motion equations can finally be integrated. The following sections detail these three steps.

LS-DEM shape description

Following [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF][START_REF] Kawamoto | All you need is shape: Predicting shear banding in sand with LS-DEM[END_REF], a discrete signed distance field on a body-centered regular grid, possibly obtained from the previous FMM, is the first LS-DEM ingredient. That (grid ; distance field) pair is independently defined for every DE in a local coordinate system and first serves for defining the DE inertial quantities (mass m and inertia matrix I " I αβ , α, β P tx, y, zu) summing contributions from grid voxels v making up the body's volume V as per the following discrete-form equations:

m " ρ ÿ vPV V v " ρ N vox V v (14) 
x "

1 N vox ÿ vPV x v (15) 
I xx " ρ ÿ vPV " py v ´yq 2 `pz v ´zq 2 ‰ V v ( 16 
)
I yy " ρ ÿ vPV " px v ´xq 2 `pz v ´zq 2 ‰ V v ( 17 
)
I zz " ρ ÿ vPV " px v ´xq 2 `py v ´yq 2 ‰ V v ( 18 
)
I xy " ´ρ ÿ vPV px v ´xq ˆpy v ´yqV v ( 19 
)
I xz " ´ρ ÿ vPV px v ´xq ˆpz v ´zqV v (20) 
I yz " ´ρ ÿ vPV py v ´yq ˆpz v ´zqV v (21) 
In the above equations, ρ is the material mass density, x v " px v , y v , z v q the middle point of a voxel and x " px, y, zq the body's center of mass. Eqs.

(15),( 19)-( 21) serve for verification purposes since the body-attached local frame is expected to be inertial and x, I xy , I xz , I yz to be nil. By a simple convention, a grid voxel v of volume V v is herein said to be part of the body's volume V when its lowest corner is inside the surface, showing a zero or negative distance value. While smoother choices have been proposed by [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF][START_REF] Kawamoto | All you need is shape: Predicting shear banding in sand with LS-DEM[END_REF], it will be verified in Section 5.2 that the present choice does not inhibit precision for grids being fine enough, i.e. showing a spacing g grid at least ten times smaller than a grain's characteristic size l grain .

For the purpose of LS-DEM contact algorithms that will be described in Section 3.2 below, a second LS-DEM ingredient adds to the distance field, in the form of a set of N n boundary nodes tN i , i P r0; N n ´1su discretizing each body's surface S. Generally speaking, boundary nodes should count in the order of thousands and their positions are defined at the intersection of S i.e.

φp xq " 0 and N n half-lines i.e. rays λ v, with v a direction and λ a positive abscissa, that stem from the center of mass. Due to the adopted tri-linear interpolation of the discrete distance field within the grid extents, φp x " λ vq is a cubic polynomial in λ whose coefficients depend upon grid distance values and ray tracing boundary nodes corresponds to solve its positive roots (see e.g. [START_REF] Lin | An efficient volume-rendering algorithm with an analytic approach[END_REF]. Since rays should provide an appropriate discretization of spherical angles pθ, ϕq, the corresponding directions pθ, ϕq are chosen to follow a spiral path instead of a simple rectangular discretization of r0; πs ˆr0; 2πs in order to avoid a possible (shape-dependent) concentration of nodes at the poles θ " 0rπs. More details about the spiral path or the choice of boundary nodes number are given by [START_REF] Duriez | Precision and computational costs of Level Set-Discrete Element Method (LS-DEM) with respect to DEM[END_REF] and in the next sections. 

Contact law

From the distance fields and the set of boundary nodes, contact detection between two bodies 1 and 2 relies on a master-slave algorithm whereby nodes N 1 i of body 1 are tested in the distance field φ 2 of body 2 (see also Figure 9). In order to increase precision, the body 1 is chosen as the smallest one in volume, which enables one to explore distance fields with the greatest surface density in nodes. Contact is detected as soon as one node N 1 i verifies φ 2 pN 1 i q ď 0. LS-DEM belongs to the wide class of "soft" DEM whereby small overlaps, φ 2 pN 1 i q ă 0, are possible: these overlaps would in reality materialize through slight changes in shape which are neglected in soft DEM approaches. After identifying the set of contacting boundary nodes, a unique contact point is herein chosen from the node N c showing the greatest interpenetration depth u n , which also gives the contact normal as the local gradient of φ 1 :

