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Scalable Sparse Testing Genomic
Selection Strategy for Early Yield
Testing Stage
Sikiru Adeniyi Atanda1,2,3†, Michael Olsen4*†, Jose Crossa2†, Juan Burgueño2†,
Renaud Rincent5†, Daniel Dzidzienyo1, Yoseph Beyene4†, Manje Gowda4†, Kate Dreher2†,
Prasanna M. Boddupalli4†, Pangirayi Tongoona1†, Eric Yirenkyi Danquah1†,
Gbadebo Olaoye6 and Kelly R. Robbins3*†

1 West Africa Center for Crop Improvement (WACCI), University of Ghana, Accra, Ghana, 2 International Maize and Wheat
Improvement Center (CIMMYT), Texcoco, Mexico, 3 Section of Plant Breeding and Genetics, School of Integrative Plant
Sciences, Cornell University, Ithaca, NY, United States, 4 International Maize and Wheat Improvement Center (CIMMYT),
Nairobi, Kenya, 5 French National Institute for Agriculture, Food, and Environment (INRAE), Paris, France, 6 Agronomy
Department, University of Ilorin, Ilorin, Nigeria

To enable a scalable sparse testing genomic selection (GS) strategy at preliminary
yield trials in the CIMMYT maize breeding program, optimal approaches to incorporate
genotype by environment interaction (GEI) in genomic prediction models are explored.
Two cross-validation schemes were evaluated: CV1, predicting the genetic merit of new
bi-parental populations that have been evaluated in some environments and not others,
and CV2, predicting the genetic merit of half of a bi-parental population that has been
phenotyped in some environments and not others using the coefficient of determination
(CDmean) to determine optimized subsets of a full-sib family to be evaluated in
each environment. We report similar prediction accuracies in CV1 and CV2, however,
CV2 has an intuitive appeal in that all bi-parental populations have representation
across environments, allowing efficient use of information across environments. It is
also ideal for building robust historical data because all individuals of a full-sib family
have phenotypic data, albeit in different environments. Results show that grouping of
environments according to similar growing/management conditions improved prediction
accuracy and reduced computational requirements, providing a scalable, parsimonious
approach to multi-environmental trials and GS in early testing stages. We further
demonstrate that complementing the full-sib calibration set with optimized historical
data results in improved prediction accuracy for the cross-validation schemes.

Keywords: genomic selection, factor analytic, preliminary yield trials, prediction accuracy, unstructured model,
CDmean

INTRODUCTION

Due to climate change threatening crop productivity in sub-Saharan Africa (SSA), breeding
for drought tolerance and yield stability across target environments is a high priority for the
International Maize and Wheat Improvement Center (CIMMYT) tropical maize breeding program
(Beyene et al., 2015, 2019). To achieve genetic gain improvement in alignment with these breeding
objectives, the CIMMYT maize breeding programs leverage novel technologies such as doubled
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haploid (DH) technology, that allows generation of tens of
thousands of inbred lines yearly, a low-cost genotyping platform,
and genomic selection (GS) that uses whole-genome information
to predict the genetic merit of new lines. The CIMMYT
maize breeding scheme has five stages of testing. Many hybrid
combinations are developed each year and tested in a small
number of environments during the early testing phase, in later
stages a small number of selected hybrid combinations are tested
in many environments. To identify parental lines for the next
breeding cycle and develop stress tolerant and high yielding
hybrids that meet farmers’ needs, hybrids are tested under both
well-watered (WW) and water-stress (WS) conditions in the
preliminary screening stages. Each stage is characterized by the
number of locations and the number of testers. These factors
influence selection accuracy in the different testing stages.

At stage 1 or preliminary yield trials, several experimental
hybrids are generated by crossing DH lines, or lines developed
using the pedigree scheme, to a tester from a complementary
heterotic group. The testcross hybrids are evaluated in 3–5
environments, where each environment is a combination of
location and management (WS and WW), and the data are
used to select the best 10–15 percent of the lines within or
across the managements for advancement to stage 2 yield trials
(Beyene et al., 2019). Effective selection decisions at stage 1
yield testing are critical for the advancement of lines with the
greatest potential to perform in the resource-intensive multi-
location, multi-tester testing stages. However, the effectiveness
of phenotypic selection (PS) for stage 1 testcross trials is limited
by evaluation on one tester and in few environments, which do
not adequately represent the target population of environments
(Endelman et al., 2014), this is largely due to the number of
DH lines for testcross and the number of testcross hybrids for
evaluation. Consequently, the CIMMYT Global Maize breeding
program is focused on redesigning early-stage yield trials to
accelerate genetic gain and reduce the cost of hybrid testing by
evolving from a phenotypic based selection to the use of GS
to predict the genetic merit of new lines. The efficiency of this
method for evaluation of stage 1 candidates has been established
(Beyene et al., 2019).

