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Genome compartmentalization predates
species divergence in the plant pathogen
genus Zymoseptoria
Alice Feurtey1,2, Cécile Lorrain1,2,3* , Daniel Croll4, Christoph Eschenbrenner1,2, Michael Freitag5, Michael Habig1,2,
Janine Haueisen1,2, Mareike Möller1,2,5, Klaas Schotanus1,2,6 and Eva H. Stukenbrock1,2

Abstract

Background: Antagonistic co-evolution can drive rapid adaptation in pathogens and shape genome architecture.
Comparative genome analyses of several fungal pathogens revealed highly variable genomes, for many species
characterized by specific repeat-rich genome compartments with exceptionally high sequence variability. Dynamic
genome structure may enable fast adaptation to host genetics. The wheat pathogen Zymoseptoria tritici with its
highly variable genome, has emerged as a model organism to study genome evolution of plant pathogens. Here,
we compared genomes of Z. tritici isolates and of sister species infecting wild grasses to address the evolution of
genome composition and structure.

Results: Using long-read technology, we sequenced and assembled genomes of Z. ardabiliae, Z. brevis, Z.
pseudotritici and Z. passerinii, together with two isolates of Z. tritici. We report a high extent of genome collinearity
among Zymoseptoria species and high conservation of genomic, transcriptomic and epigenomic signatures of
compartmentalization. We identify high gene content variability both within and between species. In addition, such
variability is mainly limited to the accessory chromosomes and accessory compartments. Despite strong host
specificity and non-overlapping host-range between species, predicted effectors are mainly shared among
Zymoseptoria species, yet exhibiting a high level of presence-absence polymorphism within Z. tritici. Using in planta
transcriptomic data from Z. tritici, we suggest different roles for the shared orthologs and for the accessory genes
during infection of their hosts.

Conclusion: Despite previous reports of high genomic plasticity in Z. tritici, we describe here a high level of
conservation in genomic, epigenomic and transcriptomic composition and structure across the genus Zymoseptoria.
The compartmentalized genome allows the maintenance of a functional core genome co-occurring with a highly
variable accessory genome.
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Background
Co-evolution between plants and pathogens can drive rapid
evolution of genes involved in antagonistic interactions [1].
In filamentous plant pathogens, rapid evolution may be
fueled by highly dynamic genome architecture involving
repeat-rich compartments such as gene-sparse islands of
repetitive DNA and accessory chromosomes [2, 3]. These
compartments can show a high plasticity revealed by a high
extent of gene and/or chromosome presence-absence
variation and structural variants, such as inversions, inser-
tions and deletions [4, 5]. Several plant pathogenic fungi
have isolate-specific chromosomes, so-called accessory
chromosomes.
Accessory chromosomes are characterized by intra-

species presence-absence polymorphism, low gene density,
an enrichment of repetitive sequences and, in some
species, a different histone methylation pattern [6, 7]. It
has been shown that accessory chromosomes encode
genes involved in virulence such as in the species
Fusarium solani, Fusarium oxysporum and Leptosphaeria
maculans [8–11]. Little is known about the evolutionary
origin of accessory chromosomes although experimental
evidence from the asexual species F. oxysporum shows
that accessory chromosomes may be acquired horizontally
as chromosomes can be transferred between distinct
isolates by hyphal fusion [10]. Through such transfers,
virulence determinants may be exchanged between clonal
lineages as accessory chromosomes in this species were
shown to encode host specific virulence determinants and
transcription factors regulating their expression [12].
Genes involved in plant-pathogen interactions may

diversify at a higher rate in repeat-rich genome compart-
ments and thereby evolve new virulence specificity faster
[3]. These genes encode secreted proteins, so-called
effectors [1]. Most known effectors target diverse cellular
compartments and molecular pathways, including immune
response-related pathways [13, 14]. Genes encoding
Carbohydrate-active enzymes (CAZymes) have also been
associated to the pathogenic lifestyle of fungal plant patho-
gens, particularly through their role in plant-cell wall
degradation [15]. Thus, some secreted CAZymes may be
essential from the early infection stage, like penetration of
plant tissue, to later stages such as the necrotrophic phase
where the pathogen feeds from dead plant tissue [16]. Like-
wise, secondary metabolites are known to be involved in
plant infection and contribute to virulence and the inter-
action with other plant-associated microorganisms [17,
18]. Many of these genes can be predicted either according
to their composition and known protein domains or
through machine learning methods [19]. Thereby, in-depth
genome annotations have proven important to predict and
compare the content of pathogenicity-related genes in
plant pathogens, as well as their genomic localization for
example in rapidly evolving genome compartments.

The ascomycete pathogen Zymoseptoria tritici has
emerged as a model organism in evolutionary genomics of
pathogens. This species originated in the Fertile Crescent
during the domestication of its host, wheat [20]. Closely
related species of Z. tritici have been collected from wild
grasses in the Middle East providing an excellent resource
for comparative genome analyses of closely related and
recently diverged pathogen species. Comparative analyses
of genome organization and gene content within and
among Zymoseptoria species have previously revealed a
wide distribution of accessory chromosomes and dynamic
gene content [21, 22]. The haploid genome of the reference
isolate IPO323 comprises thirteen core and eight accessory
chromosomes [23]. Some of these accessory chromosomes
may encode traits that impact virulence of the fungus,
however no gene encoded on an accessory chromosome
has so far been described as a virulence or avirulence deter-
minant [24–29]. Interestingly, the accessory chromosomes
in Z. tritici show a low transcriptional activity in vitro as
well as in planta [30, 31]. This suppression of gene expres-
sion correlates with an enrichment of heterochromatin
associated with the histone modification H3K27me3 on the
accessory chromosomes [6, 32].
In the reference isolate IPO323, the accessory chromo-

