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ABSTRACT: 

In semi-arid savannas, the availability of surface water constrains movements and space-use of wild animals. To accurately model their 

movements in relation to water selection at a landscape scale, innovative methods have to be developed to i) better discriminate water 

bodies in space while characterizing their seasonal occurrences and ii) integrate this information in a spatially-explicit model to 

simulate animal movements according to surface water availability. In this study, we propose to combine satellite remote sensing (SRS) 

and spatial modelling in the case of the African buffalo (Syncerus caffer caffer) movements at the periphery of Hwange National Park 

(Zimbabwe). 

An existing classification method of satellite Sentinel-2 time-series images has been adapted to produce monthly surface water maps 

at 10 meters spatial resolution. The resulting water maps have then been integrated into a spatialized mechanistic movement model 

based on a collective motion of self-propelled individuals to simulate buffalo movements in response to surface water.  

The use of spectral indices derived from Sentinel-2 in combination with the short-wave infrared (SWIR) band in a Random Forest 

(RF) classifier provided robust results with a mean Kappa index, over the time series, of 0.87 (max = 0.98, min = 0.65). The results 

highlighted strong space and time variabilities of water availability in the study area. The mechanistic movement model showed a 

positive and significant correlation between observations/simulations movements and space-use of buffalo’s herds (Spearman r = 0.69, 

p-value < 10 e-114) despite overestimating the presence of buffalo individuals at proximity of the surface water.

1. INTRODUCTION

In semi-arid environments such as southern African savannas, the 

availability of surface water constrains movements, distributions 

and space-use of wild animals (Chamaillé-Jammes et al., 2016). 

Having the capacities to monitor, through space and time, surface 

water availability at a landscape scale can potentially enable the 

characterization of wild animal movements in relation to this 

natural resource. The simulated distribution of wildlife in space 

and time resulting from the modelling of the relationship between 

an animal species and its water requirements could then be used 

to address human/wildlife coexistence related issues such as 

* Corresponding author 

competition for resources inside/outside protected areas (Young 

et al., 2005), crop or livestock  destruction by wildlife (Valls-Fox, 

2015), and risk of pathogen transmission between wild and 

domesticated species (Caron et al., 2013; Miguel et al., 2013).  

The advent of satellite telemetry using global positioning system 

(GPS) allows to determine temporal and spatial position of 

animals in a given area with high precision, temporal accuracy 

and position updates available in rapid frequency 24 hours a day 

(Cagnacci et al., 2010). This breakthrough in technology enabled 

to better apprehend how and why animals move (Kays et al., 

2015). Combining this technology with satellite remote sensing 

(SRS) generates opportunities for studies such as natural resource 
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suitability mapping (Remelgado et al., 2018) or species–

environment interactions mapping (Sheeren et al., 2014). Indeed, 

SRS provides an array of tools and methodologies to discriminate 

environmental variables (e.g., surface water) at different spatial 

and time scales in areas with partial or no in-situ data coverage 

(Alsdorf et al., 2007). This is particularly true in the current 

context of increasing number and variety of SRS sensors 

(Paganini et al., 2018). For example, several studies have been 

combining GPS telemetry data with SRS in savanna 

environments to investigate the relationship between resource 

gradients and overlap between wild and domestic herbivores 

(Zengeya et al., 2015) or to assess the impact of small-scale 

ephemeral water sources on wildlife (Naidoo et al., 2020), greatly 

expanding our understanding of ecological functioning in 

relation to animal movement as a result. Since 2015, Sentinel-2 

satellites provide 10m spatial resolution SRS images with a 

revisit frequency of 5 days that can potentially be combined with 

GPS telemetry data to conduct landscape scale ecological 

analysis. Applications and studies in the field of ecology using 

this technology need to be further developed in conjunction with 

spatial modelling.  

 

Spatial models of animal movement taking into account biotic 

and abiotic drivers as well as behavioral mechanisms have been 

developed in recent years (Moorcroft, 2012; Westley et al., 

2018). Mechanistic modelling approaches can take into account 

fine-scale ecological processes (e.g., environmental changes and 

animal responses) that underlie ecosystem functions (i.e., 

watering behavior of a focal species) and incorporates changes in 

ecosystem properties (e.g., inter-species competition for water 

resources) in response to changes in the environment (e.g., 

climate and water resource changes) (Rastetter et al., 2003). 

