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Abstract: Pale Soft Exudative (PSE)-like muscle defect is of great importance in the cooked ham industry because of the
economic losses it can cause. The flagship product is the “Jambon supérieur,” a polyphosphate-free cooked ham, usually
sold sliced and packaged. Slicing is an automatic process that reveals the defect as holes in the slice leading to slicing losses.
Up to now, the PSE-like defect has only been detected on raw meat after deboning the pork leg because it affects the inner
part of the semimembranosus muscles and also the adductor muscles. The objective of this study was to develop innovative
approaches that combine mechanistic elucidation and the discovery of potential biomarkers (i) at the level of the muscle and
(ii) at the level of the live animal by analyzing proteins from plasma. The use of chemometrics for the spectral fingerprinting

of pig plasma was chosen to predict the PSE-like muscle defect in raw hams.
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Introduction

The Pale Soft Exudative (PSE)-like defect that occurs
in raw meat used to produce cooked hams is a major
issue. Indeed, it can represent up to 50% of the total
processed ham, the French ‘“jambon supérieur”
cooked ham, and leads to significant economic losses
(Vautier et al., 2008). The defect is mainly detected
during the automated slicing process, by the appear-
ance of holes within the ham slices. Because of the
histological and biochemical similarities observed
on muscles, this defect is compared to PSE meat,
but in most cases, it is located in the deepest regions
of the semimembranosus muscle, near the femur bone

© 2020 Théron, et al.

(Vautier et al., 2008). The defect finds its origin in a
combination of risk factors that are associated with
more than just stress or stress sensitivity, and chilling
was not found to influence the defect frequency
(Vautier et al., 2008).

Although previous observations have suggested a
gradient within the ham (Franck et al., 1999) (indeed,
the defect starts to appear on the internal surface of
the semimembranosus and the adductor, then spreads
out toward subcutaneous regions for strong cases with-
out being noticeable from the outside of bone-in hams),
no information is available regarding the progression of
the PSE-like defect within muscles. Furthermore,
because of its high variability, there is a strong need
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for a discriminative sort key to classify raw material prior
to ham processing. Recently, the use of near-infrared
spectroscopy was proven efficient to classify fresh pork
meat and to predict the suitability of fresh pork meat for
the production of cooked ham (Neyrinck et al., 2015).
In this context, we first aimed to elucidate the devel-
opment of the PSE-like defect by its characterization from
the tissue to the molecular scale using mass spectrometry
approaches. In the second part, we developed a predictive
method to classify raw material prior to ham processing
using blood samples, using the spectral fingerprints of
plasma proteins studied by Matrix-Assisted Laser
Dissociation lonization Time-of-Flight (MALDI-TOF)
mass spectrometry and Attenuated Total Reflectance-
Fourier Transform InfraRed (ATR-FTIR) Spectroscopy.

Materials and Methods

Animal, muscle, and blood samples

A batch of 120 pigs (from a sow Large White X
Landrace and Pietrain sire), from different farms, were
slaughtered at the commercial abattoir “la Guerche de
Bretagne, France.” Carcasses were blast-chilled for
1 h and 15 min, and blood was collected from each ani-
mal and treated as described in the following section. At
24 h post mortem, after pH and temperature stabiliza-
tion, hams were sorted according to their level of
destructuration on a scale from 1 to 4 (Vautier et al.,
2008), their pH, temperature, and exudate values.
From the 120 animals, 20 were selected, based on the
destructuration score—10 “normal hams” (NH) and
10 “PSE-like hams” (DH). The inner part (DHi) and
outer parts (DHo) of semimembranosus muscles were
sampled in each of the DH, and the inner part of semi-
membranosus muscles was sampled in each of the NH.

MALDI-TOF mass spectrometry imaging of
ham samples

At 24 h post mortem, semimembranosus muscle
samples (1 X 1 X 1 cm) were collected, positioned on
a cork plate, and cryofixed by immersion at —160°C
in isopentane cooled with liquid nitrogen (—196°C).
Serial cross-sections (10 pm thick) were cut using
a cryostat (Microm HM 560; Thermo Scientific)
and were collected on glass slides for histological
stains and on indium tin oxide glass slides (Bruker
Daltonik, Bremen, Germany) for MALDI-mass spec-
trometry imaging (MSI). The glass slides were stored
under vacuum until use. The muscle sections were
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subjected to 2 washing steps at 70% and 95% ethanol
to deplete lipids and then dried in a desiccator for
30 min. The sinapinic acid matrix was 10 mg/mL in
water/acetonitrile at 60:40 (v/v) with 0.2% tri-
fluoroacetic acid, applied using ImagePrep (Bruker
Daltonics) according to the manufacturer’s recommen-
dations. The spectral data were acquired on an Auto-
flex Speed MALDI-TOF/TOF mass spectrometer
equipped with a Smartbeam laser, using FlexControl
3.4 and FlexImaging 3.0 software packages (Bruker
Daltonics). lons were detected in positive linear mode
over amass range of m/z 2,000-20,000 with a sampling
rate of 0.63 GS/s. The lateral spatial resolution was set
to 75 pm, and a total of 500 laser shots were accumu-
lated per pixel at constant laser power, using random
movement within each pixel. The deflection was set at
an m/z of 1,500 and laser focus at medium. Analyses
were performed using a detector gain of 2.69 V, ion
source voltage 1 at 19.5 kV, ion source voltage 2 at
18.15 kV, and lens voltage at 7 kV. Spectral data were
loaded into SCiLS Lab 2016 software (http://scils.de/;
Bremen, Germany). The following workflow was used
for data treatment: baseline subtraction using the
TopHat algorithm, normalization by the total ion cur-
rent algorithm, and peak picking using the orthogonal
matching pursuit algorithm, with peak alignment and
spatial denoising.