somes comprise more than 11% of the entire genome
assembly. To which extent such a high amount of
accessory DNA is also found in genomes of other mem-
bers of the Zymoseptoria genus has so far been unknown
due to the lack of high-quality genome assemblies and
large-scale population sequencing. Assemblies based on
short-read data failed to recover complete sequence of
accessory chromosomes and “orphan regions” due to their
high repeat content [22]. The asset of genome assemblies
based on long-read sequencing was demonstrated in
detailed genome comparisons of Z. tritici isolates
sequenced with PacBio long-read sequencing [28, 33].
Comparison these Z. tritici high-quality chromosome
assemblies revealed the occurrence of “orphan regions”
enriched with transposable elements and encoding
putative virulence-related genes [28, 34].
In this study, we investigate the genomic architecture

and variability among five Zymoseptoria species. Beside
presenting a new and significantly improved resource for
future genomic studies of these fungal pathogens, we
specifically ask: 1) how conserved is the genome archi-
tecture among Zymoseptoria species? 2) can we identify
accessory compartments in other Zymoseptoria isolates?
3) to which extent does variation in genome architecture
reflect variation in gene content?
To answer these questions, we used high-quality

assemblies based on long-read sequence data and new
gene predictions in two isolates of Z. tritici (Zt05 and
Zt10) and one isolate of each of the sister species, Z.
ardabiliae, Z. brevis, Z. passerinii, and Z. pseudotritici.
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We explore the core and non-core genome architecture
of Zymoseptoria spp. combining genomic data with tran-
scriptome and histone methylation data and relate this
to core and accessory genome compartments. Furthermore,
we compare the distribution of orthologous and non-
orthologous genes in the Zymoseptoria genomes and one
additional Dothideomycete species. Our analyses reveal an
overall conserved genome architecture characterized by
gene-rich core compartments and accessory compartments
enriched in species-specific genes. Finally, we report a
remarkably high extent of variation in presence-absence of
protein coding genes in a eukaryote genome.

Results
De novo assemblies using long-read sequencing for six
Zymoseptoria spp.
We sequenced and assembled the genome of the reference
isolates of Z. ardabiliae, Z. brevis, Z. pseudotritici and Z.
passerinii and the genomes of two Z. tritici isolates sam-
pled in Denmark and Iran [30]. The obtained contigs were
filtered based on base-quality confidence and read depth to
ensure high quality of the final assemblies (see Methods).
This filter removed a high number of contigs (between 17
and 58% of the total), but little overall length (between 0.4
and 2.6% of the total assemblies), indicating that most of
the excluded contigs were of small size (Table S1 and S5).
The best assemblies were of the two Z. tritici isolates com-
prising 19 and 30 contigs and the most fragmented was of
Z. passerinii comprising 103 contigs (Fig. 1). The resulting

assembly lengths ranged from 38.1Mb for Z. ardabiliae to
41.6Mb for Z. brevis, which is comparable to the reference
assembly length of Z. tritici (39.7Mb) but larger than
previous short-read based assemblies (Table 1; previous
assemblies ranged from 31.5Mb for Z. ardabiliae to 32.7
Mb for Z. pseudotritici [22, 23]. The assembly of the
Iranian Z. tritici isolate Zt10 has telomeric repeats at the
end of all contigs, indicating that each chromosome is
completely assembled, comprising six accessory and
thirteen core chromosomes. The assemblies for the Danish
Z. tritici isolate (Zt05), Z. brevis (Zb87) and Z. pseudotritici
(Zp13) contained, respectively, twelve, nine and five
fully assembled chromosomes including both core and
accessory chromosomes (Figure S1). The assemblies
of the Z. ardabiliae (Za17) and Z. passerinii (Zpa63)
genomes included no fully assembled chromosomes,
but twelve and ten contigs respectively with telomeres
at one of the ends (Table 1; Figure S1).
The transcriptome-based gene predictions for these

new assemblies include between 10,528 and 12,386
protein-coding genes (Table S2). This range is consistent
with the annotation of the reference genome IPO323
reporting 11,839 protein-coding genes [22]. We used
Benchmarking Universal Single-Copy Orthologs
(BUSCO) from the lineage dataset Pezizomycotina to
evaluate the completeness of the assemblies and gene
predictions [37]. The proportion of complete BUSCO
genes identified in our assemblies were comparable to
the one obtained for the reference genome of Z. tritici

Fig. 1 Whole-genome phylogeny of Zymoseptoria spp. and basic statistics for the assemblies and gene predictions. a Tree based on the distance
matrix generated by the software andi distances from whole genome sequences were estimated in an alignment-free manner [35] . The same
topology was observed in a tree produced from k-mers using the web-based tool CVtree3 [36]. b The bar plots represent the number of genes
coding for secreted proteins (pink) and non-secreted proteins (grey) for each genome
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(97.8%, Table 1). The assessment of gene content com-
pleteness (see Methods) indicates that, despite more
fragmented assemblies of Z. ardabiliae and Z. passerinii,
the genomes are complete in terms of gene content and
that the unassembled fragments are more likely to com-
prise repeats and not protein-coding genes.
Based on the whole-genome sequences and the

predicted genes we reconstructed the phylogeny of the
Zymoseptoria genus using the publicly available genome
of Cercospora beticola as an outgroup [38, 39]. For both
trees, the phylogenetic relationship of the Zymoseptoria
species is in accordance with previously published
phylogeny based on seven loci sequenced in multiples
isolates (Fig. 1) [21].

