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Disease outbreaks are a major threat to the aquaculture industry, and can be
controlled by selective breeding. With the development of high-throughput genotyping
technologies, genomic selection may become accessible even in minor species. Training
population size and marker density are among the main drivers of the prediction
accuracy, which both have a high impact on the cost of genomic selection. In this study,
we assessed the impact of training population size as well as marker density on the
prediction accuracy of disease resistance traits in European sea bass (Dicentrarchus
labrax) and gilthead sea bream (Sparus aurata). We performed a challenge to nervous
necrosis virus (NNV) in two sea bass cohorts, a challenge to Vibrio harveyi in one sea
bass cohort and a challenge to Photobacterium damselae subsp. piscicida in one sea
bream cohort. Challenged individuals were genotyped on 57K–60K SNP chips. Markers
were sampled to design virtual SNP chips of 1K, 3K, 6K, and 10K markers. Similarly,
challenged individuals were randomly sampled to vary training population size from
50 to 800 individuals. The accuracy of genomic-based (GBLUP model) and pedigree-
based estimated breeding values (EBV) (PBLUP model) was computed for each training
population size using Monte-Carlo cross-validation. Genomic-based breeding values
were also computed using the virtual chips to study the effect of marker density.
For resistance to Viral Nervous Necrosis (VNN), as one major QTL was detected, the
opportunity of marker-assisted selection was investigated by adding a QTL effect in
both genomic and pedigree prediction models. As training population size increased,
accuracy increased to reach values in range of 0.51–0.65 for full density chips. The
accuracy could still increase with more individuals in the training population as the
accuracy plateau was not reached. When using only the 6K density chip, accuracy
reached at least 90% of that obtained with the full density chip. Adding the QTL effect
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increased the accuracy of the PBLUP model to values higher than the GBLUP model
without the QTL effect. This work sets a framework for the practical implementation of
genomic selection to improve the resistance to major diseases in European sea bass
and gilthead sea bream.

Keywords: genomic selection, dicentrarchus labrax, Sparus aurata, disease resistance, aquaculture

INTRODUCTION

Viral and bacterial infectious diseases are a major threat to
the development of aquaculture production (Gjedrem, 2015).
In the Mediterranean Sea, fish culture is mainly focused
on European sea bass (Dicentrarchus labrax) and gilthead
sea bream (Sparus aurata) with a production of 157,000
and 160,000 tons, respectively in 2016 (FEAP, 2017). Viral
Nervous Necrosis (VNN) caused by the nervous necrosis virus
(NNV), vibriosis caused by Vibrio harveyi and pasteurellosis
due to Photobacterium damselae subsp. piscicida are considered
the most impacting diseases for Mediterranean aquaculture
(Vendramin et al., 2016). They cause high mortality in
aquaculture farms and both prophylaxis and therapeutics
remain insufficient to control outbreaks.

Selective breeding to improve the genetic resistance to those
pathogens is a promising approach to prevent outbreaks. It has
been successfully applied in many aquaculture species and led
to a genetic gain of 12.5% in disease resistance per generation
on average over a number of host–pathogen pairs (Gjedrem and
Robinson, 2014). To select for genetically resistant individuals,
enough genetic variability must exist within the species. Moderate
to high heritability (0.24–0.43) has been reported for resistance
to VNN in European sea bass (Doan et al., 2017; Palaiokostas
et al., 2018; Griot et al., 2021) and for resistance to pasteurellosis
in gilthead sea bream (from 0.22 to 0.32) (Palaiokostas et al.,
2016; Aslam et al., 2018), thus presenting opportunity for
genetic improvement.

Genomic selection is a tool that can increase the efficiency
of selective breeding. Classical pedigree-based selective breeding
derives genetic relationships between the individuals from
pedigree records and combines them with phenotypes to estimate
breeding values. Genomic selection uses genomic markers
spread along the genome to estimate those genetic relationships
more accurately, leading to better estimates of breeding values
(Meuwissen et al., 2001). For most of the traits studied in
aquaculture, genomic selection indeed outperforms pedigree-
based selection and increases the genetic gain per generation
(Nielsen et al., 2011; Zenger et al., 2019).

Genomic selection is particularly interesting to improve
disease resistance because phenotypes are collected on related
individuals instead of the selection candidates themselves, in
order to avoid contacts between the pathogen and the selection
candidates. The genomic breeding values of the selection
candidates are predicted based on the phenotypes recorded
on challenged relatives and the markers genotyped on both
challenged individuals and selection candidates (see review of
Ødegård et al., 2011). When the phenotype is collected on
relatives and not on the candidates, pedigree-based selection

only accounts for between-family genetic variance, but genomic
selection can account for both between and within-family
genetic variances and thus, allows to rank the individuals
within their family, which increases the precision of estimated
breeding values (EBV). In the European sea bass, genomic
selection has been shown to increase prediction accuracy by
13% to improve VNN resistance compared to pedigree selection
(Palaiokostas et al., 2018). In the gilthead seabream, genomic
selection was shown to outperform pedigree selection to improve
pasteurellosis resistance, improving prediction accuracy by 27–
53% (Palaiokostas et al., 2016). Those two studies provide
appealing results, but only compare the efficiency of genomic and
pedigree selection in a similar breeding program (same number
of fish phenotyped) with a given genotyping tool (9,195 and
11,239 SNP markers obtained by RAD-sequencing for sea bass
and sea bream, respectively).