The current GS strategy relies on phenotyping 50 percent
of a bi-parental population, observed across WW and WS
environments, to predict the genetic merit of un-tested
candidates for both WW and WS (Beyene et al., 2015, 2019;
Santantonio et al., 2020) in a test-half-predict-half strategy
(Atanda et al., 2020). While this strategy results in improved
prediction accuracy at lower cost, it is not optimal for reducing
breeding cycle time because a subset of the bi-parental population
is required for model training (Atanda et al., 2020). The goal
of the CIMMYT maize breeding program is to accelerate the
early yield testing stage by using information from previously
tested genotypes that have been phenotyped and genotyped
(historical data) for model training. Based on the predicted
genomic estimated breeding value (GEBV), lines will be advanced
directly to stage 2 yield trials, the effectiveness of this strategy has
been evaluated in our previous study.

Sparse testing represents a promising approach to expand
the number of lines tested when GS is used to advance lines

directly into stage 2, and for stage 1 screening of lines in cases
where the genetic merit of some new lines may not be accurately
predicted due to low genetic relationship between new lines and
previously evaluated genotypes in the historical dataset. In the
case where GEBV of lines cannot be accurately predicted from
historical data, sparse testing has been identified as an optimal
GS strategy compared to the current CIMMYT GS strategy (test-
half-predict-half) that tests half of a full sib family to train
genomic prediction models for full sibs that are not tested in stage
1 (Atanda et al., 2020; Santantonio et al., 2020). Given that all
populations have phenotypic records in different environments,
it is an appealing option for creating a robust historical dataset
and allows for borrowing of information across environments
resulting in improved prediction accuracy when compared to
the test-half-predict-half strategy (Burgueño et al., 2012; Atanda
et al., 2020; Santantonio et al., 2020).

To identify a scalable strategy that optimizes the
representation of genetic space of the genotypes across
environments leading to efficient use of information across the
environments at the early yield testing stage, we evaluated two
different breeding scenarios: (1) predicting the genetic merit of
new bi-parental populations across environments (phenotyping
of populations was unbalanced across environments) or, (2)
predicting different subsets of a bi-parental population across
environments. Here, coefficient of determination (CDmean) was
used to split bi-parental populations across environments.

The main objectives of this study were to: (1) determine
an effective strategy to implement sparse testing within the
CIMMYT tropical maize breeding program and, (2) determine
the optimal method to incorporate genotype by environment
interaction (GEI) into the GS model for early yield testing stage.

MATERIALS AND METHODS

Plant Materials
The datasets used in this study are described in detail in Atanda
et al. (2020). Briefly, the maize datasets consist of 849 and 1,389
DH lines derived from 13 and 45 DH bi-parental populations
respectively. The DH lines were unique within each year and
were testcrossed to one of three single-cross testers in 2017 and
one of two single-cross testers in 2018 respectively. Testcrosses in
2017 and 2018 were grouped into 13 and 34 trials, respectively.
The trials were connected by common checks, and each trial
was planted in an alpha-lattice incomplete block design with
two replications under WW condition in Kiboko and Kakamega,
Kenya and WS condition, in Kiboko during the 2017 and 2018
growing seasons. The entries in the trials were planted two-rows
per plot, each row was 5 m long, with spacing of 0.75 m between
rows and 0.25 m between hills. At planting, two seeds per hill were
planted and thinned to one plant per hill 3 weeks after emergence
to obtain a final plant population density of 53,333 plants per
hectare. Fertilizers were applied at the rate of 60 kg N and 60 kg
P2O5 per ha, as recommended for the area. Nitrogen was applied
in a split dose at planting and 6 weeks after emergence. For the
purposes of modeling genotype by environmental interactions
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(GEI), several combinations of factors (location, management,
and year) were used to classify environments as summarized in
Table 1.