Genomes of Zymoseptoria spp. comprise accessory
chromosomes and compartments but show overall high
synteny
Next we addressed the extent of co-linearity of the
Zymoseptoria genomes. Using coordinates of ortholo-
gous genes, we were able to reveal a high extent of
synteny conservation among the five Zymoseptoria
species and between the three isolates of Z. tritici, as
depicted in Fig. 2 and S2. Based on this high extent of
synteny and the prediction of telomeric repeats, we
identified the correspondence of chromosomes between
the reference genome of Z. tritici IPO323 and the other
Zymoseptoria genomes (Fig. 2 and S2). Z. brevis and Z.
pseudotritici share a near perfect synteny in their core

chromosomes, however, when compared to Z. tritici, Z.
brevis and Z. pseudotritici have two large-scale inver-
sions comprising roughly ~ 900 kb and ~ 1.2Mb of chro-
mosomes 2 and 6, respectively (Fig. 2, S2 and S3). Based
on the phylogeny in Fig. 1, it is likely that these two
events occurred after the divergence of Z. tritici from Z.
brevis and Z. pseudotritici. Overall, we observe a higher
extent of synteny conservation between Z. brevis and Z.
pseudotritici compared to Z. tritici IPO323 (Fig. 2; S2
and S3).
In Z. tritici, core and accessory compartments have very

distinct genomic features. It was previously shown that hall-
marks of accessory regions in the reference isolate IPO323
include lower gene density, lower levels of H3K4me2
methylation and reduced gene expression [6, 31]. In the
reference genome of IPO323, compartments with these
genomic and epigenomic hallmarks represent either
accessory chromosomes or specific regions of the core
chromosomes. Here we find that the specific accessory
hallmarks including low gene density, low expression, low
H3K4me2 methylation and significant enrichment of
species-specific genes (see description below) on the non-
core contigs are found in genomic compartments through-
out the genus (Table S3, Fig. 3 and S4).
In the genome of the reference Z. tritici strain, the

compartments that exhibit the hallmark of accessory
chromosomes includes a particular region of the core
chromosome 7 of ~ 0.6 Mb (Fig. 3a) [6]. As previously
suggested, we also here define this region as “accessory-

Table 1 Metrics of genome assemblies and annotation

Species Zymoseptoria tritici Zymoseptoria
pseudotritici

Zymoseptoria
brevis

Zymoseptoria
ardabiliae

Zymoseptoria
passerinii

Isolate Zt05 Zt10 Zp13 Zb87 Za17 Zpa63

Origin Denmark Iran, Ilam
province

Iran, Ardabil
province

Iran Iran, Ardabil province USA

Host Triticum aestivum Triticum aestivum Dactylis glomerata Phalaris paradoxa Lolium perenne Hordeum vulgare

Year (of isolation) 2004 2001 2004 2004

Contig number 30 19 42 29 50 103

Total length (bp) 41,240,984 39,248,105 40,312,446 41,586,671 38,100,668 41,398,787

Mean contig size (bp) 1,374,699 2,065,690 59,820 1,434,023 762,013 401,930

N50 2,454,671 2,925,395 2,115,121 2,744,794 1,156,695 737,698

L50 6 5 7 7 11 18

Contigs with telomeric
repeats on both ends

12 19 5 9 0 0

Complete BUSCO genes (%) 98.4 98.7 98.5 97.0 98.2 97.5

Number of genes 12,386 11,991 11,661 11,480 11,463 10,528

Repeat content (%) 19.9 16.5 20.8 29.2 18.2 31.4

Percentage of non-core
sequences compared to
the IPO323 reference

12.49 8.69 4.27 4.6 3.45 6.85

NCBI Biosample SAMN04494882 SAMN02981321 SAMN02981322 SAMN03294124 SAMN02981326 SAMN02981330
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Fig. 3 Genome architecture of the reference genome Z. tritici IPO323 (a) and Z. pseudotritici Zp13 (b). The segments constituting the first circle
represents the chromosomes of IPO323 (a) and contigs of Zp13 (b) ordered according to the synteny with the chromosomes of the reference
genome. Tracks from the outside to the inside are heatmaps representing respectively: gene density along chromosomes/contigs; gene
expression in vitro (TPM); H3K4me2 levels in vitro and species-specific gene density per 100 kb windows. The arrows indicate the location of the
region on chromosome 7 (and the corresponding syntenic region in Z. pseudotritici) displaying accessory-like genomic and regulatory hallmarks.
Telomeric repeats are indicated in orange

Fig. 2 Intra- and inter-species synteny conservation in Zymoseptoria genus. a) Intra-species synteny between the reference genome of Z. tritici IPO323
and the genome of the Iranian Z. tritici isolate Zt10. Each color represents a different chromosome as defined in the reference Z. tritici IPO323 genome,
except for accessory chromosomes, which are in grey. The links represent a subsample of orthologous genes (subsampled 1:2 for the accessory
chromosomes and 1:10 for the core chromosomes for clarity of the visual representation). Contigs are ordered according to their synteny to the
reference genome IPO323. Telomeric repeats are indicated in orange b) Inter-species synteny between the reference genome of Z. tritici and the
genome of Z. brevis Zb87. The arrows represent the large-scale inversions identified between the genomes of these two species
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like” because the region exhibits clearly two of the three
above-mentioned criteria [6, 31]. The region has low
gene expression, low H3K4me2 levels but unlike
accessory chromosomes exhibits high gene density. The
encoded genes are mostly species-specific. Interestingly,
this particularly large accessory region is observed in
several Zymoseptoria spp. (Fig. 3b; S4). Based on synteny
plots, we recognize ~ 0.7Mb of the contig 28 in Z. pseu-
dotritici and ~ 0.6Mb of the contig 17 for Z. brevis, cor-
responding to chromosome 7 of Z. tritici (Fig. 2 and S2)
and sharing the same hallmarks of accessory chromo-
somes (Fig. 3 and S4, Table S3). For the two remaining
sister species, the fragmentation of the assembly does
not allow the identification of such pattern although we
observe a similar tendency with respect to transcrip-
tion and species-specific gene enrichment on contig
19 (~ 0.6 Mb) of Z. ardabiliae corresponding to a
fragment of chromosome 7 in IPO323 (Figure S5).
We also identified other regions enriched in isolate-

specific genes, thus defining orphan loci in the core
chromosomes of both Zt10 and Zt05 (Fig. 3 and S4). We
observed a region of ~ 0.2 Mb of contig 1 in the Iranian
isolate Zt10 corresponding to the core chromosome 3 in
the IPO323 genome with high content of isolate-specific
genes (Figure S4; Table S3). We furthermore identified
small segments with species-specific genes on the core
chromosomes of the wild-grass infecting sister species
including a ~ 0.3Mb region of the contig 26 in Z. brevis
and ~ 0.1Mb of contig 30. Overall, we show that genome
compartmentalization in core and accessory regions is
an ancestral and shared trait among the Zymoseptoria
species. This phenomenon generates highly variable
compartments and defines loci that deviate from
genome averages in terms of gene content, sequence
composition and synteny conservation.