From an economic perspective, the efficiency of a breeding
program to improve disease resistance is limited by two main
factors. The first one is the cost of the phenotypes. In disease
resistance breeding programs, the phenotypes must be recorded
on individuals that are closely related to the selection candidates
(full and half-sibs) and only produced for this phenotyping
purpose. Although natural challenge on the field could be used
(Fraslin et al., 2019), the disease challenge is preferred to take
place in a dedicated facility to control the infection process
(pathogen strain, concentration, and route of infection), to record
daily the mortality and to avoid the risk of spreading the
pathogen in the wild and to commercial lines (Fjalestad et al.,
1993). All those factors make disease resistance phenotyping
expensive. The second limiting factor is the necessary genotyping
of both selection candidates and challenged relatives. In breeding
programs that use pedigree information with communal rearing
of families, both selection candidates and challenged individuals
are genotyped for a dozen of microsatellite markers or a few
hundreds of SNP markers for parentage assignment (Vandeputte
and Haffray, 2014). When using genomic selection, they should
be genotyped for more SNP markers, typically several thousand
or tens of thousands. Even though genotyping becomes more and
more affordable, it remains expensive for the majority of breeding
companies (Ødegård et al., 2011).

To limit the cost of a disease resistance breeding program,
two options are available. The first one is to reduce the number
of phenotypes recorded, which results in reduced costs for both
genotyping and phenotyping. The second one to reduce the
number of markers genotyped, which only decreases the cost
of genotyping. Limiting the number of phenotyped individuals,
that constitute the training population, affects the accuracy of
genomic prediction (Dufflocq et al., 2019). In general, as the
number of individuals in the training population increases, the
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accuracy increases until it reaches a plateau. The density of
markers has similar effects, as prediction accuracy increases with
the number of markers, until it also reaches a plateau (Tsai et al.,
2016; Kriaridou et al., 2020).

There are many other factors that can impact the prediction
accuracy, including trait heritability, effective population size
(Ne), the degree of relatedness between the training population
and the validation population, the genetic architecture of the trait
(Daetwyler et al., 2010), and the extent of linkage disequilibrium
(LD; Vallejo et al., 2018).

The aim of this study was to assess the impact of training
population size as well as marker density on the accuracy of
genomic selection, compared to a pedigree-based selection, to
improve disease resistance in fish. To do so, we used one
data set from gilthead sea bream challenged to P. damselae
subsp. piscicida, one data set from European sea bass challenged
to V. harveyi and two data sets from European sea bass
challenged to NNV.

MATERIALS AND METHODS

Ethical Approval
All infection challenges were carried out in accordance with
the European guidelines (Directive 2010–63-EU) and the
corresponding French legislation. Animal experiment procedures
were approved by the ethics committee COMETH n◦16
(ANSES, ENVA, and UPEC) and authorized under numbers
14/03/17-10 (n◦ APAFiS: 2017022816255366), 29/01/13-05 and
10/03/15-01 by the French Ministry of Higher Education,
Research and Innovation.

Fish Material
The animals challenged came from four commercial cohorts
from the breeding programs of two different companies. The
commercial cohorts were produced by artificial mating and are
identified as VNN_A and VNN_B for the two European sea
bass cohorts challenged to NNV, VIB for the European sea bass
cohort challenged to V. harveyi and PAS for the gilthead sea
bream cohort challenged to P. damselae subsp. piscicida. Cohort
VNN_A (1,680 individuals) was produced by mating 59 sires with
20 dams in four partial factorial designs (15 × 5, 15 × 5, 15 × 5,
and 14 × 5). Cohort VNN_B (1,737 individuals) was generated
from 39 sires and 14 dams mated in six factorial subsets (6 × 3,
6 × 1, 6 × 3, 7 × 2, 7 × 3, and 7 × 2). Cohort VIB (2,100
individuals) was produced by mating 60 sires with 18 dams in
three factorial subsets (20 × 6, 20 × 7, and 20 × 5) and cohort
PAS (1,200 individuals) was produced by mating 50 sires with 23
dams in 6 factorial subsets (8 × 4, 10 × 3, 7 × 4, 10 × 4, 7 × 5,
and 8 × 3). The cohorts VNN_A and VNN_B were referred as
popA and popB in Griot et al. (2021).

Infection Challenges
All infection challenges were performed at the SYSAAF-ANSES
Fortior Genetics platform (ANSES, Plouzané, France). All fish
were individually tagged with RFID glass tags. In each infection
challenges, pre-tests were made using 180, 150, 430, and 89

randomly sampled individuals from the VNN_A, VNN_B, VIB,
and PAS cohorts, respectively to define the conditions to be used
for the challenges.

For the challenge tests themselves, 1,350 individuals from
VNN_A (mean body weight = 25 g) and 1,212 individuals from
VNN_B (mean body weight = 20 g) were challenged to NNV in
filtered and UV sterilized seawater at 27◦C± 2. The infection was
done by immersing them in static seawater containing 1 × 105

Tissue Culture Infectious Dose (TCID50)/mL of the W80 strain
of redspotted grouper nervous necrosis virus (RGNNV; Thiéry
et al., 2004) produced on SSN-1 (snakehead fish) cell line for 2 h
and 15 min. Then, mortality was recorded daily for 27 days for
VNN_A and 42 days for VNN_B.

In the VIB cohort, 1,475 individuals (mean body
weight = 15 g) were challenged to V. harveyi at 22◦C ± 2.
The fish were infected by intraperitoneal (IP) injection of 100 µL
of the strain 94473 1811603 at a concentration of 2 × 108

Colony Forming Unit (CFU)/fish. The mortality was recorded
daily for 13 days.

In the PAS cohort, 960 individuals (mean body weight = 3 g)
were challenged to P. damselae subsp. piscicida at 24◦C± 2. They
were infected by IP injection of 100 µL of the strain PP11787
6/94 at a concentration of 3 × 1011 CFU/fish. The mortality was
recorded daily for 10 days.

For each challenge, we included negative control groups which
were IP injected with sterile soy trypticase medium for VIB and
PAS cohorts, and immersed in sterile cell culture medium for
VNN_A and VNN_B cohorts.