All DH lines were genotyped using repeat Amplification
Sequencing (rAmpSeq) at Cornell Life Science Core Laboratory
Center, Ithaca, NY, United States. The genotyping platform
takes advantage of knowledge of whole-genome sequences and
repetitive sequences to identify DNA sequence polymorphisms
using novel bioinformatics tools [for detail see Buckler et al.
(2016)]. It provides dominant markers, with the 9,155 sequence
tags coded as 0 and 2 based on presence or absence of the
dominant marker, respectively. The 6,785 markers with minor
allele frequency greater than 0.05 were used for analysis.

Genomic Selection Models
A separate analysis was run for each of the environmental
classifications found in Table 1 using a multi-environment linear
mixed model incorporating GEI effect. The covariance structures
were defined using the groups in Table 1 and the model was fit in
ASReml using the average information algorithm (Gilmour et al.,
1995) as:

y = 1nµ+ X1b1 + Z1u1 + Z2u2 + Z3u3 + Z4u4 + Z5u5 + ε

(1)
where y (n × 1) is the vector of phenotypes for each DH lines
measured in the environments (1...k), µ is the overall mean and
1n (n × 1) is a of vector ones, b1 is a fixed effect of location, u1is

TABLE 1 | Classification of the environments based on management, location by
management, management by year and location by management by year.

Grouping of the environments Environment

Location by
management

Kiboko by WW LM1

Kakamega by WW LM2

Kiboko by WS LM3

Management (single
year analysis)

WW M1

WS M2

Management by year WW by 2017 MY1

WS by 2017 MY2

WW by 2018 MY3

WS by 2018 MY4

Management++

(multi-year analysis)
WW M+1

WS M+2

Location by
management by year

Kiboko by WW by 2017 LMY1

Kakamega by WW by
2017

LMY2

Kiboko by WS by 2017 LMY3

Kiboko by WW by 2018 LMY4

Kakamega by WW by
2018

LMY5

Kiboko by WS by 2018 LMY6

M+ is the broad classification of management across years as WW and WS.

the random effect of the interaction between the genomic effect
of g-th DH line and v-th environment, u2 is the random effect of
the tester, u3 is the random effect of the trial, u4 is the random
effect of replication nested within environment, trial and year for
the multi-year dataset, u5 is the random effects of incomplete
block nested within replication, trial, location and year for the
multi-year dataset. The number of fixed and random effects is
represented as n and p, while Xn and Zp are incidence matrices
for fixed and random effects, respectively. The variance of the
random effects u2, u3, u4, and u5were assumed to be distributed
as:

up ∼ N(0, Ipσ
2
up

) (2)

where Ip and σ2
up

are the identity matrix and variance of the p-
th random effect (u2- u5). In Equation 1 all fixed effects and
random effects u2- u5 are model in the same way for all analyses,
while the covariance structure for u2 and ε varied based on the
environmental classifications in Table 1.

The random GEI effect u1 is defined as the Kronecker product
(
⊗

) between the g × g genomic relationship matrix (G) and
the v × v variance-covariance matrix of the genomic effect of
genotypes in and between environments (Go).

u1 ∼ N[0, (G⊗ Go)] (3)

Thus, covariance of the genomic effect of the line (u1) in multi-
environment model, can be represented as:

Cov(u1, u
′

1) = Go ⊗ G (4)

Go ⊗ G =


σ2

g1
σg12 · · · σg1v

σg21 σ2
g2 · · · · · ·

σgv1

...

...

. . .

...

σ2
gv

⊗ G(5) (5)

where Go represents the v × v variance-covariance matrix of the
genomic effect of genotypes in the environments. The number of
environments v varied based on the environmental classifications
in Table 1. The diagonal of the Go matrix is the additive genetic
variance σ2

gv
within the v-th environment. The off-diagonal (σg1v)

elements represent the genetic covariance between environments.
Fitting the GEI in this way enables examination of the

predictive ability of an unstructured model (US) that allows
fitting unequal covariance between pairs of environments or
managements, in addition to different genetic variances within
environment/management. However, the number of parameters
to estimate for the US model does not increase linearly with the
number of environments, which can result in non-convergence
when the number of model parameters is large relative to the
number of data points (Smith et al., 2001; Kelly et al., 2007;
Oakey et al., 2016). The factor analytic (FA) model has been
identified as a more parsimonious approach to fit the complex
covariance structure amongst a large number of environments
(Piepho, 1998; Smith et al., 2001; Crossa et al., 2004; Oakey
et al., 2016; Smith and Cullis, 2018). FA identifies one or few
factors underlying the correlation among the k environments
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by their relationship to unobservable latent variables. Therefore,
the GEI is modeled as interaction between the genomic effect
of the g-th DH line and one or few factors underlying the
environmental/management influences on the genotype (Piepho,
1998; Smith et al., 2001; Crossa et al., 2004; Kelly et al., 2007). FA
model for Cov(ug, u