Variable repertoires of effector candidate genes
To obtain gene annotations for the Zymoseptoria
genome assemblies, we established a custom pipeline
adapted from Lorrain and co-workers (Figure S5) [40].
Briefly, we use the consensus of three methods to
predict gene product localization, then extract secreted
proteins to further identify predicted effectors. This
detailed functional annotation provided a catalog of
predicted gene functions and cellular localizations
(Figure S6). For each genome, a large proportion of
genes could not be assigned to a protein function. 49.6%
of genes in Z. tritici (N = 5953) and up to 71.8% of genes
in Z. pseudotritici (N = 8373) lack a predicted function
(i.e. proteins of unknown function; Figure S6A). A rela-
tively consistent number of genes are predicted for each
functional category among Zymoseptoria spp. (Figure
S6A and B). Likewise, the numbers of gene products
predicted to belong to the different subcellular

localizations are very similar (Figure S6C) across the
whole genus, including secreted proteins. The difference
between the minimal and maximal gene number for the
different categories of subcellular localizations does not
exceed 1.6X between species (Figure S6C). Overall,
secretomes range from 7% of the genes predicted sin Z.
passerinii (N = 828) to 11% of genes in Z. ardabiliae
(N = 1328 genes, Figure S6B).
We further investigated the number and distribution of

genes predicted to encode proteins with a pathogenicity-
related function, such as secondary metabolites, CAZymes
and predicted effectors (Figure S1 and S6B). Genes involved
in the synthesis of secondary metabolites are typically
organized in clusters, with genes participating in the same
biosynthetic pathway grouping together at a genomic locus
(Shi-Kunne et al. 2019). The number of biosynthetic gene
clusters (BGC) ranges from 25 in Z. ardabiliae and Z.
passerinii to 33 in the IPO323 reference genome and
includes from 305 to 471 predicted genes (Figure S1). The
only BGC identified in a non-core contig is a non-
ribosomal peptide synthetase BGC found on the contig 38
of Z. brevis which has no orthologous cluster detected in
any of the other Zymoseptoria genomes (Figure S1). We
identified between 454 and 515 CAZyme genes in the
Zymoseptoria species. Both BGCs and CAZymes are almost
exclusively found on the core chromosomes (Figure S1).
The only exceptions are a CAZyme encoding gene found
on chromosome 14 in Z. tritici IPO323 and Zt05, and a
CAZyme encoding gene on the putative accessory
contig 38 of Z. brevis (Figure S1). These two genes
encode for a beta-glucosidase and a carboxylic-ester
hydrolase, respectively.
In contrast to the high conservation of CAZyme and

BGC gene content among the Zymoseptoria genomes,
we find that predicted effector genes exhibit a large
variation in gene numbers between genomes (Figure
S6B). In fact, the predicted effector gene repertoire in Z.
ardabiliae (N = 637) is three times higher compared to
Z. brevis (N = 206). Interestingly, the three Z. tritici
isolates also vary considerably in their predicted effector
repertoires. The reference isolate IPO323 has a reduced
set of predicted effector genes (N = 274) compared to
Zt05 and Zt10 that encode approximately 30% more
predicted effector genes (N = 417 and N = 403, respect-
ively, Figure S6B). Despite the high variability, the
predicted effector genes are mostly located on core chro-
mosomes and none of the five Zymoseptoria species
have more than ten predicted effector genes located on
accessory chromosomes (Figure S1).

The accessory genes of Z. tritici are shared with the
closely related wild-grass infecting species
To further characterize variation in gene content among
the five Zymoseptoria species, we identified orthologous
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genes (i.e. orthogroups) from the gene predictions. We
categorized 22,341 gene orthogroups identified in the
seven Zymoseptoria genomes and in C. beticola accord-
ing to their distribution among fungal genomes (Fig. 4a).
The core orthogroups, which are genes present in all
eight genomes, represent around 30% of all orthogroups
(N = 6698). The genus-specific orthogroups, shared between
several Zymoseptoria spp. but not found in the C. beticola
genome, represent 45% of the orthogroups (N = 9955;
ranging from 2066 to 3212 per species). Among the genus-
specific orthogroups, 1100 are found in all Zymoseptoria
genomes (Fig. 4a), whereas all others show presence-
absence polymorphisms within the genus. A total of 2476
species-specific orthogroups (ranging from 552 to 1191 per
species) are found only in individual species. Among the
species-specific genes, 205 orthogroups (Ngenes = 414 to 562)
are found in all three Z. tritici genomes while the isolate-
specific genes in Z. tritici represent 391 (Zt10) to 792
(IPO323) genes.
Comparing the three Z. tritici isolates independently

from the other species, we observe extensive gene
presence-absence polymorphisms between the three
isolates: 1540 orthogroups are identified in only two

strains and 2522 are found in only one (Fig. 4b). The
number of genes showing presence-absence variation is
striking compared to the 10,098 core genes in Z. tritici
as these genes comprise almost 30% of all predicted
genes. Interestingly, we show that the number of
orthogroups detected as isolate-specific is much larger
when the comparison includes only members of the
same species than when the other species are included
(1035, 849 and 638 vs 792, 659 and 391 genes for
IPO323, Zt05 and Zt10 respectively; Fig. 4a and b). This
indicates that a large part of the accessory gene content
in Z. tritici is shared among the sister species, and high-
lights the importance of including sister species when
establishing core and accessory gene content.
Interestingly, we show that predicted effectors are

enriched among the genus-specific genes but not among
the species-specific or isolate-specific gene categories
(with the exception of Z. ardabiliae). Fifty-six percent of
predicted effectors in Z. ardabiliae and up to 78% of
predicted effectors in Z. pseudotritici are shared with at
least one of the other five Zymoseptoria species (Fig. 4c).
Indeed, 427 predicted effector orthogroups are found in
at least two genomes. However, only 47 (10% of the total