Models that describe the collective motion of groups of self-

propelled agents (Gregoire et al., 2003; Huepe and Aldana, 2008) 

can simulate herd dynamics easier than hard-to-calibrate 

individual-based models. Such ‘swarm’ models are parsimonious 

as they use few parameters (i.e., speed, alignment, cohesion) to 

mimic a group of individuals (Eriksson et al., 2010; Gregoire et 

al., 2003; Vicsek et al., 1995) and are a way to control the amount 

of self-organization within a herd of a specific species (i.e., the 

degree of alignment and cohesion of the individuals’ headings). 

However, dynamic animal movement models that combine SRS 

with GPS telemetry in order to specifically characterize species-

environment interactions in space and time at a landscape scale 

are lacking. Indeed, SRS derived environmental data are rarely 

used in combination with spatial modelling although the 

understanding of animal movement and their associated 

ecological mechanisms could benefit from such approaches 

(Neumann et al., 2015; Rumiano et al., 2020).  

 

Thus, the objectives of this study are two-fold: i) developing a 

method to map surface water at a landscape scale accounting for 

seasonal variations in a savanna type area near the Hwange 

National Park (Zimbabwe) using Sentinel-2 satellite images, and 

ii) integrating the resulting surface water maps in a spatialized 

mechanistic animal movement model, with the example of the 

African buffalo (Syncerus caffer caffer), a keystone species for 

conservation and production systems in southern African 

interfaces (Cornélis et al., 2014). 

 

2. MATERIAL & METHOD 

2.1 Study area 

Our study area is located North West of Zimbabwe in the 

Matabeleland North Province (18°37’ S, 26°52’ E) (Figure 1). 

More specifically, it lies at the northern periphery of Hwange 

National Park (HNP), within the Sikumi Forest Area (SFA) that 

is under the management of the Forestry Commission of 

Zimbabwe since 1968 and covers an area of approximately 200 

km² sharing an open boundary with HNP (14650 km²). In this 

ecosystem, wildlife coexists with human activities such as cattle 

herding, firewood and thatching grass harvesting and tourism 

(Valls-Fox et al., 2018). Human settlements and agricultural 

fields are located only a few hundred meters away from the 

unfenced SFA boundaries (Guerbois et al., 2013). The vegetation 

of the area can be characterized as semi-arid wooded savannas 

with patches of grassland. Surface water is naturally provided by 

pans and springs, most of which dry-up during the dry season 

(May to September). Solar powered pumping stations are also 

present in the area and ensure year-round water availability. 

Annual rainfall approximates 600 mm per year in average with 

an inter-annual variability coefficient of 25 % between 1928-

2005 (Chamaillé-Jammes et al., 2006). However, drought 

severity and inconsistency of rainfall increased in the area during 

the twentieth century (Chamaillé-Jammes et al., 2007).  

 

 
 

Figure 1. Map of the study area and display of the data used in 

the study 

 

2.2 Data 

Telemetry data: 8 buffalo individuals have been monitored in the 

area from April 2010 to April 2014 by ultra-high frequency 

(UHF) collars (manufactured by African wildlife Tracking) set 

with a 1 hour frequency signal (Miguel, 2012; Valls Fox, 2015). 

Three groups of respectively three individuals (from April 20th 

2010 to August 18th 2011), four individuals (from November 14th 

2011 to September 9th 2013) and four individuals (from March 

12th 2013 to April 15th 201) have been constituted. Each group 

represents buffaloes that are present at the same time in the same 

area (Figure 1).  

 

Remote sensing data: 24 Sentinel-2 satellite images of a complete 

year, corresponding to one image per month for the two tiles 

(T35KNV & T35KMV), necessary to spatially cover the entire 

area, have been downloaded in level 1C (Top Of Atmosphere 

reflectance and orthorectified images) via the Copernicus Open 

Access Hub. As no Sentinel-2 images were produced at the time 
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of the telemetry data acquisition, we have chosen images from 

the year 2018 which is representative of the annual rainfall 

precipitation measured via Tropical Applications of Meteorology 

using SATellite data and ground-based observations (TAMSAT) 

compared to the years were the telemetry data have been 

collected. Only the images with less than 10% of cloud cover 

have been considered. As no images were cloud free for the 

month of February 2018, the series was completed by two images 

from February 2019, one per tile.  