u n " ´minpφ 2 p Ý Ý Ñ ON i q, Ý Ý Ñ ON i P S 1 q " ´φ2 p ÝÝÑ ON c q ě 0 (22) n " ∇φ 1 p ÝÝÑ ON c q (23)
That final consideration of a unique contacting point, also adopted by [START_REF] Li | Capturing the inter-particle force distribution in granular material using LS-DEM[END_REF], currently restricts the proposed LS-DEM implementation to convex shapes. For a pair of contacting bodies with concave shapes, multiple contact points would occur but these could be easily detected with the same master-slave algorithm. As such, [START_REF] Kawamoto | Level set discrete element method for three-dimensional computations with triaxial case study[END_REF][START_REF] Kawamoto | All you need is shape: Predicting shear banding in sand with LS-DEM[END_REF]) also addressed concave shapes by defining a mechanical interaction at each contacting boundary node. While being more general, this choice nevertheless poses the risk to make the macroscopic behavior, e.g. the bulk stiffness, to directly depend upon the chosen number of boundary nodes in case a physically unique contact area would involve more than one boundary node.

A classical contact law for cohesionless materials finally expresses the interaction force after decomposing the latter in a normal, along n, and a tangential component. A repulsive normal force F n first arises due to the interpenetration depth u n , as per a linear elastic model with a k n stiffness:

F n " k n u n n (24)
Along the tangential direction, a linear elastic-plastic relationship governs the shear force variations. Denoting k t the shear stiffness and µ the friction coefficient, the following Eqs. ( 25)-( 26) describe the variations of the shear force F t , starting from 0:

d F t " d ˜|| F t || F t || F t || ¸" || F t ||d ˜ F t || F t || ¸`dp|| F t ||q F t || F t || (25) dp|| F t ||q F t || F t || " k t d u t enforcing || F t || ď µ|| F n || (26) 
while updates in the shear force direction, F t {|| F t ||, are applied in order to follow changes in the tangent plane's orientation, e.g. a change in contact normal ( Šmilauer et al., 2015).

Motion integration

As for general DEM, the translation and rotation of each DE in space, under resultant force F and torque Γ (computed at the center of mass), finally follow Newton-Euler equations for rigid bodies with v and ω the linear and angular velocities:

m d v dt " p1 ˘Dq F (27) I d ω dt ` ω ^I ω " p1 ˘Dq Γ (28)
The above Newton-Euler equations are classically damped using a numerical coefficient D, which modifies the resultant force and torque so that kinetic energy always decreases (or is led to increase by a smaller extent) as soon as F ‰ 0. Eq. ( 28), relating the variation in ω with Γ, is expressed in local axes where the inertia tensor I is constant. Denoting Rptq the rotation matrix passing from local axes to global ones, and Ω the antisymmetric matrix such that Ω x " ω ^ x, @ x, Eq. ( 28) is finally supplemented with:

dR dt " R Ω (29)
These equations ( 27)-( 29) are then integrated over the time steps through an explicit algorithm common to any non-spherical shape in YADE ( Šmilauer et al., 2015).

Proposed implementation

Source code

The present C++ and Python implementation inserts LS-DEM into the 2020.01a version, i.e. the git commit 9964f53, of the YADE platform ( Šmilauer et al., 2015). Figure 3 Boost.Math library is adopted for this purpose, being preferred over canonical formulae for numerical stability. Moreover, the distance cubic polynomial Set of Discrete Elements is first turned dimensionless (with respect to the grid spacing) for the relative magnitude of its coefficients to be unaffected by the unit system, insuring a constant behavior of the root finding algorithm whatever the user's choice in this aspect. It is recalled the distance field, its grid and the boundary nodes all refer to a reference local (inertial) frame for each particle.
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Explicit motion integration

The distance field at the heart of the shape descriptor can be directly In the end, the set of kinematic variables for a LS-DEM interaction is equivalent in nature to those used for spheres in general DEM and it can be stored in the existing ScGeom class. Constitutive properties k n , k t and µ also correspond to the pre-existing FrictPhys contact model in YADE. This enables LS-DEM simulations to adopt a pre-existing contact law, namely

Law2 ScGeom FrictPhys CundallStrack. Motion integration as described in previous Section 3.3 has also been readily available from the NewtonIntegrator class.