′

g) is expressed as:

(33′ +9)⊗ G (6)

where 3 is a v × m matrix of loading factors, the columns
of 3 are associated with the environmental loadings for the
m-th latent factor. 9 is a v × v heterogeneous diagonal matrix
with specific environment genetic variances 9v on the diagonal
and zero covariance between environments. When the number
of environments was less than 4 (as defined in Table 1), one
multiplicative component was considered (m = 1) and m = 2
as number of environments increased from 4 to 6. We use the
extended FA (XFA) model that allows a non-full rank variance
matrix for the GEI effects, therefore the mixed model equation
is sparser, resulting in reduced computational requirements
compared to the standard FA model. Details can be found in
Thompson et al. (2003) and Meyer (2009).

The residual variance for the GS model (Equation 1) can be
specified as:

ε ∼ N(0,R) (7)

where R is a heterogeneous diagonal matrix of the residual
variances for each environment v:

R =


σ2

ε1
∗In1 0 · · · 0
0 σ2

ε2
∗In2 · · · 0

...

0

...

0
. . .

...

σ2
εv
∗Inv

 (8)

where Inv is a nv = nv identity matrix and nv is the number
of observations in environment v. The off-diagonal elements of
the R matrix equal zero [Cov(ε, ε

′

) = 0] and diagonal elements
represent the residual variance within each of v environments.
Generally, the residual variance for multi-environment GS
models can take two different forms explaining different model
assumptions. For example, a uniform residual variance for all
environments (σ2

ε1
= σ2

ε2
. . . = σ2

εv
), and a heterogeneous residual

variance where each environment has different residual variance
(σ2

ε1
6= σ2

ε2
. . . 6= σ2

ε v
).

The plot level heritability for each environment was calculated
from the variance components obtained from the model as:

h2
v =

σ2
gv

σ2
gv
+σ2

εv

(9)

where σ2
gv

and σ2
εv

are the genetic and residual variance estimates
specific to environment v.

Calibration Set Optimization Criteria
Following Atanda et al. (2020), CDmean and Avg_GRM were
used as genetic optimization criteria. Similar to Rincent et al.

(2012), CDmean was used to optimize experimental design
by determining which individuals were evaluated in each
environment. However, in this study, CDmean is the mean of
the expected reliability of the predicted genetic values of N-
1 individuals in a specific bi-parental population, where N is
the size of a given full-sib family with each g-th individual
used to predict the reliability of the remaining full-sibs. The
expected reliability of the prediction of the different contrasts was
expressed as:

CD (K) = diag

[
K
′

(G−λ(Z
′

DZ+λG−1)
−1

)K
K′GK

]
(10)

where D = 1−X(X
′

X)−1X
′

, G, X, and Z are the same as defined
above and K is a matrix of contrast vectors with the sum of each
contrast vector equal to zero such that 1′K = 0.

In principle λ = σ2
ε/σ

2
g, where σ2

ε is the residual error and σ2
g

is the genetic variance obtained from Equation 1; however, this
cannot be calculated for untested lines. According to Atanda et al.
(2020), the efficiency of CDmean is not highly dependent on trait
heritability but rather on genomic relationship. Consequently, λ

was set to 0.5. In our previous study, when an intermediate value
was chosen for (λ = 0.5) the prediction accuracy was close to
accuracies achieved using λ = σ2

ε/σ
2
g, this was in agreement with

Rincent et al. (2012). Therefore, CDmean = mean [diag(CD(K))],
each column of the K matrix is a contrast between (N-1)
individuals of a full-sib family and the mean of the full-sib family.
A contrast using the first individual in the family is set up as:

K1 = c
(

n− 1
n

,
−1
n

,
−1
n

)
(11)

Where n is the number of individuals in the populations.
Therefore, one individual of a full-sib in a specific bi-
parental population serves as a calibration set to estimate
the reliability of predicting the remaining full-sibs. This was
repeated N times enabling each g-th individual of a full-
sib to serve as calibration set. Consequently, we obtain a
CDmean value for each individual in a given bi-parental
population and individuals (50 percent of a bi-parental
population) with the highest CDmean value represent an
optimized calibration set. Theoretically, individuals with high
CDmean value maximize the reliability of those with low
CDmean value, thus full-sib families where split between
environment by keeping high and low CDmean lines together
in WW environments, respectively. In the WS environment,
a portion of lines from each WW environment were used
as the calibration set (Supplementary Figure 2). A script to
calculate the CDmean is provided in Supplementary File 1.
This strategy was adopted because it is computationally
efficient compared to Rincent et al. (2012) which used an
exchange algorithm to randomly exchange one individual
between the calibration set (N