Purity of the bacterial inoculates was controlled after a step of
culture on soy trypticase agar by Maldi Tof analysis. The VNN
inoculate was controlled using immunofluorescence antibody
test (IFAT) after a step of cell culture on SSN-1.

Virological and bacteriological analysis were performed on
fish sampled from the quarantine time, on random samples of 10,
4, 5, and 20 individuals taken at the mortality peak from VNN_A,
VNN_B, VIB, and PAS cohorts, respectively, and on negative
control fish. For VNN, brain, eyes, heart, spleen, and kidney were
analyzed by cell culture followed by an IFAT. For V. harveyi and
P. damselae subsp. piscicida, bacterial isolation was done from
spleens and kidneys and colonies identified using Maldi-Tof.

Binary survival status at the end of the challenge was the
phenotype analyzed.

The details of the infection challenge applied to each cohort is
summarized in Table 1.

Genotyping, Quality Control and
Parentage Assignment
Genotyping was performed at the Gentyane genotyping platform
(INRAE, Clermont-Ferrand, France). From the challenged
individuals and their parents, 1,152 individuals from VNN_A,
VNN_B, and 1,151 individuals from VIB were genotyped on the
ThermoFisher AxiomTM 57k SNP DlabChip. In the PAS cohort,
1,026 individuals were genotyped on the ThermoFisher AxiomTM

60k SNP SaurChip. Genotyped individuals were sub-sampled
from the challenged ones ensuring each sub-sample had the same
average survival rate as the whole challenge batch. SNP calling
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TABLE 1 | Summary of infection challenges procedure followed by the four commercial cohorts (VNN_A, VNN_B, VIB, and PAS).

VNN_A VNN_B VIB PAS

Number of individuals 1,680 1,737 2,100 1,200

Number of parents (sires/dams) 59/20 39/14 60/18 50/23

Number of fullsib families 248 69 333 126

Number of halfsib families 79 53 78 73

Number of offspring per fullsib family min–max (mean) 1–21 (5) 1–82 (16) 1–14 (4) 1–44 (8)

Number of individuals in pre-test 180 150 430 89

Number of individuals challenged 1,350 1,212 1,475 960

Pathogen RGNNV RGNNV Vibrio harveyi Photobacterium damselae
subsp. piscicida

Strain W80 W80 94473 1811603 AQN553P2 PP11787 6/94

Infection method Immersion Immersion IP injection IP injection

Concentration 1 × 105 TCID/mL 1 × 105 TCID/mL 2 × 108 CFU/fish 3 × 1011 CFU/fish

Water temperature (◦C) 27 ± 2 27 ± 2 22 ± 2 24 ± 2

Duration of the challenge (in days) 27 42 13 10

Average survival rate 45.2% 59.7% 59.0% 40.0%

TCID, tissue culture infectious dose; CFU, colony forming unit.

was performed using the ThermoFisher AxiomAnalysisSuite
software and quality controls with PLINK 1.9 (Purcell and
Chang, 2015). First, individuals with a genotyping rate lower
than 90% were discarded. Then, for the sea bass data sets
(VNN_A, VNN_B, and VIB), genotyping quality controls were
performed on a global population composed of the three data
sets. A common set of markers was subset by keeping only
markers with a call rate higher than 95%, a minor allele frequency
higher than 0.05 and a p-value for the departure from Hardy-
Weinberg equilibrium test higher than 10−8, resulting in 44,772
common markers to be used for the three cohorts. For the PAS
data set, markers with a call rate higher than 95%, a minor
allele frequency higher than 0.05 and a p-value for the departure
from Hardy-Weinberg equilibrium test higher than 10−4 were
retained, leaving 43,618 usable markers. When some individuals
had missing genotypes for some markers, those missing marker
genotypes were imputed with FImpute (Sargolzaei et al., 2014).

Parentage assignment was done using 1,000 randomly
sampled markers, analysed with the R package APIS (Griot et al.,
2020) with a positive assignment error rate set to 1%.

Heritability Estimation
For each data set, we estimated the heritability of disease
resistance with either a threshold model using THRGIBBSF90
(Tsuruta and Misztal, 2006) or a linear model using AIREMLF90
(Misztal et al., 2002). Only individuals with a phenotype, a
genotype and a pedigree were used in heritability estimates, thus
the sample size was 1,027 in VNN_A and, 1,042 in VNN_B, 1,049
in VIB, and 916 in PAS.

The following model was computed in each data set using both
threshold and linear models:

y = 1b+ Zu+ e

With y the vector of the phenotypes measured as binary
dead/survival trait (0 for dead and 1 for survived), 1 the
incidence (unity) vector of the intercept, b the estimate of the
intercept effect, u the vector of breeding values and Z the

corresponding incidence matrix. To compare pedigree-based
and genomic-based heritability estimation, u followed either a
multivariate normal distribution N(0, Aσ2

g) with A the pedigree-
based relationship matrix or a multivariate normal distribution
N(0, G2g) with G the genomic relationship matrix proposed by
VanRaden (2008). σ2g is the additive genetic variance and e is
the vector of the random residual errors that follows a normal
distribution N(0, Iσ2

e) with σ2
e the residual variance and I the

identity matrix.
With the threshold model, the variance components (σ2

g
and σ2

e) were estimated using a Gibbs sampler with 500,000
iterations, 100,000 of burn-in and one sample was kept every 20
iterations for posterior analysis. The residual variance σ2

e was set
to a value of 1. The posterior distributions were analyzed with the
R package boa to check for correct burn-in size, convergence, no
correlation between the sampled iterations and to estimate the
variance components (Smith, 2007). With the linear model, the
same components were estimated using a restricted maximum
likelihood algorithm, considering the observed binary phenotype
as a continuous variable.