Code usage

The (modified or classical) YADE platform starts in the form of a Python3 interactive interface, invoked from install/bin/yadelevelSet in the proposed installation procedure (see the "Computer code availability" section).

Instead of an interactive session, scripts prepared beforehand can be as The latter enables users to directly insert any distance field they would have otherwise acquired, for instance from computed tomography [START_REF] Vlahinić | Towards a more accurate characterization of granular media: extracting quantitative descriptors from tomographic images[END_REF]. In all cases, grid spacing g grid is input through a spacing attribute while a nNodes attribute of levelSetBody() controls the boundary nodes number N n .

Documentation can be obtained for any class or attribute in the usual interactive Python manner, typing e.g. LevelSet? or levelSetBody?. An HTML version of the documentation can also be built executing make doc from the compilation folder.

Code validation

The implementation is first validated for what concerns the FMM in DistFMM class. Applying the procedure on a sphere of radius R with a known distance field φ th p xq " r ´R, numerical precision can be quantified, looking e.g. at the average relative error on all gridpoints (excluding those with φ th " 0) or at the relative error at the center, as follows:

err avg " average ˆ"ˇˇˇˇφ p x i q ´φth p x i q φ th p x i q ˇˇˇ, x i | φ th p x i q ‰ 0 *˙( 30) err ctr " minpφq `R R (31) 
Considering Eq. ( 30), another average error is also analyzed for the more complex flake-like shape previously presented in Figure 1. While no exact distance field is known for such a surface, one could attempt a reconstruction of its inside/outside function f , Eq. ( 13), solving another variant of the Eikonal equation, with a non-unit speed, i.e.:

|| ∇φ|| " || ∇f || (32) 
By initializing the FMM, close to S, with values of f : φp x i q " f p x i q and solving for Eq. ( 32), one should indeed await φ th " f as an exact solution.

For these two examples of a FMM application, Figure 4 illustrates how the FMM results approach their respective φ th with a decreasing grid spacing g grid i.e. an increasing grid resolution r g " 2R{g grid . While the precision is somewhat worse for the flake-like surface, in line with an increasing complexity of the problem, it always linearly scales with the grid resolution, in accordance with the first order expression of ∇φ in the numerical method. GHz. Denoting N gp the total number of gridpoints, with N gp " Opr g 3 q, a Opr g 6 q " OpN gp 2 q complexity appears, in accordance with classical Level Set Methods. [START_REF] Sethian | A fast marching level set method for monotonically advancing fronts[END_REF] actually proposed a lighter complexity for the FMM, through adopting a heap sort when searching the minimum φ-value for propagating the distance field. For the purpose of LS-DEM, the FMM will apply only once per DE, at the very beginning of a simulation and the present time cost in the order of a second for few tens of grid voxel per particle length is actually acceptable, considering the final time cost of a complete LS-DEM simulation. Figure 5 finally illustrates that the FMM computation of distance for the more complex, non-spherical, flake-like shape logically shows the same time costs. nodes are appropriately chosen [START_REF] Duriez | Level set representation on octree for granular material with arbitrary grain shape[END_REF][START_REF] Duriez | Precision and computational costs of Level Set-Discrete Element Method (LS-DEM) with respect to DEM[END_REF].

A direct application of LS-DEM to superquadric shapes

The versatility of LS-DEM to address complex shapes is now illustrated on superellipsoids, also known as superquadric ellipsoids. These surfaces are first presented from an analytical point of view before that their LS-DEM description is introduced with its corresponding precision and eventually compared with the possible use of convex polyhedra.