Fig. 4 Orthogroups and functional gene categories in Zymoseptoria spp. genomes. a Orthogroups shared by the reference Z. tritici genome, our
new Zymoseptoria assemblies and the outgroup genome of C. beticola. Only intersects higher than 100 are displayed on the upset plot. The
doughnut plot summarizes the number of orthologs grouped by larger categories: specific to some isolates, to a species or shared by all. The
colored bars under the upset plot link each intersect to its corresponding category in the doughnut plot. b Venn diagram representing the genes
shared by the three isolates of Z. tritici. c The only gene category found to be overrepresented in any of the specificity categories - other than
unknown function genes - are predicted effector genes. Predicted effectors genes are overrepresented in the genus-specific genes and in Z.
ardabiliae specific genes (*** represent Fisher exact test p-value < 0.05)
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predicted effector orthogroups N = 474) are found in all
seven Zymoseptoria genomes. Among the predicted
effectors shared by Z. tritici, and at least one other
Zymoseptoria species, 32% (N = 112 of 352) are present
in all three Z. tritici isolates while 68% (N = 240 of 352)
show presence-absence polymorphisms in at least one of
the three isolates. These results indicate that the majority
of these shared predicted effectors are actually accessory
(i.e. presence-absence polymorphism) in Z. tritici.

Among in planta differentially expressed genes, species-
specific are more expressed than core genes
Finally, we addressed the functional relevance of accessory
and orphan genes in Z. tritici by analyzing gene expression
patterns. We used previously published in planta expression
data of three Z. tritici isolates [30]. The expression profiling
was obtained from four subsequent infection stages including
infection establishment (stage A), biotrophic colonization
(stage B), the transition from biotrophic to necrotrophic
phase (stage C) and necrotrophic colonization (stage D) [30].
We sorted in planta expression data into two different

infection phases: the biotrophic phase and the necrotrophic
phase, a separation supported by principal component
analysis of normalized DESeq2 counts (Figure S7). Further-
more, we distinguished gene expression of the above-defined
categories (core genes, genus-specific, species-specific, and
isolate-specific). We compared expression levels by mapping
RNA-seq reads to the genomes of IPO323, Zt05 and Zt10,
using normalized read mappings to transcript per million.
We tested differences among gene categories using pairwise
comparisons with a Kruskal-Wallis test (Fig. 5). Overall, we
find that gene expression of the species-specific and isolate-
specific genes is significantly lower in IPO323 and Zt10, but
not in Zt05 (Kruskal-Wallis p-value < 0.05). Species-specific
and isolate-specific gene median expression ranges from 3.2
to 5.6 TPM in IPO323 and Zt10 while median expression of
core genes is 12.1 and 10.9, respectively. The Zt05 expression
profile does not follow the same trend: the core genes are the
lowest expressed gene category (8.9 median TPM), while
genus-; species- and isolate-specific genes showed higher
transcription levels (12.0; 14.4 and 13.5 median TPM
respectively, Kruskal-Wallis p-value < 0.05).

Fig. 5 In planta expression of genes belonging to different specificity levels in the Zymoseptoria pangenome. The boxplots represent the expression
levels in both biotrophic and necrotrophic phase in transcript per million (TPM) for a) the whole transcriptome of Z. tritici isolates and b) in planta
differentially expressed genes identified by DESeq2. Comparisons are performed by Krustal-Wallis test, different letters represent p-value < 0.05
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In contrast, we observe a significantly higher expression
of the species-specific and isolate-specific genes for all three
isolates (Table S4; Kruskal-Wallis p-value < 0.05) when
comparing the expression of genes that are differentially
expressed (DEGs; DESeq2 p-adjusted < 0.05) between the
biotrophic and necrotrophic phases. Species-specific and
isolate-specific DEGs are higher expressed in planta than
the core and genus-specific genes (Fig. 5b; Kruskal-Wallis
p-value < 0.05). The expression patterns of DEGs with
different levels of specificity present a consistent pattern
in all three isolates (Table S4). Overall, this comparison
reveals a potential functional relevance of accessory genes,
which are up-regulated during infection of Z. tritici.

Discussion
In this study we present a new resource of high-quality
whole genome assemblies and gene annotations for the
fungal grass pathogens Z. ardabiliae, Z. brevis, Z. passerinii,
Z. pseudotritici, and two isolates of the wheat pathgoen Z.
tritici. This new dataset provides a valuable resource for
detailed analyses of genome architecture and evolutionary
trajectories in this group of plant pathogens. Here, we con-
duct some detailed comparative analyses of genome architec-
ture and show a considerable extent of variation in sequence
composition during the recent evolution of the Zymoseptoria
lineages. We show that genome compartmentalization and
accessory chromosomes represent shared ancestral traits
among these pathogen species.
We identify extensive presence-absence variation of

protein coding genes in genomes of the five Zymoseptoria
species consistent with the variable gene repertoire already
reported for one of the species, Z. tritici [28], Furthermore,
the different species, share a particular genomic architec-
ture that comprises specific accessory genome compart-
ments. In spite of this variation, we observe an overall
conserved synteny of the core chromosomes. In the Zymo-
septoria genomes, we observe gene-dense, actively tran-
scribed and H3K4me2-enriched compartments associated
with most of the core chromosomes. These compartments
are clearly distinguishable from gene-sparse, non-
transcribed and H3K4me2-deprived compartments. Based
on previous analyses of accessory chromosomes in Z. tritici,
we here consider this pattern as a specific hallmark of
accessory genome compartments in the genus Zymosep-
toria beyond only in Z. tritici [6]. We hypothesize that these
compartments likely represent accessory chromosomes in
the different Zymoseptoria species.
We also identify accessory signatures in core chromo-

somes, including the previously described right arm of
chromosome 7 [6]. Although this region has not been
reported to share the same extent of presence-absence
polymorphism as the accessory chromosomes, a consid-
erably smaller chromosome 7 was reported in a single Z.
tritici isolate originating from Yemen [33]. Here we