The heritability for survival was estimated as:

h2
=

σ2
g

σ2g + σ2e

Heritability on the observed scale (h2
o) was estimated using the

variance components from the linear model, while the heritability
on the underlying liability scale (h2

u) was computed using the
variance components from the threshold model.

Creation of Virtual Low-Density SNP
Chips
From the SNP markers obtained after quality controls, four low-
density (1K, 3K, 6K, and 10K) virtual SNP chips were created.
To do so, we used a marker pruning method based on the LD
(Porto-Neto et al., 2013). In a user-defined sliding window, every
pairwise LD between markers was estimated by the r2 metrics.
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Then, SNPs were pruned until no pair had a r2 greater than a
given value, until we reached the desired number of SNPs.

For the creation of the sea bass 10K chip, we used an iterative
method with a sliding window of 1 Mb and a r2 value of 0.434.
First, the SNP were pruned in the cohort VNN_A data set with
the LD method explained above. Then, the remaining markers in
cohort VNN_A were subset from cohort VNN_B and the same
pruning method was applied on the remaining ones. The same
process was done one last time on the cohort VIB data set to
obtain the desired number of markers. Finally, the remaining
markers in the VIB data set were subset in cohort VNN_A and
cohort VNN_B data sets to obtain 10,020 markers in each cohort.

The same process was repeated to create the 1K, 3K, and 6K
chips by modifying the sliding window size of 100, 200, and
500 kb and the r2 threshold value of 0.175, 0.268, and 0.344 for 1K,
3K, and, 6K, respectively. The virtual chips for sea bass contained
1,007, 3,022, 6,010, and 10,020 markers for the 1K, 3K, 6K, and
10K, respectively.

For the PAS data set, the pruning was done by applying the
same protocol, but on one dataset only. The chips contained
1,007, 2,999, 6,011, and 10,010 markers for the 1K, 3K, 6K, and
10K, respectively and were done by using a sliding window of 100,
200, 500, 1,000 kb, and a r2 threshold of 0.044, 0.191, 0.318, and
0.434 for the 1K, 3K, 6K, and 10K, respectively.

In each species, the size of the sliding window as well as the
r2 value for LD were empirically chosen to uniformly sample the
desired number of markers.

Creation of the Training Population
We fixed the validation population size to 200 individuals
randomly chosen from the whole population in each data set.
The training population was composed of a minimum of 50
individuals up to 800 in sea bass data sets and 700 in sea
bream data set. From 50 to 200, we added 50 individuals at
each step and then, from 200, we added 100 individuals per
step. The initial 50 individuals were randomly sampled from
remaining individuals after the validation population had been
chosen. Then, to increase the training population size, the
added individuals were randomly chosen from the remaining
individuals and added to the previous training population. This
process was repeated until the training validation population size
reached the maximum limit. In all sea bass data sets (VNN_A,
VNN_B, and VIB), we tested training population sizes of 50,
100, 150, 200, 300, 400, 500, 600, 700, and 800 individuals. In
the PAS cohort, we tested training population sizes of 50, 100,
150, 200, 300, 400, 500, 600, and 700 individuals. To account for
stochastic sampling effects, the entire process was repeated 100
times for each data set. This approach is similar to the “Monte-
Carlo cross-validation” proposed by Kuhn and Johnson (2013)
and applied in D’Ambrosio et al. (2020).

Effect of the Density of Markers and
Training Population on Prediction
Accuracy
For each replicate of training population size, we tested six
densities of markers. We tested the low-density SNP chips (1K,

3K, 6K, and 10K) as well as the full SNP chip (44K for sea bass
data sets and 43K for sea bream data set) and a control case with
only pedigree information and no genomic information.

The phenotypes of the individuals in the validation population
were masked and the breeding values were estimated with
the same linear model as the one described in section
“Heritability Estimation,” adjusted with AIREMLF90, using the
genomic relationship matrix when genomic information was
used (GBLUP) or the pedigree-based relationship matrix when
only pedigree information was used (PBLUP). The accuracy was
computed as:

r =
cor(EBV, y)

h

With cor(EBV, y) the correlation between the EBV and the
phenotypes y of the 200 individuals belonging to the validation
population and h the square-root of the heritability estimated
with a linear model, using the pedigree-based relationship matrix
and the whole data set as in the section “Heritability Estimation.”
The accuracies of the 100 replicates for each training population
size and marker density were averaged.

Addition of the QTL Effect on Prediction
Accuracy in VNN Resistance
In Griot et al. (2021), the authors showed that one strong effect
QTL is involved in VNN resistance in European sea bass. Among
the markers within the confidence interval, they highlighted one
marker (LG12_8815613) with high potential for marker assisted
selection. Here, we assessed the impact of adding the QTL effect
in the estimation of breeding values on the prediction accuracy.
To do so, in the cohorts VNN_A and VNN_B, the model
described in section “Effect of the density of markers and training
population on prediction accuracy” was replaced by the following
model as proposed by Kennedy et al. (1992):

y = Xb+ Zu+ e

With all parameters remaining the same except for Xb where X is
the genotype matrix for the LG12_8815613 marker coded as 0 for
the homozygous, 1 for the heterozygous and 2 for the alternative
homozygous and b is the marker fixed effect.

Then, the GEBV were computed as:

GEBV = û+ Xb̂

With û the estimated additive effect of the polygenic breeding
value and b̂ the estimated QTL effect.

Finally, accuracy was estimated as in section “Effect of the
Density of Markers and Training Population on Prediction
Accuracy” only for a training population of 800 individuals.

Estimation of Linkage Disequilibrium
The LDbetween each pair of SNPs was estimated using the
Pearson correlation (r2). Pairwise LD within each chromosome
for each cohort was estimated with the software PREGSF90 from
the blupf90 program suite. LD extent estimation was performed
using the same approach as proposed in Barría et al. (2019). All
pairs of SNPs were sorted based on the distance between the two
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markers. Then, the r2 was averaged over all markers within a bin
of 100 kb, up to a distance of 20 Mb (0–99 kb, 100–199 kb, . . .).