Superellipsoids surfaces

Superellipsoids [START_REF] Barr | Superquadrics and angle-preserving transformations[END_REF][START_REF] Barr | Rigid physically based superquadrics[END_REF] form a versatile class of surfaces which can be used as more complex shape models of granular soils (see e.g. [START_REF] Wang | Superellipsoid-based study on reproducing 3D particle geometry from 2D projections[END_REF]. They generalize ellipsoids through two additional exponents ǫ e and ǫ n that enter their surface equation together with three different radii r x , r y , r z . In a local frame, the surface equation namely reads:

f px, y, zq " ˜ˇˇˇx r x ˇˇˇ2 ǫe `ˇˇˇy r y ˇˇˇ2 ǫe ¸ǫe ǫn `ˇˇˇz r z ˇˇˇ2 ǫn ´1 " 0 (33)
Figure 6 illustrates five different superellipsoids, with their corresponding shape parameters presented in Table 1. Table 2 also details their volume and inertia properties, as obtained from closed form expressions given by [START_REF] Barr | Rigid physically based superquadrics[END_REF]. One can here observe how the ǫ n exponent modifies the z-variation of cross-sections in px, yq planes. For instance, adopting ǫ n Ñ 0 induces fairly constant cross-sections and a wider distribution of matter for extreme values along the "north-south" axis z, see Shapes A or C. On the other hand, the ǫ n " 1 case corresponds to a rounded variation of these cross sections when progressing along z (Shape B). Some singularity, i.e. a sharpness at z " 0, would appear for ǫ n ě 2, alongside concavity in a plane tangent to z for ǫ n ą 2. For a given ǫ n , ǫ e controls the contour's roundness in the px, yq plane of these cross-sections. While ǫ e " 1 corresponds to perfectly round (circles or ellipses) contours, decreasing ǫ e towards 0 induce edges that tend to align with the x and y axes, see Shape A vs C. Alternate edges and sharpnesses would be obtained in the px, yq plane at ǫ e " 2, just before concavity in that plane, for ǫ e ą 2.

LS-DEM description of superellipsoids

Previous DEM descriptions of superellipsoids have already been proposed

by [START_REF] Podlozhnyuk | Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework[END_REF] or [START_REF] Weinhart | Fast, flexible particle simulations -an introduction to MercuryDPM[END_REF], for instance. In those [START_REF] Barr | Rigid physically based superquadrics[END_REF] studies, contact detection involves a minimization procedure that endows the shape equation ( 33) with an approximated distance nature, following the potential approach by [START_REF] Houlsby | Potential particles: a method for modelling non-circular particles in DEM[END_REF]. Such a minimization is then performed by an iterative numerical method, at each DEM iteration. On the other hand, the generic workflow of LS-DEM is herein proposed to directly apply to superquadrics, considering true distance quantities and avoiding the need for an iterative procedure, outside the consideration of boundary nodes.

The LS-DEM description of a superellipsoid particle nevertheless logically shows a finite precision, with for instance the inertial quantities depending on the chosen resolution for the grid carrying φ, as per the above Section 3.1.

Quantifying now the grid resolution as r g " 2 minpr x , r y , r z q{g grid , Figure 7 then compares the obtained LS-DEM volume with the expected volume presented in Table 2. It shows that using at least ten grid cells per particle's length leads to satisfactory results with an error on the volume being smaller than few %. A similar precision is achieved for inertia components, as shown in Figure 15 in the Appendix. While this analysis is merely geometric in nature, a direct connection between errors in describing particles' volumes and bias in mechanical results was proposed by [START_REF] Mede | A medial axis based method for irregular grain shape representation in DEM simulations[END_REF] when using clumps.

The influence of grid spacing on inertial quantities directly relates to the voxellised nature of the present description of particle's volume, in connection with the sign of discrete φ-values φp x i q. Section 4.3 previously illustrated how the grid spacing also affects the precision in the actual values of those, after solving through a FMM the Eikonal equation. A last impact of grid spacing onto the LS-DEM precision exists through the tri-linear interpolation used to evaluate distance at any location other than a gridpoint, such as a boundary node for the purpose of contact detection. From the present and past results (Duriez and Galusinski, 2020; Duriez and Bonelli, 2021), using r g in the order of few tens (10 to 50) appears to be an adequate compromise between precision and computational (memory) costs, on all aspects.

Time costs in comparison with convex polyhedra

LS-DEM time costs are now briefly illustrated in comparison with the use of convex polyhedra as initially implemented in the YADE platform by [START_REF] Eliáš | Simulation of railway ballast using crushable polyhedral particles[END_REF]. Describing such Polyhedra shapes in YADE relies on the CGAL library, used here in its 4.11 version [START_REF] Kettner | 3D polyhedral surface[END_REF]. That external library determines for instance a possible overlapping volume between two convex polyhedra for the purpose of contact treatment.