 

Reference polygons derived from image interpretation: For each 

Sentinel-2 image and each land-use types to be classified 

(“surface water” and “other”), a set of 100 reference polygons 

have been evenly vectorised over the study area.  

 

Surface water ground truth data: These data consist in GPS 

coordinates locating surface water collected on the field during 

previous studies conducted in the area (Guerbois, 2012; Miguel, 

2012; Valls Fox, 2015) (Figure 1).   

 

2.3 Methodology 

The methodology is structured in separate phases (Figure 2). 

 

 
 

Figure 2. Flowchart combining remote sensing data with 

telemetry data to model the focal species movements 

 

2.3.1   Mapping the surface water 

Pre-treatment: The Sen2Cor v2.8 application (Sen2Cor, 

European Space Agency) has been used to apply atmospheric 

corrections, thus transforming L1C images to level L2A (Top Of 

Canopy) images. The 20 meters spatial resolution spectral bands 

have been resampled by bilinear interpolation to 10 meters spatial 

resolution before being projected to the WGS84/UTM35S 

projection system and clipped to the study zone spatial extent. 

Following (Du et al., 2016), the modified normal difference water 

index (MNDWI) and the normalized difference water index 

(NDWI) have been calculated and stacked with Sentinel-2 short-

wave infrared (SWIR) band. At the end of the pre-treatment, 24 

three-layer rasters (NDVI, MNDWI, SWIR), 12 (one per month) 

for each of the two tiles covering the study area, composed the 

image corpus used in the supervised classification process. 

 

Classification: The reference polygons (c.f. 2.2) have been used 

to clip the 24 pre-treated multi-layer raster stacks to create 

training and validation raster samples. These raster samples were 

then randomly selected with a 50/50 ratio towards training and 

validation and used in the random forest (RF) classifier (Breiman, 

2001). The 50/50 ratio has been chosen as it allows a more 

reliable comparison between training and validation samples than 

a ratio with a lower proportion of validation samples (Mercier et 

al., 2018). RF algorithm was chosen because of its advantages of 

simple parametrization, reliable and rapid execution in 

processing time of large volume of variables and data and its 

proven efficiency in satellite image landcover classification 

(Pelletier et al., 2016). The RF algorithm has then been applied 

on all the 24 pre-processed multi-layer rasters to obtain a 

classification at 10 meters of spatial resolution.  

 

Post-classification: For each classified raster image, the pixels 

classified as ‘water’ have been vectorised to allow the manually 

removal of the noise pixels (false positives). As the water 

surfaces reach their maximum spatial extents in March, when the 

peak precipitation occurs, the two derived classification images 

of the month of March (one per tile) have been selected to map 

the maximum water extent in the area. The resulted vector layers 

of the month of March have then been used as a template to mask 

all of the noise pixels present in the 11 other months of the year 

vector layers.  

 

Surface water classification validation: The surface water ground 

truth data (c.f. 2.2) were used to validate the classification when 

being located directly on a surface water polygon or within a 

100m buffer area around the surface water polygon. Reference 

polygons derived from image interpretation (c.f. 2.2) have been 

used as training and validation references to apply a cross-

validation on two classification accuracy indicators (i.e. overall 

accuracy (OA) and Kappa index) and test the robustness and 

stability of the classification method. 50 iterations of 

classification using randomly selected reference polygons were 

performed to run the cross-validation.  

 

2.3.2   Processing telemetry data 

Behavioural metrics calculation: In-situ telemetry data (c.f. 2.2) 

have been used to calculate the movement’s speed of buffaloes. 

The speed value gathering 75% of the values of the speed 

distribution observed within the three buffalo groups (v1, v2, v3 

= 0.48, 0.45, 0.46 km/h resp.) determines the distance v0 that 

buffaloes are able to cover in one model time step (10 minutes) 

in the following modelling section. In addition, the median 

distance between individuals of a same group has been calculated 

and mean/median daily distances covered between water points 

by buffalo have been calculated for validation.  