RESULTS

Challenges
The four challenges were conducted up to 42 days. The
presence of the different pathogen agents in their respective
challenges was confirmed by virologic or bacteriological
analyses on random samples of fish that died during the
challenges. All control fish were negative to the pathogen.
In VNN_A and VNN_B cohorts’ challenges, fish showed
clear clinical sign of the disease and NNV was detected in
all analysed fish (n = 10 for VNN_A et n = 4 for VNN_B).
Similarly, V. harveyi was detected in 100% of the fish
samples (n = 5) from the VIB cohort challenge. In PAS
cohorts challenge, only four fish over 20 were positive to
P. damselae subsp. piscicida. Different species of vibrio bacteria
(Aliivibrio fischeri, vibrio rotiferianus, and V. harveyi) were
punctually detected.

Survival rates ranging from 40.0 to 59.7% were recorded
(Figure 1). The mortality peaks were early for challenges to
V. harveyi and P. damselae subsp. piscicida, at 3 and 2 days,
respectively. For NNV, the peak was at 9 days post infection, and
was much sharper in cohort VNN_A than in cohort VNN_B.

Heritability Estimation
Heritability was moderate for all diseases, ranging from 0.103
to 0.238 using a pedigree-based linear model and from 0.111 to
0.232 using a genomic linear model (Table 2). For all challenges,
genomic and pedigree based heritability estimates were very
similar. When using the threshold model, the estimates were
much higher than those estimated with the linear models, ranging

FIGURE 1 | Kaplan-Meier probability of survival over time following infection
for two European sea bass commercial cohorts challenged to NNV (VNN_A
and VNN_B), one European sea bass commercial cohort challenged to
V. harveyi (VIB) and one gilthead sea bream commercial cohort challenged to
Photobacterium damselae subsp. piscicida (PAS).

from 0.198 to 0.421 for pedigree-based heritability and from 0.198
to 0.379 for genomic heritability.

Effect of Training Population Size and
Marker Density on Prediction Accuracy
In all data sets, accuracy increased with the size of the training
population (Figure 2 and Table 3). From 50 to 150 individuals in
the training population, the increase in accuracy was the greatest.
From 150 to 400–500 individuals in the training population,
the increase in prediction accuracy was intermediate and with
more than 400–500 individuals in the training population, the
prediction accuracy increased slowly. With the full density chip,
GBLUP with a training population size of 200, 500, 500, and 300
individuals reached the same accuracy as PBLUP for VNN_A,
VNN_B, VIB, and PAS, respectively.

In general, accuracy increased with the density of markers
(Figure 2 and Table 3). The addition of genomic information
improved the accuracy compared to that of pedigree-based
estimation, except in VNN_B where the accuracy estimated with
PBLUP was greater than that estimated with 1,000 markers
(Figure 2B). With the maximum training population and the full
density chip, genomic evaluation led to an increase in accuracy,
compared to PBLUP, of 24.5, 8.9, 11.6, and 12.9% for VNN_A,
VNN_B, VIB, and PAS, respectively. Except in VNN_B, the use
of one thousand markers for genomic evaluation increased the
accuracy by 12.5, 11.0, and 6.6% for VNN_A, VIB, and PAS
compared to PBLUP. In general, a density of 6K was enough to
reach at least 90% of the accuracy obtained with the full density
chip (Figure 3 and Table 4).

Addition of the QTL Effect on Prediction
Accuracy in VNN Resistance
The addition of the QTL effect increased the prediction accuracy
in a range of 10.5–26.3% compared to the prediction accuracy
estimated without it (Figure 4). In every cohort and for every
chip density, it led to an increase in prediction accuracy.
The prediction accuracy using just the pedigree and the QTL
information was slightly higher than that of the full density chip
GBLUP for either VNN_A or VNN_B (Figures 4C,D).

Estimation of Linkage Disequilibrium
As expected, LD decreased rapidly up to 0.5 Mb in all
cohorts (Figure 5). The average LD estimates were 0.174, 0.160,
0.169, and 0.210 for VNN_A, VNN_B, VIB, and PAS cohort,
respectively. In general, the LD of all cohorts decreased at the
same rate up to a distance of 10 Mb. Then, LD decreased faster
in the PAS (sea bream) cohort compared to all sea bass cohorts.

DISCUSSION

Genomic selection is widely recognized as having a great potential
to improve selective breeding (Meuwissen et al., 2016). In
the context of improving pathogen resistance in aquaculture
species, its relevance has already been shown (Vallejo et al.,
2017; Palaiokostas et al., 2018, 2016). In the present work,

Frontiers in Genetics | www.frontiersin.org 6 July 2021 | Volume 12 | Article 665920

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-665920 September 14, 2021 Time: 16:40 # 7

Griot et al. Genomic Selection in Mediterranean Fishes

TABLE 2 | Heritability estimated for Viral Nervous Necrosis (VNN) resistance in two European sea bass commercial cohorts (VNN_A and VNN_B), vibriosis resistance in
one European sea bass commercial cohort (VIB) and pasteurellosis resistance in one gilthead sea bream commercial cohort (PAS) with pedigree-BLUP (PBLUP) or
genomic-BLUP (GBLUP) using linear or threshold models using full density chips.

Population PBLUP GBLUP

Linear model Threshold model Linear model Threshold model

VNN_A 0.238 (±0.063) 0.421 (±0.106) 0.232 (±0.049) 0.379 (±0.065)

VNN_B 0.103 (±0.048) 0.214 (±0.087) 0.118 (±0.043) 0.217 (±0.068)

VIB 0.109 (±0.043) 0.198 (±0.068) 0.111 (±0.040) 0.198 (±0.064)

PAS 0.139 (±0.051) 0.291 (±0.086) 0.159 (±0.045) 0.295 (±0.066)

Values in parenthesis are the standard errors.