′

, – total number of individuals
to phenotype) and the un-phenotyped individuals (N- N

′

),
where the exchange is accepted if the initial CDmean value
improved and rejected otherwise. The process repeated until
reaching a plateau. Akdemir et al. (2015) and Heslot and
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Feoktistov (2020) also modified Rincent et al. (2012) with
improved computational efficiency. The efficacy of these
methods was not compared in our study, but results from
preliminary analysis show the strategy used in this study
improved prediction accuracy compared to Rincent et al. (2012)
(results not shown).

The Avg_GRM is a raw estimate of the proportion of the
genome shared between a potential training set and all individuals
in a specific full-sib family. Based on the results from our
previous study (Atanda et al., 2020), CDmean and Avg_GRM
genetic optimization criteria have similar efficiency in selecting
individuals from historical data closely related with a specific bi-
parental population. However, Avg_GRM genetic optimization
criterion is computationally more efficient; thus, the Avg_GRM
genetic optimization criterion was used to select 300 individuals
from the historical data that are closely related to a specific full-sib
family. The Avg_GRM can be expressed as:

Avg_GRMj =
1
n

n∑
g

Ggj (12)

where Ggj is the genomic relationship between the g-th individual
in a target full-sib family and the j-th line in the historical data
and n is the size of target full-sib family.

Cross-Validation Scheme
The predictive ability of two cross-validation schemes was
evaluated for possible implementation of a sparse testing GS
strategy in the CIMMYT tropical maize breeding program. For
even distribution of populations across environments, a bi-
parental population with size ≤ 30 was dropped from 2017
dataset and the remaining 12 bi-parental populations were
used for the analysis. The first cross-validation scheme (CV1)
involved masking six random bi-parental populations of the
twelve bi-parental populations in one WW environment with
the remaining bi-parental populations masked in the other
WW environment. In the WS environment, three random bi-
parental populations from each WW environment were masked;
this process was repeated 10 times (Supplementary Figure 1).
Prediction accuracy was calculated as the Pearson correlation
of the predicted GEBV obtained from the models and the
BLUE estimates of DH testcrosses for each population in each
environment. The mean across populations is reported.

In the second cross-validation scheme (CV2), CDmean was
used for splitting each bi-parental population equally across
WW environments by masking 50 percent of a bi-parental
population with lowest CDmean value in one environment and
the remaining 50 percent masked in the other WW environment.
For the WS environment, half of the individuals unmasked in the
WW environments were masked (Supplementary Table 1 and

FIGURE 1 | Predictive ability of factor analytic model for the cross-validation schemes (CV1 and CV2) in WS environments/management. LM and M represent
prediction accuracy obtained when covariance was modeled across environments and managements, respectively, for within-year prediction. LMY represents
classification of environment as location by management by year, MY and M+ represent the broad classification of the management across years as WW and WS,
and explicit definition of the management across years as WW 2017 and 2018 and WS 2017 and 2018. LMY, MY and M+ used all available historical data. The suffix
“his” represents prediction accuracy obtained with optimized historical data using the Avg_GRM genetic optimization criterion.
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Figure 1). Due to the diversity of populations in 2018, the 2018
dataset was chosen to represent “historical” data in this study.
Following Atanda et al. (2020), we further assessed the predictive
ability of augmenting the training set in both cross-validation
schemes with all historical data or with an optimized set of 300
individuals from the historical records closely related to a specific
full-sib family using Avg_GRM genetic optimization criterion. In
the scenario where full-sib training sets were augmented with
historical data, GEI was considered as location by management
by year (LMY 1, 2, 3, 4, 5, and 6), management by year (MY 1, 2, 3,
and 4) to account for the difference between managements across
years in addition to the broad definition of management as WW
(M+1) and WS (M+2). The prediction accuracy was calculated
as the Pearson correlation of the predicted GEBV and the BLUE
estimates of DH lines in each environment, obtained using
the complete dataset for each population, from the combined
analysis. The mean across populations is reported.