show that the region homologous to chromosome 7 in
the other Zymoseptoria species also exhibits accessory
compartment hallmarks. Our results support the occur-
rence of a past chromosome fusion, but hereby show
that it very likely occurred prior to the divergence of the
species (estimated to date tens of thousands of years
[21]). The specific genomic and epigenetic features have
remained stable through speciation and evolutionary
time.
In this study, we confirm previously reported genome

comparisons showing that gene content in Z. tritici is
highly variable [28]. We further extended the identifica-
tion of orthologs throughout the whole Zymoseptoria
genus. Thereby, we show that more than 25% of the
genes identified as isolate-specific in a comparison
including only Z. tritici isolates are actually present in
the wild-grass infecting sister species. This observation
suggests that a large proportion of the accessory genome
of Z. tritici is not specific to this species. Instead, the
accessory genome content is shared among Zymosep-
toria species. The proportion of accessory Z. tritici genes
shared with other Zymoseptoria species was found to be
the highest in the Iranian isolate, which is the only
isolate sympatric with the four sister-species. A likely
explanation for this observation would be inter-specific
gene flow, which would allow the different wild species
to exchange genes with sympatric Z. tritici isolates. This
new finding is consistent with recent findings from
population genomic data studies revealing extensive
introgression between Zymoseptoria species [41, 42].
Our observation opens new perspectives for further
analysis to understand how inter-specific gene flow has
affected the evolution of the accessory genome of Z.
tritici.
The genes with predicted functions and, in particular,

functions related to pathogenicity are largely shared
among species in the Zymoseptoria genus. Although the
lifestyles of the wild-grass infecting Zymoseptoria are
poorly understood, the species share major features of
their lifestyles. Thus, as expected, we find similar
CAZymes and BGC contents across the genomes studied
here. In Zymoseptoria, most of the predicted effectors
are shared among all species, although they show
presence-absence variation. In the Botrytis genus (Dothi-
deomycetes), sister species infecting different hosts share
effectors with confirmed functions [43]. Likewise, in
Microbotrym, a fungal plant pathogen including several
species specialized on different hosts a large set of genes
encoding conserved and shared secreted proteins was
identified. This repertoire of effectors is hypothesized to
include traits relevant for pathogenicity among Microbo-
trym lineages [44]. We hypothesize that the different
specificity levels reflect functional differences in the
effector repertoire of Zymoseptoria. Predicted effector
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genes conserved across the Zymoseptoria genus are
likely core pathogenicity factors potentially targeting key
plant defense mechanisms common to all of the grass
hosts [45]. Variation in the composition of effector genes
in plant pathogen genomes, including the presence of
species-specific and isolate-specific may reflect different
host specificities and rapid evolution of these genes [45].
Here we find that only a fraction of the genus-specific
predicted effector genes is shared among all Zymosep-
toria species; the majority shows presence-absence poly-
morphisms suggesting that a variable effector repertoire
is an ancestral trait in these plant pathogens. Z. ardabil-
iae has been isolated from leaves of distantly related
grass species in Iran, including Lolium spp., Elymus
repens, and Dactylis glomerata and potentially resulting
in a broader species-specific effector repertoire of Z.
ardabiliae compared to the other species [21].
Consistent with a previous study [28], we found that

Z. tritici core genes are generally more expressed com-
pared to accessory genes in planta. Core genes are more
likely to encode essential functions, which could explain
higher expression pattern during infection. Differentially
expressed genes that are specifically induced during the
course of the infection are very likely to have functions
essential to pathogenicity of the fungus. Interestingly,
here we show that within the genes differentially
expressed between the biotrophic and the necrotrophic
phases of infection, isolate- and species-specific genes
have higher expression levels than core genes. These
isolate- and species-specific genes could be functionally im-
portant and regulate functions linked to infection success
in the biotrophic phase or to leaf colonization in the necro-
trophic phase. Since these genes show presence-absence
polymorphisms in the genus and in the Z. tritici species,
they could represent a reservoir for possible adaptations to
host species, host cultivars or local environments.

Conclusion
We investigated the genomic architecture in a genus of
plant pathogens, including the economically relevant wheat
pathogen Z. tritici. Comparing genome content and
genome structure, we identified a large shared predicted
effector repertoire characterized by inter- and intraspecies
presence-absence polymorphisms. Major features of gen-
omic, transcriptomic and epigenetic compartmentalization,
distinguishing accessory and core compartments, were
shared among wheat and wild-grass infecting Zymoseptoria
species. We conclude that compartmentalization of
genomes is an ancestral trait in the Zymoseptoria genus.

Methods
Fungal material, DNA extraction and sequencing
Details regarding the individual Zymoseptoria isolates
can be found in Table 1. For genomic data we used the

three Z. tritici isolates IPO323 (reference), Zt05 and
Zt10, one Z. ardabiliae isolate (Za17), one Z. brevis
isolate (Zb87), one Z. passerinii isolate (Zpa63), and the
Z. pseudotritici isolate (Zp13). For transcriptomic and
epigenomic data we used Z. tritici Zt09 (IPO323
ΔChr18) a derivate of the reference isolate IPO323
deleted with the chromosome 18 [31].
Long read assemblies of the Z. tritici isolates Zt05 and

Zt10 were described and published previously [30]. For
DNA extraction and long read sequencing cultures of Z.
pseudotritici, Z. ardabiliae, Z. brevis and Z. passerinii
were maintained in liquid YMS medium (4 g/L yeast
extract, 4 g/L malt extract, 4 g/L sucrose) at 200 rpm and
18 °C. DNA extraction was conducted as previously
described [26]. PacBio SMRTbell libraries were prepared
using DNA extracted from single cells based on a CTAB
extraction protocol [30, 46]. The libraries were size
selected with an 8-kb cutoff on a BluePippin system
(Sage Science).
After selection, the average fragment length was 15 kb.

Sequencing of the isolates Za17, Zb87, and Zp13 was run
on a PacBio RS II instrument at the Functional Genomics
Center, Zurich, Switzerland. Sequencing of the Zpa63
isolate was performed at the Max Planck-Genome-Centre,
Cologne, Germany.