Such shapes may actually also apply to the present five superellipsoids, after locating the polyhedra's vertices along the superquadric surface. Previously determined LS-DEM boundary nodes (with r g " 50) can be used for such a purpose. These vertices, through their connecting edges and plane portions (facets) making the polyhedra's surface, govern the precision in describing a superellipsoid shape even though, by the present construction, the obtained particles volumes are always smaller than the exact volumes of the considered (convex) superellipsoids. Figure 8 illustrates how the number of vertices controls the obtained volume and the necessity to use hundreds of polyhedra vertices in order to limit the error on the volume below few %. to a greater precision. As for the use of convex polyhedra, the corresponding time cost appears as proportional to N v 1.7 , then close to OpN v 2 q. With N v being checked to be itself proportional to the number of edges, N e , or planar facets, N f , making up each polyhedral surface, this OpN v 2 q " OpN e 2 q time complexity is actually consistent with the consideration of all possible edge pairs adopted by [START_REF] Eliáš | Simulation of railway ballast using crushable polyhedral particles[END_REF] for that contact algorithm. Mostly, the polyhedral time cost is several orders of magnitude higher than its LS-DEM counterpart for N n " N v . In spite of the incomplete equivalence between N n and N v , these important differences in time costs clearly suggest LS-DEM might be lighter to use in terms of time, especially if a high fidelity is desired at the particle scale since this would here require hundreds of polyhedra vertices (Figure 8). 

Results

After executing 56 000 DEM iterations over 1.4 s of model time, a final equilibrium state can be observed in Figure 12, for what concerns the average coordination number z c or the vertical load exerted on the ground wall F , compared in a F rel ratio with the expected weight F th that corresponds to the theoretical solid volumes of all particles (Table 2):

F rel " F ρ|| g|| n DE ř i"1 V th piq (34) 
In this illustrative simulation, most dissipation of the initial gravitational energy is artificial, coming from the numerical damping mentioned in the above Section 3.3 used with D " 0.3. here appears as optimal since finer particle descriptions eventually lead to the same results though with higher computational costs, as discussed in the following. 4. It is to note though that those memory requirements could be reduced in the future, adopting octree structures to carry the distance field instead of regular grids [START_REF] Duriez | Level set representation on octree for granular material with arbitrary grain shape[END_REF]. Table 4: Total (whole simulation) RAM usage for the discharge simulations of Figure 12 lighter LS-DEM costs with respect to polyhedra, even though those costs would logically be even more reduced with ideal spherical shapes [START_REF] Duriez | Precision and computational costs of Level Set-Discrete Element Method (LS-DEM) with respect to DEM[END_REF]. Time costs can anyway be significantly decreased using simple OpenMP parallel computing in a shared memory paradigm. Doing so, loops over interactions (for contact treatment in InteractionLoop) or bodies (for motion integration in NewtonIntegrator) are split into different OpenMP threads which are simultaneously executed by different CPU cores. With respect to the sequential case, additional supervisory operations become necessary in order to avoid simultaneous access to the same variable in memory from different threads. Nevertheless, OpenMP execution of the present discharge simulation, using the optimal choices r g " 20 and

N n " 2000, appears as very beneficial, with a significant, linear and nearly optimal, speedup as depicted in Figure 14. Speedup is here measured repeating 3 times each parallel execution as well as the sequential one, on a server machine with two Intel Xeon Platinum 8270, 2.7 GHz, processors with 26 cores and 36 MB of cache memory each, i.e. a total of 52 cores and 104 threads, together with 1.5 TB 2.9 GHz RAM. From all these simulations, 9

parallel / sequential timing ratios are computed and depicted in Figure 14 through their average and standard deviation. cmake,g++,boost,Qt,freeglut3,libQGLViewer,eigen,gdb,sqlite3,Loki, 

  Figure1: Level Set description of a flake-like surface defined by Eq. (13), with pR; ∆Rq "

Figure 2 :