RESULTS

Residual Variance, Heritability Within
Environment/Management, and
Correlation Between Pairs of
Environments/Managements
Except for when the environment was classified as year by
management by location (LMY 1, 2, 3, 4, 5, and 6), where
the US model was responsive to the training set and did not
consistently converge, the results for FA and US models were
equivalent regardless of the cross-validation schemes (Result
not shown). Thus, only results from FA model were presented.
The genetic correlation between environments (LM 1, 2, and
3) in the CV1 ranges from 0.13 to 0.64 (Table 2). A similar
trend was observed for CV2 and ranges from 0.22 to 0.363.
For CV1, the within environments (LM 1, 2, and 3) plot-level
heritability for grain yield ranges from 0.27 to 0.42 and ranges
from 0.26 to 0.32 in CV2. When environments were grouped
into managements, for CV1, the genetic correlation between
WW (M1) and WS (M2) was 0.37 and plot-level heritability

within each management was 0.24 and 0.35 respectively. While
for CV2, the genetic correlation between M1 and M2 was
0.47, and plot-level heritability within each management was
0.19 and 0.32.

The genetic correlation between environments (LMY 1, 2,
3, 4, 5, and 6) varies across the cross-validation schemes, it
ranges from −0.14 to 0.74 for CV1 and −0.02 to 0.79 for
CV2. The plot level heritability for each environment across
the cross-validation was modest. In analyses where management
was defined across years (WW 2017 and 2018 – MY1 and
3, WS 2017 and 2018 – MY2 and 4), the genetic correlation
between managements also ranged from negative to moderate
correlation for CV1 (Table 3). While it ranged from low to
moderate in CV2. For the broad definition of management
across years as WW (M+1) and WS (M+2), the genetic
correlation was 0.60 and 0.68 for CV1 and CV2, respectively.
Generally, the estimates of plot-level heritability for CV1 and
CV2 were moderate.

Comparison of Predictive Ability of the
Models and the Cross-Validation Schemes
The grouping of the environments into management consistently
shows higher prediction accuracy compared to modeling of
covariance between environments defined as a combination of
location, management and year (Figures 1, 2). Though the
prediction accuracy for the cross-validation schemes was similar,
the slight difference corroborates the different estimates of
heritability and genetic correlation obtained from the cross-
validation schemes. The augmentation of the training set with
optimized historical information improved prediction accuracy
compared to either use of all the historical data plus the full-
sib training set or only the full-sib training set. Unsurprisingly,
prediction accuracy increases with higher heritability and
genetic correlation between environments/managements as
observed with prediction accuracy of WW compared to WS.
Although prediction accuracy of FA and US models are
similar (Supplementary Table 2), the US model failed to
consistently converge when environment was defined based on
the combination of location, management, and year.

TABLE 2 | Plot level heritability (diagonal) and genetic correlations between pairs of managements or environments (upper diagonal) for the two managements (upper
half) and three environments (lower half) from the factor analytic model analysis of 2017 dataset.

Cross-validation scheme

CV1 CV2

M WW WS WW WS

WW 0.24 (0.08) 0.37 – 0.19 (0.06) 0.47 –

WS 0.35 (0.06) – 0.32 (0.09) –

LM Kiboko WW Kakamega WW Kiboko WS Kiboko WW Kakamega WW Kiboko WS

Kiboko WW 0.27 (0.09) 0.24 0.63 0.26 (0.06) 0.31 0.63

Kakamega WW 0.42 (0.06) 0.15 0.32 (0.10) 0.22

Kiboko WS 0.34 (0.06) 0.32 (0.04)

M represents grouping of locations by management as WW and WS; LM represents the grouping of locations as Kiboko-WW, Kakamega-WW and Kiboko-WS. Plot level
heritability estimates within each grouping management (M or LM) are represented in the diagonal. The upper diagonals are genetic correlations between environmental
groupings. Standard errors for the heritability estimates are in parentheses.
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TABLE 3 | Plot level heritability (diagonal) and genetic correlations between pairs of managements (upper diagonal) for the two managements (upper half) and four
managements (lower half) from the factor analytic model analysis of combined 2017 and 2018 dataset.