 

Identification of behavioural phases. African buffalo drink water 

daily (Cornélis et al., 2014). The telemetry in-situ data have been 

used in accordance to correlate the speed and the probability for 

individuals to be near the surface water every hour over a period 

of 24 hours for the entire duration of the telemetry data 

measurement (Figure 3). As a result, two distinct phases were 

identified: a watering phase (from 9am to 7pm) and a free 

wandering phase (from to 7pm to 9am). 
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(1) 

 

(2) 

 

 
 

Figure 3. Mean probabilities of the observed buffalo to be 

nearby (< 100m, shaded zone) surface water as a function of the 

time of the day (blue line), superimposed to the median speed of 

the observed buffalo (red dashed line), the median interdistance 

(brown line) and the phi values (green line) 

 

2.3.3   Modelling the buffalo movements in space and time 

Choice of the modelling language: The domain specific language 

Ocelet has been used to build the animal movement model 

(Degenne and Lo Seen, 2016). This language has the capacity to 

integrate spatial entities in vector and raster format and create 

relations between them to simulate spatio-temporal dynamics. 

The developed spatial model is composed of three main 

interacting spatial entities: (i) the buffalo individuals, (ii) the 

herd, (iii) the surface water.  

 

Animal modelling approach: To model buffalo movements in 

space and time, a model of collective motion of self-propelled 

individuals (Gregoire et al., 2003) has been chosen, as it is 

parsimonious and mimics a wide range of movements. Derived 

from the Vicsek model (Vicsek et al., 1995) in which individuals 

interact at short distances, the model induces an overall cohesion 

of a population of individuals through space and time (Gregoire 

et al., 2003). Hence, the model highlights specific properties: no 

leader in the herd, noisy environment and/or communications, 

local interactions. In the model, buffalo move at discrete time 

steps by a fixed distance v0, their direction defined for each time 

step t as an angle 𝜃𝑖
𝑡 : 

 

𝜃𝑖
𝑡+1 = arg  [𝛼 ∑ �⃗�𝑗

𝑡

𝑗≠ⅈ

+  𝛽 ∑ 𝑓𝑖
⃗⃗⃗

𝑗
 

𝑗≠ⅈ

] +  𝜉𝑖
𝑡 

 

where 𝛼 controls the herd alignment that corresponds to the sum 

of individual’s speed vectors �⃗�𝑗  (𝑗 ≠ 𝑖), while 𝛽 controls the herd 

cohesion expressed as the sum of the vectors 𝑓𝑖
⃗⃗⃗

𝑗
 that link two 

individuals i and j, and   the noise that represents the uncertainty 

with which the direction of each individual is influenced by 

neighbouring individuals  ( being a random angle, comprised 

between - and ). The cohesion force 𝑓𝑖
⃗⃗⃗

𝑗
(Gregoire et al., 2003) 

between each pair of individuals 𝑖 and 𝑗 is expressed as follows: 

 

𝑓𝑖
⃗⃗⃗

𝑗
=  𝑒𝑖⃗⃗⃗ ⃗𝑗  {

−∞                𝑖𝑓 𝑟𝑖𝑗 <  𝑟𝑐 ,           
1

4
 
𝑟𝑖𝑗−𝑟𝑒

𝑟𝑎−𝑟𝑒
       𝑖𝑓 𝑟𝑐 <  𝑟𝑎 ,          

1                   𝑖𝑓 𝑟𝑎 <  𝑟𝑖𝑗 <  𝑟0

                   

 

where 𝑒𝑖⃗⃗⃗ ⃗𝑗  represents the unit vector along the segment going 

from individual i to individual j within a defined distance of 

interaction r0 and rij between individuals i and j. 𝑓𝑖
⃗⃗⃗

𝑗
 is defined by 

several parameters (Table 1) that are representative of buffalo’s 

herd behaviour. These values are based on empirical knowledge 

and in-situ observations.  