 2 Figure 2: Shape description in LS-DEM: a regular grid t x G u carrying the distance field φ, together with boundary nodes tN i u (2D view for clarity)

  illustrates the LS-DEM workflow exposed in the previous section together with the most noticeable new (or modified) C++ classes responsible for execution. Looking from the lsYade root folder of the proposed source code, the files pkg/dem/LevelSet.*pp introduce the new shape descriptor LevelSet. That class includes the discrete distance field as a LevelSet.distField attribute. The regular grid carrying the distance field is LevelSet.lsGrid, which is an instance of the RegularGrid class. Boundary nodes are stored in Lev-elSet.boundNodes and computed (once, at the beginning of a simulation) solving for cubic roots during the ray tracing procedure mentioned in the above Section 3.1. A Newton-Raphson algorithm proposed by the external

Figure 3 :

 3 Figure 3: New or modified C++ classes for a LS-DEM workflow in YADE

  passed from the user (see next section) or also obtained from the Fast Marching Method proposed in DistFMM class. In the latter case, DistFMM.phi() is to execute once the grid and the boundary conditions are defined as grid and phiIni class attributes, respectively. Various predefined functions are proposed to build appropriate boundary conditions expected in phiIni. In addition to a distIniSE function intended to compute the distance to superquadric shapes detailed in Section 5.1, a versatile PhiIniPy function may be based upon any user-defined Python function that discriminates between the inside and the outside of a surface and outputs boundary condition values for the FMM, such as shown in Figure 1. Visualization of LevelSet-shaped bodies relies on vtk exports of the discrete distance field for each DE in current configuration, thanks to a modified version of files pkg/dem/VTKRecorder.*pp. Actual display is typically done from Paraview software (Ayachit, 2019), using its Python interface and a provided pvVisu function defined in examples/levelSet/pvVisu.py. For the purpose of alternate vizualisation methods at the user's discretion, a Lev-elSet.marchingCubes method is also available from YADE interface and gives a triangulated description of a particle's surface as per the Marching Cubes algorithm (Lorensen and Cline, 1987). The files pkg/dem/LevelSetInteraction.*pp finally implement the contact algorithms described in previous Section 3.2. The Bo1 LevelSet Aabb is first responsible to compute an axis-aligned bounding box (Aabb) used in YADE for a first, crude and fast, detection of possible contacts. At the beginning of a simulation, that class first loops over the whole distance field to compute the 8 corners of the corresponding Aabb in local axes, stored in LevelSet.corners. Then, the current Aabb in model (global) axes is easily determined following rigid transformations. In case of overlap between Aabb, precise contact detection subsequently resorts to the other class Ig2 -LevelSet LevelSet ScGeom, that implements the master-slave contact detection based on boundary nodes, identifying the contact point, if any, and the associated kinematic variables (normal vector, interpenetration depth) between two LevelSet-shaped bodies. Similar classes enable contact interaction between a LevelSet-shaped body and existing Wall or Box shapes, often adopted in YADE to simulate rigid boundaries.

  well passed as argument and launched in the same manner than classical Python scripts. Examples of YADE scripts using the new LS-DEM features can be found in the source code at lsYade/examples/levelSet/*.py (levelSetBody.py in particular) and also lsYade/scripts/checks-andtests/checks/checkLSdem.py. The latter actually serves as a new regression test into the YADE platform (Haustein et al., 2017), to insure stability of the LS-DEM features in the future. These examples illustrate the definition of LevelSet bodies through a new levelSetBody() YADE function. That function proposes level set descriptions of pre-defined analytical shapes (from boxes and spheres to superellipsoids, see next Section 5), together with the possibility of a direct assignment of the regular grid with its distance field.