FIGURE 2 | Accuracy of genomic (GBLUP) and pedigree-based (PBLUP) estimated breeding values for disease resistance as a function of the number of individuals
in the training population, and for different marker densities, in (A) European sea bass commercial cohort VNN_A challenged to NNV, (B) European sea bass
commercial cohort VNN_B challenged to NNV, (C) European sea bass commercial cohort VIB challenged to V. harveyi, and (D) gilthead sea bream commercial
cohort PAS challenged to Photobacterium damselae subsp. piscicida. Each point is the average of 100 replicates. Error bars represent the standard error of the
mean of 100 replicates.

we provided essential data to implement genomic selection to
improve disease resistance to the most common pathogens in
European sea bass and gilthead sea bream aquaculture. First,
we obtained moderate heritability estimates for resistance to
the three pathogens. With the threshold model, the pedigree-
based and genomic heritability estimates were rather similar,
except for VNN_A for which the pedigree-based heritability
estimate was higher than the genomic heritability estimate.
The use of genomic information mainly reduced the standard
error of the estimates and thus, improved their precision. The
heritability estimates were very different between linear model

and threshold model, even after applying the correction of the
linear estimates proposed by Dempster and Lerner (1950) (data
not shown). Our heritability estimates were similar to those
reported in former studies, when available: for VNN resistance
in sea bass, threshold model heritability estimates were in the
range 0.21–0.42, to be compared to previous values of 0.24–0.43
estimated using threshold model or linear model corrected using
Dempster and Lerner formula (Doan et al., 2017; Palaiokostas
et al., 2018; Griot et al., 2021). For pasteurellosis resistance in
sea bream, our estimates from linear model (0.14–0.16) were in
the lower range of those from previous studies, estimated using
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TABLE 3 | Prediction accuracy for VNN resistance in two European sea bass commercial cohorts (VNN_A and VNN_B), vibriosis resistance in one European sea bass
commercial cohort (VIB) and pasteurellosis resistance in one gilthead sea bream commercial cohort (PAS) using different training population sizes and marker densities.

Data set Training population size PBLUP GBLUP_1K GBLUP_3K GBLUP_6K GBLUP_10K GBLUP_full

VNN_A

50 0.18 0.31 0.33 0.34 0.33 0.34

100 0.26 0.39 0.41 0.42 0.41 0.42

150 0.32 0.45 0.47 0.49 0.47 0.49

200 0.35 0.47 0.49 0.51 0.49 0.51

300 0.40 0.51 0.53 0.55 0.53 0.55

400 0.44 0.54 0.56 0.58 0.56 0.58

500 0.47 0.55 0.58 0.61 0.59 0.61

600 0.49 0.56 0.59 0.62 0.59 0.61

700 0.50 0.57 0.60 0.63 0.61 0.63

800 0.52 0.59 0.62 0.65 0.62 0.64

VNN_B

50 0.18 0.17 0.18 0.19 0.19 0.19

100 0.25 0.23 0.26 0.26 0.26 0.26

150 0.32 0.30 0.32 0.34 0.33 0.33

200 0.34 0.32 0.34 0.36 0.35 0.35

300 0.39 0.36 0.39 0.41 0.39 0.40

400 0.42 0.39 0.42 0.45 0.43 0.43

500 0.46 0.42 0.45 0.49 0.46 0.46

600 0.47 0.44 0.47 0.51 0.48 0.49

700 0.49 0.46 0.48 0.53 0.49 0.50

800 0.52 0.48 0.51 0.56 0.51 0.52

VIB

50 0.15 0.18 0.17 0.16 0.17 0.17

100 0.21 0.26 0.25 0.23 0.25 0.24

150 0.23 0.30 0.28 0.27 0.28 0.28

200 0.26 0.33 0.31 0.30 0.32 0.31

300 0.32 0.40 0.39 0.36 0.39 0.37

400 0.38 0.44 0.44 0.42 0.44 0.43

500 0.40 0.46 0.46 0.44 0.46 0.45

600 0.42 0.48 0.49 0.47 0.49 0.48

700 0.45 0.50 0.51 0.49 0.51 0.50

800 0.46 0.51 0.53 0.51 0.53 0.52

PAS

50 0.25 0.26 0.27 0.28 0.27 0.28

100 0.37 0.35 0.38 0.39 0.38 0.38

150 0.41 0.39 0.42 0.44 0.42 0.42

200 0.44 0.43 0.45 0.47 0.45 0.46

300 0.51 0.51 0.53 0.55 0.52 0.52

400 0.53 0.54 0.56 0.58 0.55 0.55

500 0.56 0.58 0.59 0.61 0.58 0.58

600 0.56 0.59 0.61 0.63 0.59 0.59

700 0.57 0.61 0.63 0.64 0.61 0.61

Prediction accuracy values are averaged over 100 replicates.

linear model (0.22–0.45) (Antonello et al., 2009; Palaiokostas
et al., 2016; Aslam et al., 2018). For vibriosis resistance in sea
bass, we presented the first genetic parameters estimates to our
knowledge. In other aquaculture species, vibriosis resistance has
shown low to moderate heritability, ranging from 0.13 in Atlantic
salmon on Vibrio salmonicida to 0.19 in Chinese tongue sole
on V. harveyi using a linear model and 0.16 in Atlantic cod on
Vibrio anguillarum using a threshold sire-dam model (Gjedrem
and Gjøen, 1995; Bangera et al., 2011; Li et al., 2019). Similar
results were found on shellfish, with moderate heritability of 0.11
in white shrimp on Vibrio parahaemolyticus and 0.09–0.33 in

Pacific oysters on Vibrio aestuarianus (Azéma et al., 2017; Lyu
et al., 2020). Heritability estimates for all studied diseases were
moderate, meaning that resistance to all these diseases can be
improved by selective breeding.