 

Parameter Definition Value 

v0 Buffalo speed 0.46 km/h* 

𝑟0 
limit of interaction 

distance 

500m** 

𝑟𝑐 distance of repulsion 5m** 

𝑟𝑒 equilibrium distance 10m** 

𝑟𝑎 minimal distance 150m** 

 α – free 

divagation  
60 *** 

α – watering phase 90 *** 

𝛽 40 *** 

 0.2 *** 

 

Table 1. Model parameters estimated from telemetry data (*), 

expert knowledge (**), or calibration (***) 

 

Calibration: To control the animal movement modeled we used 

two integrated indices calculated at each timestep t (Figure 3). 

The first one is the Phi order parameter (φ) that summarizes the 

averaged alignment of the herd: 

 

φt  ≡  
1

N
 |∑ eⅈθj

t

N

j=1

| (3) 

 

where N is the total number of individuals. The second indicator 

is the median interdistance that reflects the averaged cohesion of 

the herd. For the simulated data, φ and interdistance values have 

been calculated from four randomly selected individuals within 

the modeled herd of 200 individuals to level with the observed 

data where four individuals make up the herd at most (cf. 2.2). 

The absolute differences between the observed and simulated 

values of 𝜑 and interdistance have been calculated. We have then 

chosen the parameters tryptic (𝛼, 𝛽 and ) minimizing the 

difference between observations and simulations for both 

behavioral phases. The interdistance distributions being non-

normal, the Kullback–Leibler (KL) divergence (Kullback and 

Leibler, 1951) has been chosen for the distribution comparison 

purposes. The parameters 𝛽 and  have been calibrated in 

comparison with the free wandering phase interdistance 

distribution of the observed data. Once calibrated, 𝛽 and  

remained constant during the watering phase as the cohesion 

between individuals and the noise to be added to the equation 

have been considered identical for the two phases. The 𝛼 

parameter has been calibrated for each phase by minimizing the 

differences between observed and simulated 𝜑 distributions. For 

testing every combination of the parameters tryptic (α  and β  

[1:100],   [0.2:0.6]) 33 iterations of simulation for each of 

the three observed herds (cf. 2.2) have been conducted.  

 

Model behavior: Buffalo move randomly in every direction 

during the free wandering phase (c.f. 2.3.2) following the set α, 

β and  values determined by the calibration. During the 

watering phase (c.f. 2.3.2), buffalo take the direction of the 

closest surface water only changing the α value. The α value is 

then set to 0 when the herd reaches the proximity of the surface 

water. α remains unchanged until the beginning of the free 

wandering phase when the cycle repeats itself. 

 

Validation: The centroids calculated from four randomly selected 

individuals within the simulated herd have been compared with 
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the centroid derived from observed individuals. Spatial density 

rasters of the centroids have been computed using a quadratic 

kernel shape from planar distances with a search radius of 500m 

at a 10m spatial resolution. The model being stochastic, 50 

iterations for each of the three herd groups, considering the 

entirety of their respective time periods (c.f. 2.2), have been 

conducted for the simulation and used to derive a final simulated 

median raster. Concerning the observed data, the same method of 

density calculation have been used for each of the three groups, 

also considering the entirety of their respective time periods, 

before deriving the final observed median raster. In the end, the 

simulated median raster has been subtracted to the observed 

median raster to measure quantitatively and spatially their 

differences. Spearman correlation coefficients have also been 

calculated from 1000 iterations of 1000 randomly selected 

sample pixels on the observed and simulated median rasters. 

 

3. RESULTS 

3.1 Monthly surface water maps 

In total, 290 ponds have been identified through the classification 

of Sentinel-2 images time series, highlighting strong seasonal 

patterns of water spatial distribution and availability, with only 

24 ponds detected in August, the driest month of the season, and 

17 water ponds that have been detected every month of the time 

series, indicating that 94% of the surface water depend on the 

season. 

The mean OA value of the time series, both tiles combined, is 

0.93 (min 0.82 – max 0.99) and the mean kappa index value is 

0.87 (min 0.65 – max 0.98), with temporal and spatial 

fluctuations (Figure 4). Kappa index and OA values are higher 

for the KMV tile than for the KNV tile (Figure 1) during the dry 

season (May to September) but lower during the wet season 

(November to April) (Figure 4). 

For the validation of the water classification with the use of the 

observed data, 85% of the GPS points referencing the presence 

of surface water (c.f. 2.2) have been detected when applying a 

buffer of 100m around the polygon classified as surface water 

and 60% have been detected without applying a buffer.  