CV1

M+ WW WS

WW 0.31 (0.05) 0.60 – – – –

WS 0.38 (0.03) – – – –

MY WW 2017 WS 2017 WW 2018 WS 2018

WW 2017 0.32 (0.03) 0.31 0.10 0.05 – –

WS 2017 0.38 (0.03) −0.11 0.55 – –

WW 2018 0.27 (0.05) 0.09 – –

WS 2018 0.20 (0.03) – –

LMY Kiboko WW 2017 Kakamega WW 2017 Kiboko WS 2017 Kiboko WW 2018 KakamegaWW 2018 Kiboko WS 2018

Kiboko WW 2017 0.30 (0.07) −0.03 0.45 0.04 −0.14 0.19

Kakamega WW 2017 0.46 (0.08) −0.10 0.29 0.38 0.16

Kiboko WS 2017 0.41 (0.04) 0.23 −0.10 0.32

Kiboko WW 2018 0.49 (0.04) 0.69 0.74

KakamegaWW 2018 0.50 (0.08) 0.33

Kiboko WS 2018 0.38 (0.04)

CV2

M+ WW WS

WW 0.35 (0.04) 0.68

WS 0.39 (0.05)

MY WW 2017 WS 2017 WW 2018 WS 2018

WW 2017 0.35 (0.04) 0.47 0.36 0.20

WS 2017 0.38 (0.04) 0.30 0.59

WW 2018 0.15 (0.07) 0.38

WS 2018 0.20 (0.05)

LMY Kiboko WW 2017 Kakamega WW 2017 Kiboko WS 2017 Kiboko WW 2018 KakamegaWW 2018 Kiboko WS 2018

Kiboko WW 2017 0.27 (0.07) −0.01 0.32 0.12 −0.10 0.19

Kakamega WW 2017 0.38 (0.05) 0.38 0.42 0.54 0.12

Kiboko WS 2017 0.38 (0.06) 0.26 −0.02 0.34

Kiboko WW 2018 0.53 (0.10) 0.73 0.79

KakamegaWW 2018 0.54 (0.05) 0.55

Kiboko WS 2018 0.36 (0.05)

M+ represents broad classification of management across years as WW and WS. MY represents the grouping of environments by management (WW and WS) and year
(2017 and 2018). LMY groups environments by management (WW and WS), location (Kakamega and Kiboko), and year (2017 and 2018). Plot level heritability estimates
for M+, MY, and LMY are represented in the diagonal. The upper diagonals are genetic correlations between environmental groupings. Standard errors for the heritability
estimates are in parentheses.

DISCUSSION

The sparse testing GS strategy in which the genetic merit of
new lines is evaluated in different but genetically correlated
environments has proven to increase prediction accuracy
compared to the test-half-predict-half GS strategy and, provided
that all new lines have phenotypic data, it is seemingly robust
for developing historical training datasets (Burgueño et al., 2012;
Atanda et al., 2020; Santantonio et al., 2020). The evaluation
of new genotypes across environments allows the utilization
of information across environments using multi-environment
models. However, multi-environment models, especially the US
model, tend to become non-parsimonious as the number of
environments increases resulting in convergence failure (Smith
et al., 2001; Kelly et al., 2007; Meyer, 2009). Considering that
a small number of environments and genotypes were evaluated

in the preliminary yield trials in this study, the use of the US
model did not pose any statistical challenge. However, inclusion
of historical data in the training set increases the number of
environments, which could result in computational challenges
for the US approach. Alternatively, the FA model, which is
a complexity reduction model for an increased number of
environments, requires fewer parameters while accounting for
covariance between environments (Smith et al., 2001; Thompson
et al., 2003; Crossa et al., 2004; Kelly et al., 2007; Burgueño et al.,
2008, 2011, 2012; Smith and Cullis, 2018; Tolhurst et al., 2019),
and could be more suitable as historic training datasets increase
in size and complexity.

Although the predictive ability of the two cross-validation
schemes is comparable, the improved prediction accuracy of CV1
might be due to the close relationship (half-sib relationship)
of all the populations. Previous studies (Lehermeier et al., 2014;
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FIGURE 2 | Predictive ability of the factor analytic model for the cross-validation schemes (CV1 and CV2) in WW environments/management. LM and M represent
prediction accuracy obtained when covariance was modeled across environments and managements, respectively, for within-year prediction. LMY represents
classification of environment as location by management by year, MY and M+ represent the broad classification of the management across years as WW and WS,
and explicit definition of the management across years as WW 2017 and 2018 and WS 2017 and 2018. LMY, MY and M+ used all available historical data. The suffix
“his” represents prediction accuracy obtained with optimized historical data using the Avg_GRM genetic optimization criterion.