  Figure 4: Influence of the grid resolution on the FMM precision, with reference to spherical or flake-like (Figure 1) surfaces
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 5 Figure 5: Time cost of the FMM according to the number of gridpoints per space axis 3 a N gp , with N gp the total number
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 6 Figure 6: Five possible superquadric shapes
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 7 Figure 7: LS-DEM precision in describing superellipsoid volumes, with reference to Figure 6

Figure 8 :

 8 Figure 8: Precision in describing superellipsoid volumes when using convex polyhedra, with reference to Figure 6

Figure 9 :Figure 10 :

 910 Figure 9: Two contacting superellipsoids described using LS-DEM (left, with 51 boundary nodes) or convex polyhedra (right, with 107 vertices per body)

  of LS-DEM is proposed in examples/levelSet/discharge.py as the discharge under gravity ( g " ´g z, with g " 9.8m/s 2 ) and into a rigid container (L x ˆLy ˆLz " 0.25 2 ˆ8 m 3 ) of n DE " 1000 superellipsoids with equal proportions of the previous five shapes A to E (Figure11). Similar dynamic simulations could serve to study rock falls and slides up to an obstacle, or the angle of repose of granular geomaterials conveyed in industrial processes.

Figure 11 :

 11 Figure 11: Views of the initial cloud of superellipsoids (left: in whole, right: close-up), with lateral and ground walls of the container not shown

Figure 12

 12 Figure 12 also illustrates the possible influence of LS-DEM discretization parameters N n and r g . Using just N n " 50 boundary nodes, together with r g " 20, for instance prevents stabilization because contacts are hardly detected and too easily lost. On the other hand, choosing pr g " 20; N n " 2000q

Figure 12 :

 12 Figure 12: Dynamics of the discharge illustration (with only a fraction of datapoints for the r g " 20; N n " 50 case on (b), for readability)

Figure 13 :

 13 Figure 13: LS-DEM memory requirements per discrete element definition. Each data point is obtained from a different discharge simulation. The planar fit is colored according to memory (also on the z-axis) and is obtained after bilinear regression, following the expression a ˆNgp `b ˆNn with a " 0.0841 ˆ10 ´4 MB and b " 0.2637 ˆ10 ´4 MB
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 14 Figure 14: OpenMP scalability of the LS-DEM discharge simulation for r g " 20 and N n " 2000. Sequential time cost is 28696 s ˘106 s (« 8 h) from average and standard deviation on 3 runs, being reduced to 392 s ˘5 s (« 6.5 min) using 100 CPU cores
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 15 Figure 15: LS-DEM precision in describing inertia components for the five superellipsoids of Figure 6

Table 1 :

 1 Shape parameters of the five superellipsoids shown in Figure6

	Shape Half-extents (cm) Curvature exponents
		r x	r y	r z	ǫ e	ǫ n
	A	0.58 1	0.83 0.1	0.5
	B	0.42 1	0.83 0.1	1
	C	same as Shape B	1	0.5
	D	0.5 0.7	1	1.4	1.2
	E	0.4	1	0.8	0.4	1.6
	Shape Volume (cm 3 ) Inertia components (cm 5 )
			V th	I th xx {ρ	I th yy {ρ	I th zz {ρ
	A		3.353	1.649 0.9751	1.358
	B		1.852	0.7456 0.3417 0.5770
	C		1.914	0.7996 0.4389 0.5153
	D		1.093	0.2773 0.2350 0.1304
	E		1.086	0.1283 0.3184 0.2625
	Table 2: Geometric properties of the considered superellipsoid shapes. Inertia
	components are obtained following		

Table 3

 3 

	lists the simulation's parameters, with

Table 3 :

 3 LS-DEM parameters for the discharge simulation
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method, be it in terms of memory or execution time. Time costs are nevertheless beneficial with respect to a polyhedral description of complex shapes, as already available in YADE, and they can be furthermore reduced through OpenMP parallel computing with a significant speed-up. As for the memory requirements, these could also decrease in the future using a more appropriate data structure than the current regular grid [START_REF] Duriez | Level set representation on octree for granular material with arbitrary grain shape[END_REF].

Perspectives lie in user-friendly LS-DEM simulations in YADE for multiscale investigations in granular mechanics. A particular multiscale avenue is formed by the hierarchical modelling approaches where the DEM serves as an alternative to phenomenological (e.g. elasto-pastic) stress-strain constitutive relations in structure-scale FEM simulations (e.g. [START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF].

Appendix

Confirming the analysis made on volumes in Section 5.2 (Figure 7), Figure 15 illustrates how LS-DEM achieves to describe inertia components of superellipsoids with a very good precision, provided the grid resolution is fine enough i.e. includes more than 10 grid voxels per particle length.
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