We showed that genomic selection using a 44K SNP chip can
improve the accuracy of breeding values in the range 9–25%
compared to pedigree-based selection. Palaiokostas et al. (2018)
showed an increase of 8% of the prediction accuracy using a
GBLUP model with 9,195 markers compared to a PBLUP model
for VNN resistance in sea bass. In this paper, they used the
area under curve (AUC) as a metric for measuring accuracy. As
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FIGURE 3 | Proportion of the full-density SNP panel accuracy for genomic breeding value estimates as a function of the density of markers in (A) European sea bass
commercial cohort VNN_A challenged to NNV, (B) European sea bass commercial cohort VNN_B challenged to NNV, (C) European sea bass commercial cohort VIB
challenged to V. harveyi, and (D) gilthead sea bream commercial cohort PAS challenged to Photobacterium damselae subsp. piscicida. The density of markers is
expressed in thousands of SNPs. Only training population size of 50, 150, 300, 500, and 700 for PAS and 800 for others are displayed and represented by the color
palette. Each point is the average of 100 replicates.

our measure is very different, we cannot compare the results.
However, we both showed that genomic selection outperformed
pedigree-based selection to improve VNN resistance in sea bass.
In Palaiokostas et al. (2016), the authors reached a prediction
accuracy of 0.44 using a GBLUP model compared to 0.30 when
using a PBLUP model for pasteurellosis resistance in gilthead
seabream using 578 individuals in the training population and
200 individuals in the validation population. Here, even though
the improvement of prediction accuracy using GBLUP was lower
than in that previous study [+43% in Palaiokostas et al. (2016)
versus +13% in our work], we obtained much higher absolute
values (0.56 using PBLUP and 0.63 using GBLUP with 600
individuals in the training population). Such a difference could be
explained by different mating design or genetic diversity within
each population.

We showed that an increase in training population size led
to an increase in prediction accuracy. Accuracy changed with
training population size in a specific way in each data set.
Population structure and heritability are two major drivers for
the change in accuracy as function of the training population
size (Goddard, 2009; Meuwissen et al., 2013). Even though
cohorts VNN_A and VIB came from similar mating designs and
were genotyped with the same markers, they had very different

accuracy profiles (Figures 2A,C). The absolute values of accuracy
were different and the increase in accuracy between 50 and 150
individuals in the training population was greater in VNN_A
than in VIB. The heritability was very different between the
two traits, as well as the average survival rate, and both have
impact on the accuracy. One other factor that can explain the
difference in accuracy between traits is the genetic architecture.
As VNN resistance was reported to be an oligogenic trait
(Griot et al., 2021), a model that can take advantage of genetic
architectures that are not polygenic (wssGBLUP or BayesB) could
perform better than a GBLUP model (Daetwyler et al., 2010;
Vallejo et al., 2017).

Across all the data sets, even though accuracy increased
less and less as the training population size increased, we did
not reach the plateau. In fact, in most of the aquaculture
breeding programs, prediction accuracy plateau is reached
when the training population size is 4,000 individuals or
more (Lillehammer et al., 2013; Dagnachew and Meuwissen,
2019), but this could not be tested here due to the limitation
in the number of phenotyped and genotyped fish for each
disease. Thus, adding more individuals from the same generation
or of successive generations would still increase prediction
accuracy (Figure 2). Another way to increase prediction
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TABLE 4 | Relative prediction accuracy of estimated breeding values (EBV) (in %) compared to GBLUP_full for Viral Nervous Necrosis (VNN) resistance in two European
sea bass commercial cohorts (VNN_A and VNN_B), vibriosis resistance in one European sea bass commercial cohort (VIB) and pasteurellosis resistance in one gilthead
sea bream commercial cohort (PAS) using different training population sizes and marker densities.

Data set Training population size PBLUP GBLUP_1K GBLUP_3K GBLUP_6K GBLUP_10K

VNN_A 50 51.8 91.7 96.5 97.9 100.1

150 65.6 91.8 95.8 96.7 99.5

300 73.4 92.0 95.9 97.0 99.9

500 77.6 91.0 95.7 96.4 99.5

800 80.3 90.4 95.3 95.5 98.7

VNN_B 50 95.0 88.1 95.3 97.5 98.0

150 93.5 89.2 95.6 97.2 97.5

300 93.8 87.3 93.6 95.1 95.9

500 93.6 86.6 92.2 93.5 95.0

800 91.8 86.3 90.5 91.2 93.4

VIB 50 92.8 113.8 105.3 107.0 104.4

150 87.3 111.2 106.3 106.0 103.0

300 89.0 109.4 106.1 106.0 103.0

500 89.7 104.2 105.1 105.3 102.8

800 89.6 99.5 103.0 103.4 101.8

PAS 50 89.1 90.2 95.6 96.4 96.7

150 94.4 90.0 95.8 95.8 96.0

300 92.7 91.9 95.9 94.8 95.1

500 90.3 93.6 96.8 94.3 94.9

700 88.6 94.4 97.5 94.3 94.7

FIGURE 4 | Accuracy of genomic (GBLUP) and pedigree-based (PBLUP) estimated breeding values for VNN resistance in two European seabass commercial
cohorts (VNN_A, A and VNN_B, B) with different SNP chip densitiesand with (in blue) or without (in red) the QTL effect and a training population of 800 individuals.
Relative gain in accuracy compared to the GBLUP_full model ignoring the QTL effect in cohort VNN_A (C) and VNN_B (D).

accuracy at a constant training population size could be an
optimized choice of the training population. By doing this
using an optimization algorithm, the prediction accuracy could

be significantly improved compared to a random selection
ofthe training population (Rincent et al., 2012; Akdemir
et al., 2015). However, the absolute size of the training
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FIGURE 5 | Extent of linkage disequilibrium estimated in two European sea
bass commercial cohorts VNN_A and VNN_V challenged to NNV, one
European sea bass commercial cohort VIB challenged to V. harveyi and one
gilthead sea bream commercial cohort PAS challenged to Photobacterium
damselae subsp. piscicida.

population is the main driver compared to its composition
(Bradford et al., 2017).