Schopp et al., 2017; Atanda et al., 2020) also indicate that
use of closely related multiple bi-parental populations as a
training set result in improved prediction accuracy. Using
diverse populations, one would expect the differences in
marker-quantitative trait loci linkage phase across bi-parental
populations would result in a lower signal to noise ratio, but
that does not appear to be the case in this dataset where several
populations share a common parent. The small size of the bi-
parental population used in this study might affect the prediction
accuracy of CV2. Borrowing of information across environments
was the basis for the improved prediction accuracy using sparse
testing compared to test-half-predict-half (Atanda et al., 2020),
thus, a strategy that optimizes coverage of the genetic space
of the genotypes across environments should result in higher
predictive ability.

The FA is a parsimonious model for fitting a relatively
high number of environments in multi-environment trials
utilizing latent factors which give rise to correlations between
environments to capture the complexity of covariances among
many environments (Burgueño et al., 2012; Oakey et al., 2016;
Smith and Cullis, 2018; Tolhurst et al., 2019). However, with
few environments and a large dataset to estimate all model
parameters, the superiority of the FA model over the US
model will likely depend on the ability of the FA model
to adequately represent the underlying covariance structure
between environments in the dataset (Piepho, 1998; Kelly et al.,

2007; Meyer, 2009; So and Edwards, 2009; Ward et al., 2019).
While this study looked at relatively few environments, the
limitations of the US model became apparent in the multi-
year dataset with six environments defined. Under this scenario,
US model was sensitive to the training set used and did not
consistently converge, suggesting that the utility of US model
will diminish rapidly as the number of environments increase.
Given reliable convergence and similar performance with a small
number of environments, the FA appears to be a more robust
approach for modeling sparse testing implementations in the
CIMMYT Maize program.

In practice, the CIMMYT tropical maize breeding program
advances lines to multi-location, multi-tester yield trials based
on relative performance within or across managements (WW
and WS), the observed improvement in prediction accuracy
when environments were grouped into managements suggests
that categorizing the environments into management did not
sacrifice information on GEI. Assigning environments/locations
into groups using prior information, such as management, as
is the case in this study, can serve as a complexity reduction
strategy for reducing the number of model parameters, providing
a more parsimonious approach for modeling GEI. However, stage
1 yield testing is typified by a small number of environments,
which is a limitation to the generalization of the results of this
study across different phases of yield testing, in particular with
a large number of environments. However, similar to the strategy
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employed in this study, using multi-environment data, Lado et al.
(2016) grouped 35 environments into three mega environments
using the additive main and multiplicative interactive (AMMI)
model (Zobel et al., 1988), and GS was performed within the
mega environments.

Augmenting a given full-sib training set with an optimized
set of 300 individuals from historical data using the Avg_GRM
genetic optimization algorithm improved prediction accuracy
compared to using all available historical records. The similar
genetic covariance between managements, heritability, and
prediction accuracy obtained when historical data is used to
complement the full-sib training set, suggests that an increase
in the training set size using historical data results in more
stable estimates of model parameters when compared to using
only the full-sib records as the training set. The results
from this study corroborate our earlier study (Atanda et al.,
2020) indicating that the use of genetic optimization criteria
to select individuals genetically connected to the breeding
population to serve as a training population results in improved
prediction accuracy. This further illustrates the importance of
genetic relationships between training and breeding populations
and indicates that any GS approach carefully consider which
historical records are included for training of genomic prediction
models. Furthermore, these results suggest that, when genomic
information is available breeders should consider utilizing multi-
year information for advancement decisions. This could not
only improve advancement decisions but could enable earlier
recycling of material to reduce generation intervals.

CONCLUSION

Given the similar prediction accuracies obtained in CV1 and
CV2, decisions on which sparse testing experimental design
will likely depend on cost and ease of implementation. While
the prediction accuracy for the cross-validation schemes is
equivalent, CV2 has an intuitive appeal in that all bi-parental
populations have representation across environments, which
would allow efficient use of information across environments
and would be ideal for building a robust historical dataset.
Further, the CV2 can be extended to resource demanding multi-
environment, multi-tester advanced yield testing stages to save
resources. In this study, grouping similar environments to model
GEI information reduced computational challenges and achieved
superior prediction accuracy. In general, including historical
information in trial advancement decisions improved prediction
accuracy, suggesting that the use of historical information
in routine advancement decisions could improve accuracy.
Furthermore, selecting historical information based on genetic
connectedness with the breeding population proved more
effective than including all historical information.
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