 

 
 

Figure 4. Kappa index and overall accuracy (OA) of water 

classification along to the year for the two Sentinel-2 tiles 

(KMV and KNV) 

 

3.2 Calibration results 

For the free wandering phase (c.f. 2.3.2), 𝛼 has been set to 60,  𝛽 

at 40 and  at 0.2 (Table 1). For the watering phase (c.f. 2.3.2), 

the value of α has been set to 90, confirming the initial 

assumption that the weight of the alignment would be more 

pronounced during the watering phase when all the individuals 

take the direction of the closest surface water. 

 

3.3 Results of modelling buffalo movements in relation with 

surface water  

The model is stochastic as each buffalo individuals can choose a 

random direction following an angle from 0° to 360° at the 

beginning of every free wandering phases (c.f. 2.3.2). As a result, 

each simulation produced a specific centroid trajectory of 200 

buffalo individuals that can then be compared to the observed 

centroid trajectory of 4 individuals for the entire observed time 

period or over a different time period (Figure 5). We observe that 

the area covered by simulated centroid trajectories is comparable 

in size to the area covered by the observed centroid trajectory 

although simulated centroid trajectories tend to extend further. 

The shape of simulated centroid and observed centroid 

trajectories follow the same general pattern. We note different 

round trips made within the area covered by the different centroid 

trajectories as well as recurrent use of specific surface water 

locations. 

 
 

Figure 5. Observed and simulated herd’ centroids trajectories 

comparison for a period of one month. The observed trajectory 

is symbolized by the graduated red line (from light red that 

symbolizes the beginning of the period to dark red that 

symbolizes the ending of the period). The black dot points 

represents the simulated herd’ centroids trajectory. 

 

Overall, the model tends to overestimate the presence of buffalo 

near water ponds and underestimate their presence in peripheral 

areas (Figure 6A). Even if overestimated, validation results 

demonstrate the model capacity to simulate the movement of 

buffaloes towards the surface water. Indeed, simulated and 

observed median density rasters were significantly correlated 

(Spearman r = 0.69, p-value < 10 e-114). Most of the differences 

between the densities are small (Figure 6B). The model however, 

fails in reproducing the densities observed outside the proximity 

of surface water ponds (Figure 6A), explaining the differences 

between the observed and simulated densities for the pixel’s 

density values superior to 0.25 (Figure 6B). During the free-

divagation phase, buffalo may take random paths away from their 

territory before turning around and heading back to the nearby 

surface water. This feature of the model explains why the 

territory covered by buffalo in the simulations is larger than that 

observed (Figure 6A). 
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Figure 6. A) Difference of density map between observed and 

simulated herd’s centroids trajectories. B) Graph representing 

the distributions of pixel values in the simulated and observed 

median density rasters (c.f. 2.3.3) 

 

4. DISCUSSION 

4.1 Mapping the surface water via SRS in savanna 

Detecting surface water in semi-arid savanna using SRS at a 

landscape scale remains challenging due to surface water 

seasonality dynamics, landscape heterogeneity, presence of 

shades, and variety in surface water area sizes and morphologies 

(Moser et al., 2014). However, increase availability of free 

medium-resolution satellite sensors such as Sentinel-2 provides 

potentialities to characterize, via supervised classification of 

combined MNDWI and NDWI indices, surface water presence 

and dynamics at landscape scale (Du et al., 2016). Even if most 

studies focusing on buffalo movements only use in-situ 

observations of surface water (Zvidzai et al., 2013), SRS is 

increasingly used (Naidoo et al., 2020) and can be a valuable 

asset in areas that are difficult to access and where it is almost 

impossible to collect in-situ data. The surface water classification 

methodology developed in this study is efficient (c.f. 3.1) but  

may be limited by the spatial resolution of the SRS images used 

for input. Indeed, the use of satellite optical sensors such as 

Sentinel-2 images can show its limit when trying to detect the 

small ponds (surface<1,000 m²) or the surface water that may be 

hidden by the vegetation. The use of very-high SRS images in 

combination with hydrologic modelling (Soti et al., 2010) or time 

series of medium spatial resolution could be an improvement. 