Genome assembly, and repeat and gene predictions
For each isolate, we assembled the genome de novo
using SMRT Analysis software v.5 (Pacific Bioscience)
with two sets of parameters: default parameters and
“fungal” parameters. We chose the best assemblies
generated by comparison of all assembly statistics
produced by the software Quast such as the number of
finished contigs, the size of the assembly and the N50
[47]. Summary statistics for each assembly can be found
in Table 1. In order to exclude poor quality contigs from
the raw assemblies, we filtered out the contigs with less
than 1.5X and more than 2X median read coverage as
these might be unreliable from lack of data or because
they contain only repeated DNA [34]. This filter
removed a high number of contigs, i.e., between 58 and
17% of contigs, but a only a small quantity of base pairs
as compared to the genome size (Table S1; S5). In order
to identify the number of fully assembled chromosomes
or chromosome arms, we investigated the presence of
telomeric repeats (“CCCTAA”) in the assembled contigs
using bowtie2 and recorded the presence of more than
six repeats at the contig extremities [48–50]. We
reported for each contig the number of such blocks of
telomeric repeats and considered a contig flanked by
these repeats on both sides to be a fully assembled
chromosome.
We next used the REPET package to annotate the

repeat regions of Z. ardabiliae Za17, Z. brevis Zb87, Z.
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pseudotritici Zp13, Z. passerinii Zpa63, and the three Z.
tritici isolates IPO323, Zt05 and Zt10 (https://urgi.ver
sailles.inra.fr/Tools/REPET [51, 52]). For each genome,
we annotated the repetitive regions as follows: we first
identified repetitive elements in each genome using
TEdenovo following the developer’s recommendations
and default parameters. The library of identified consen-
sus repeats was then used to annotate the respective
genomes using TEannot with default parameters.
We used previously published RNA sequencing data to

increase the quality of the gene prediction and combined
three distinct methodologies [22, 30, 32]. As a first
approach, we used GeneMark-ES for an ab initio prediction
using the option “--fungus” [53]. Our second and third
approaches both used RNA-seq data. For this, we first
trimmed the reads using Trimmomatic [54]. We mapped
the filtered and trimmed reads to the newly assembled
genomes using hisat2 [50] and used the BRAKER1 pipeline
to predict genes for each genome using the fungus flag
[55]. BRAKER applies GeneMark-ET and Augustus to
create the first step of gene predictions based on spliced
alignments and to produce a final gene prediction based on
the best prediction of the first set [56, 57]. For our third
approach, the RNA-seq reads were separately assembled
into gene transcripts using Trinity [58]. These were aligned
using PASA and EVidence Modeler to produce consensus
gene models from the two independent predictions and the
de novo assembled transcripts [59]. Gene counts, length
and other summary statistics presented in Table S1 and S3
were obtained using GenomeTools [60] and customs
scripts (https://gitlab.gwdg.de/alice.feurtey/genome_archi
tecture_zymoseptoria).
The predicted gene sequences were the basis for an

evaluation of the completeness of the assembly and gene
prediction by the program BUSCO v.3 [37]. We used
this method with the lineage dataset Pezizomycotina.
The predicted genes were also used to create a phyl-
ogeny with the online implementation of CVtree3, using
kmer sizes of 6 and 7 as recommend for fungi [36]. We
generated a second tree with the whole assemblies, esti-
mating a distance matrix using the andi software [35].
We predicted orthologs between the newly assembled

genomes, the reference Z. tritici genome and the refer-
ence Cercospora beticola genome, a related Dothideomy-
cete, which we used as outgroup to identify genes with
orthologs restricted to the Zymoseptoria genus [21]. For
this, we used the software PoFF [39, 61] which takes into
account synteny information in the analyses of similarity
inferred by the program Proteinortho [39]. These
orthogroups were used to visualize synteny between
genomes using Circos [62].
The whole-genome assemblies were used to create a

matrix distance with the software andi, from which we
generated a tree [35]. A second tree was generated from

the gene prediction with the online implementation of
CVtree3 [36].

Functional annotations
We used several tools to predict the putative functions
for the gene models. First, we used the eggnog-mapper
which provide COG, GO and KEGG annotations [63].
The online resource dbCAN2 was run to identify
carbohydrate-active enzymes (CAZymes) [64]. Finally,
for each genome, we used Antismash v3 (fungal version)
to detect biosynthetic gene clusters (Figure S1 [65]).
Additionally, we designed a pipeline to predict protein

cell localization and to identify effector candidates. The
pipeline for effector prediction is outlined in Figure S1
and includes the software DeepLoc [66], SignalP [67],
TargetP [68], phobius [69] and TMHMM [70, 71], which
predict the cellular location, the peptide signals and
whether proteins are transmembrane. Effector candi-
dates were identified with EffectorP v2 which uses both
a new machine learning approach and more complete
databases to improve effector prediction compared to
the previous version [19]. The pipeline also includes
software which are specifically targeted to annotate plant
pathogenic functions, namely the program ApoplastP
[72] and LOCALIZER [73]. We wrote wrappers scripts,
which run the software and create consensus between
the different prediction tools providing one command
line from the user. These scripts are available at https://
gitlab.gwdg.de/alice.feurtey/genome_architecture_zymo
septoria. Briefly, we gathered outputs of several software
to predict the cellular location, transmembrane domain
and secretion and created a consensus based on the
different output to prevent the pitfalls of any one of
these methods. From this consensus, we extracted the
gene products predicted to be secreted and without a
transmembrane domain. The comparisons of genes
functions repartition were done by combining predic-
tions of COG categories, secondary metabolite genes
with pathogenicity-related gene functional categories
such as CAZymes and effector predictions.