Across all diseases and species we studied, between 3K and
6K SNP markers were enough to obtain a high prediction
accuracy. Similar results were found in other aquaculture species
(Kriaridou et al., 2020). In Kriaridou et al. (2020), the authors
found that a marker density between 1K and 2K was sufficient
to keep the prediction accuracy close to that of the full density
chip. In our study, such a density would lead to a significant
decrease in prediction accuracy. An explanation could be that we
compared the prediction accuracy of low-density SNP panels to
a 43K or 44K SNP chip, while Kriaridou et al. (2020) compared
the low-density SNP panels to a 10K SNP chip. If we compared
the prediction accuracy of the 1K, 3K, and 6K SNP chips to
the 10K, the 3K chip maintained the accuracy to 95% of the
value of the 10K and the 1K chip to 90% of the value of
the 10K, which is close to the values obtained in the study of
Kriaridou et al. (2020). In rainbow trout, a prediction accuracy
greater than the one obtained with PBLUP can be as achieved
with only 500 (Vallejo et al., 2018). Such high accuracy with low
number of markers was explained by the extent of long-range LD
within the species.

Here, the extent of long-range LD is lower than that observed
in rainbow trout, which could explain the lower difference
between PBLUP and GBLUP_1K. The level of LD over 1 Mb was
greater than 0.25 in rainbow trout (Vallejo et al., 2018), but much
lower in our cohorts (r2 = 0.2, r2 = 0.18, r2 = 0.19, and r2 = 0.23 in
VNN_A, VNN_B, VIB, and PAS cohort). However, we cannot see
any clear evidence of an effect of LD on the prediction accuracy,
as accuracy is not clearly correlated with LD in our 4 cohorts.

Training population size and marker density are two
major cost drivers in a genomic selection breeding program
(Riedelsheimer and Melchinger, 2013; Rajsic et al., 2016). Both
impact the cost of genotyping, while training population size
also involves the cost of phenotyping. We showed that a 6K–
10K SNP chip was enough to reach at least 90% of accuracy
obtained with the full density chip (43–44K). Combining
medium to high density genotyping on parents and low density

genotyping followed by an imputation on the offspring can
be a viable genotyping strategy to reduce the overall cost
of the breeding program (Cleveland and Hickey, 2013; Tsai
et al., 2017; Tsairidou et al., 2020). Both Tsai et al. (2017) and
Tsairidou et al. (2020) showed a significant improvement of the
prediction accuracy using imputed SNP data rather than low-
density panels. Tsai et al. (2017) showed that the imputation
from 256 SNP to 25K increased the prediction accuracy by
45% (from 0.4 to 0.58) for sea lice resistance in Atlantic
salmon. Tsairidou et al. (2020) showed that genotyping the
parents with a 5K chip and the offspring with only 200 SNP
markers then imputing them to the 5K chip led to a prediction
accuracy close to the value obtained by the medium density
chip, while decreasing the genotyping cost of the breeding
program by 62%. With a constant budget for genotyping and
infection challenge, a breeder could increase the number of
individuals in the training population and, thus, the prediction
accuracy or, with the money saved, start other breeding programs
on other traits.

In Griot et al. (2021), we showed that one strong effect QTL
that explained 9.2% of the genetic variance, was involved in VNN
resistance in European sea bass. By adding the information of the
marker proposed as marker-assisted selection in the prediction
model, we showed a significant increase in the prediction
accuracy. The information of the marker genotype in a PBLUP
model led to an accuracy slightly higher than that obtained
with the 44K chip. In these populations and for this generation,
marker-assisted selection would thus seem to be a very relevant
choice. However, as mentioned in Griot et al. (2021), this result
may not be consistent in other populations and/or generations as
this marker was not in complete LD with the QTL. In addition,
even though the marker LG12_8815613 had a strong effect in all
the populations from Griot et al. (2021), it was selected partly
from the same populations in which its effect was tested, this
could lead to an overestimation of its effect and thus, a greater
accuracy than the one that could be expected in an unrelated
population (Phocas, pers. Communication, 2020).

One major driver of prediction accuracy is the degree of
relatedness between the training and the validation population
(Habier et al., 2007; Pszczola et al., 2012). In aquaculture breeding
programs to improve disease resistance traits, the reference
population is generally constituted of challenged individuals that
are full or half-sibs of the candidates (Ødegård et al., 2011).
In that scenario, the degree of relatedness between the training
population (composed of the individuals that were challenged)
and the candidates is high and thus, high prediction accuracy can
be achieved. This is the scenario applied in that study. However,
in real life, the goal is to improve disease resistance in the next
generation, and this can only be tested through progeny testing
(Vallejo et al., 2020). In our case, this was not possible as we
currently have only one generation of genomically evaluated fish.

In this study, we presented a framework to implement
genomic selection for disease resistance in European sea bass
and gilthead sea bream. The results showed that, across all
diseases and cohorts, 6,000 SNP markers were sufficient to
get high prediction accuracy, equivalent to at least 90% of
accuracy reached with the full density chip. For the training
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population size, as the plateau of accuracy was not reached
with 800 individuals, an increase in its size would lead to
an increase in accuracy and thus, in genetic gain. For VNN
resistance, as one major effect QTL was detected, we showed that
marker-assisted selection was an efficient method to improve the
prediction accuracy.
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