 

4.2 The mechanistic animal movement model  

The mechanistic movement model, even if it requires significant 

development and implementation costs, is less dependent of a 

correlation between ecological processes and environment 

properties than an empirical model (Gaucherel, 2018). By 

mathematically simulating interactions and mutual constraints 

among ecological processes, mechanistic models improve the 

ecological realism and extrapolation to different environments of 

a given model (Kearney and Porter, 2009). By using a swarm 

model to mechanistically model buffalo herd movements, the 

knowledge of individual behaviours is reduced but the potential 

to develop animal movement models in area where in-situ data 

are lacking or expensive to collect is increased. It is important to 

keep in mind that the model developed in this study somehow 

neglects individual characteristics as only their interactions with 

neighbours are considered. As a result,  interaction rules between 

individuals, mostly quantitative, can generate the same statistical 

variables leading to redundancy and model similarity (Eriksson 

et al., 2010). In this particular instance, agent-based modelling 

can provide alternative approaches but usually implies greater 

complexity in design (i.e., more rules, quantitative parameter 

estimation, complex sensitivity analyses) for tuning the model 

(Schulze et al., 2017), is much less tractable than mechanistic 

equation-based models and has a lower reproducibility potential.  

 

4.3 Limits of the designed model  

Only eight buffalo individuals have been monitored by telemetry 

and, at best, only four individuals were simultaneously recorded 

within the same area at the same time, thus partially reproducing 

the dynamics of a herd. Indeed, a buffalo herd is composed of at 

least 200 individuals in our study area (Miguel et al., 2017). 

Given the few individuals used to calibrate buffalo herd 

behaviour, proven dynamics such as fission-fusion within buffalo 

herds (Wielgus et al., 2020) are not reproduced by the model. 

Despite this limitation, the model has been able to coherently 

simulate the movement of 200 buffalo individuals influencing 

each other’s direction in relation with surface water availability 

(c.f. 3.3). Monitoring more individuals and integrating this data 

in the calibration process should potentially strengthen the 

model’s capacity to reproduce buffalo herd dynamics. Moreover, 

if surface water directly impacts buffalo movements in space and 

time (Chamaillé-Jammes et al., 2016), other environmental 

variables may be taken into account to accurately simulate 

buffalo movements at the landscape scale (Rumiano et al., 2020). 

Indeed, the temporal structuration of the model in two 

behavioural phases (cf. 2.3.2) translates an over-simplification of 

buffalo ecological functioning. For example, times when buffalo 

are feeding in between the two behavioural phases have not been 

taken into account, leading to an underestimation of the presence 

of buffalo in areas located at the periphery of surface water. On 

the other hand, the trends of the model to overestimate the 

presence of buffalo at proximity of detected surface water may 

be due to the quality of SRS-derived surface water maps. Indeed, 

all the surface water have not been detected due to their small 

size, vegetation covering and potential draining at the time of 

satellite image acquisition, de facto reducing the choice of 

surface water locations that buffalo can reach in simulations 

compared to what happens in reality. 

 

4.4 Perspectives 

Perspectives of this first modelling study of buffalo movements 

in semi-arid savanna using SRS include the integration of other 

environmental variables (e.g. browsing areas, vegetation 

structure, …) and human infrastructures (e.g. agricultural fields, 

roads, …) to simulate more realistic buffalo movements. By 

adding more key factors influencing the buffalo’s movements to 

the model, the latter could potentially be adapted to the study of 

contacts between wildlife and domesticated species at the 

interface between communal and protected areas. The present 

study provides an original modelling framework allowing the 

integration of SRS-derived environmental variables to address 

complex questions on disease propagation, ecological 

interactions between species or animal management. 
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5. CONCLUSION 

The ecological and animal movement model developed in this 

study demonstrated how a mechanistic model can be spatialized 

and combined with remote sensing data to simulate buffaloes’ 

movements in relation with surface water availability at a 

landscape scale. For the first time to our knowledge, we proposed 

to model buffalo at the individual and collective scales in 

heterogeneous environments by the use of a parsimonious swarm 

model. This simple and replicable framework can be considered 

as an alternative to the existing modelling tools in the 

understanding of animal movement in regard to water selection 

in several ecological contexts and environments.   
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