Gene expression analyses
To update expression profiles on the new genome
assemblies and new gene predictions of the three Z.
tritici isolates IPO323, Zt05 and Zt10, we used previ-
ously generated RNA-seq data from in planta and
in vitro growth [30, 32]. The in planta RNA-seq data
was obtained from infected leaves at four different stages
corresponding to early and late biotrophic and necro-
trophic stages of the three Z. tritici isolates [30]. Strand-
specific RNA-libraries were sequenced using Illumina
HISeq2500, with 100pb single-end reads for a total read
number ranging from 89.5 to 147.5 million reads per
sample. This data was previously analyzed [30], using

Feurtey et al. BMC Genomics          (2020) 21:588 Page 11 of 15

https://urgi.versailles.inra.fr/Tools/REPET
https://urgi.versailles.inra.fr/Tools/REPET
https://gitlab.gwdg.de/alice.feurtey/genome_architecture_zymoseptoria
https://gitlab.gwdg.de/alice.feurtey/genome_architecture_zymoseptoria
https://gitlab.gwdg.de/alice.feurtey/genome_architecture_zymoseptoria
https://gitlab.gwdg.de/alice.feurtey/genome_architecture_zymoseptoria
https://gitlab.gwdg.de/alice.feurtey/genome_architecture_zymoseptoria


gene predictions generated from an Illumina-based
assembly [22]. The reads were here mapped on the new
assemblies of Zt05 and Zt10 and the reference genome
of IPO323 after trimming. We used the DESeq2 R pack-
age to determine differential gene expression during in
planta infection, considering only two infection stages;
biotrophic and necrotrophic [74]. Gene expression was
assessed as Transcript per Million (TPM). Briefly, TPM
is calculated by normalizing read counts with coding
region length resulting in the number of reads per
kilobase (RPK). RPK total counts per sample are then
divided by 1 million to generate a “per million” scaling
factor. We calculated the coding region length of each
gene with GenomicFeatures R package using the func-
tion called “exonsBy” [75]. For gene expression analyses,
we further filtered our gene predictions to remove any
predicted transposases and other TE-related annotations
based on the Eggnog mapper annotations.

ChIP-sequencing and data analysis
Z. ardabiliae (Za17) and Z. pseudotritici (Zp13) cells
were grown in liquid YMS medium for 2 days at 18 °C
until an OD600 of ~ 1 was reached. Chromatin immuno-
precipitation and library preparation were performed as
previously described [76]. We sequenced two biological
and two technical replicates per isolate and used anti-
bodies against the euchromatin histone mark H3K4me2
(#07–030, Merck Millipore). Sequencing was performed
at the OSU Center for Genome Research and Biocom-
puting (Oregon State University, Corvallis, USA) on an
Illumina HiSeq2000 to obtain 50-nt reads. The data was
quality-filtered using the FastX toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/), mapping was performed using
bowtie2 [77] and peaks were called using HOMER [78].
Peaks were called individually for each replicate, but only
peaks that were detected in all replicates were considered
and merged for further analysis. Merging of peaks and
genome wide sequence coverage with enriched regions
was assessed using bedtools [49].
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Additional file 6: Figure S1. Plant-associated genes
compartmentalization along the chromosomes. The first track represents
core (dark grey) and accessory (light grey) chromosomes/contigs. Telo-
meric repeats are indicated in orange. Circles from outside to inside rep-
resent the position of: predicted effector genes (blue), biosynthetic gene
clusters (BGC, green) and CAZymes (yellow) per 100 kb windows,
respectively.

Additional file 7: Figure S2. A) Intra-species synteny between the ref-
erence genome of Z. tritici and the genome of the Z. tritici isolate Zt05.
Each color represents a different chromosome as based on the reference
Z. tritici genome, except for accessory chromosomes, which are in grey.
The connecting lines represent orthologs between each genome. The
track between the chromosomes and connecting lines are predicted ef-
fector genes. Telomeric repeats are indicated in orange. B) Inter-species
synteny between reference genome of Z. tritici and Z. pseudotritici. The ar-
rows represent the large-scale inversions identified between the ge-
nomes of these two species.

Additional file 8: Figure S3. Inter-species synteny between genomes
of Z. pseudotritici and Z. brevis. A) High level of nter-species synteny at
the whole genome level between Z. pseudotritici (dark grey) and Z. brevis
(blue). The arrows indicate the contigs identified as carrying rearrange-
ment with Z. tritici but not between Z. pseudotritici and Z.tritici. B – D)
Zoom-in on the contigs highlighted with the arrow in part A, showing
the details of the pair-wise synteny of both Z.pseudotritici (Zp13) and Z.
brevis (Zb87) with the Z.tritici reference (IPO323) chromosomes.

Additional file 9: Figure S4. Genome architecture in A) Z. tritici Zt05, B)
Z. tritici Zt10. C) Z. brevis Zb87 and D) Z. ardabiliae Za17. Circles from the
outside to the inside represent respectively: gene density along
chromosomes/contigs; gene expression in vitro (TPM); H3K4me2
distribution in vitro (only for Za17) and species-specific gene density per
100 kb windows. Contigs are ordered based on synteny with chromosomes
of the reference strain IPO323. Telomeric repeats are indicated in orange.

Additional file 10: Figure S5. Simplified diagram of the pipeline used to
predict the functions and subcellular localization of gene model products.

Additional file 11: Figure S6. Functional gene categories in
Zymoseptoria spp. genomes. A) The number of genes in Eggmapper COG
categories in addition to Effectors and CAZymes. B) Pathogenicity-related
genes of interest: secreted proteins, predicted effectors, secreted
CAZymes and non-secreted CAZymes. C) Subcellular localization of pre-
dicted gene products.

Additional file 12: Figure S7. Principal component analysis of DESeq2
rlog transformed expression data. Principal component analysis (PCA) of
Zymoseptoria tritici IPO323, Zt05 and Zt10 transcripts levels measured in
biotrophic (red) and necrotrophic (blue) stages using RNA-sequencing.
Reads detected per transcript (counts) were normalized using the size
factor method used by DESeq2 package [73]. The PCA plot places bio-
logical replicates (four replicates per stage) along the two first PC axes
explaining 58 to 65% of the variance (x-axis) and 15 to 25% (y-axis) of the
variance within samples, respectively.
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