Plasma proteins spectral fingerprints by
MALDI-TOF mass spectrometry and FTIR
spectroscopy

Immediately after slaughter, a whole blood sample
was collected from each pig in a heparinized tube
(Venosafe, Terumo, Shibuya, Tokyo, Japan). After 5
stirrings, the tubes were centrifuged at 1500g for
10 min. The plasma was recovered and frozen immedi-
ately in liquid nitrogen. The samples were stored at
—80°C until use. For the MALDI-TOF mass spectrom-
etry protein fingerprint, plasma proteins were pre-
purified using Spin Tubes (C18 Agilent Peptide
Cleanup, Agilent Technologies, Wilmington, DE) ac-
cording to the manufacturer’s instructions. Then, 1 pl
of pre-purified plasma proteins was manually spotted
in triplicate on a polished steel target (MTP 384
Target Plate Polished Steel, Bruker Daltonics GmbH,
Bremen, Germany) at a ratio of 1:1 with the matrix.
The matrix used was a-cyano-4-hydroxycinnamic acid
matrix at 7 mg/mL in water/acetonitrile 50:50 (v/v)
with 0.2% trifluoroacetic acid. The mass spectrometer
used to acquire the protein fingerprinting was an
Autoflex Speed MALDI-TOF/TOF with a Smartbeam

www.meatandmusclebiology.com


http://scils.de/
www.meatandmusclebiology.com

Meat and Muscle Biology 2020, 4(2): 13, 1-6

laser, using FlexControl (version 3.4) software (Bruker
Daltonics GmbH, Bremen, Germany). A total of
4,000 spectra were accumulated randomly per sample.
The laser power was constant for all the samples, and
the laser focus was set at medium. Ion detection was
done in linear mode at a mass range of m/z 1,000—
10,000, with a sampling rate of 0.31 GS/s.
Acquisition deflection was set at m/z 1,000. The detec-
tor gain was set at 2,500 V, the ion source voltage 1 at
19.56 kV, the ion source voltage 2 at 18.11 kV, and the
lens voltage at 7 kV. External calibration of spectra was
done through the deposition of a protein standard
(Protein Calibration Standard I, Bruker Daltonics)
before each measurement on the same target. MALDI-
TOF spectra were processed using FlexAnalysis soft-
ware (version 3.4) (Bruker Daltonics GmbH, Bremen,
Germany). Baseline subtraction using the TopHat
algorithm was set with a 5% minimal baseline width.
Smoothing was performed with a 1 Da width and 5
cycles. Individual spectra were normalized using the
Total Ion Count (TIC) value. Peak picking was applied
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using the peak intensities with a signal to noise ratio
of 2. Infrared spectra were obtained using a Bruker
Tensor II spectrometer, and an ATR accessory with
250 pm x 250 pm  diamond  crystal (Specac Ltd.,
Orpington, UK) operated by the OPUS 7.5 software
(Bruker, Bremen, Germany). The spectral resolution
was setat4 cm™!, and 100 scans were used for each mea-
surement in the range of 4,000-600 cm™'. All the
sample acquisitions were performed 5 times as
follows: 1 pL of plasma was spotted on the diamond
crystal and left to dry at room temperature for 8 min.
Between samples, the ATR crystal was cleaned with
deionized water and ethanol, and for each sample
measurement, a background spectrum was recorded
for correction. The 3 best spectra out of 5 were analyzed.
After atmospheric compensation and baseline correc-
tion, the spectra were pre-processed by the second
derivative operation and cropped to obtain 2 areas of
interest: 1,800-900 cm™! and 3,450-2,700 cm™!. Each
area was then normalized using vector normalization,
and the mean spectra of the 3 replicates were used.
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Figure 1. Predictive model of the PSE-like areas. (A) Mean spectra acquired on the muscle sections from the “normal hams” (in blue, » = 10), on the
muscle sections from the inner (in red, » = 10) and outer (in yellow, n = 10) parts of “PSE-like hams.” The peaks with the highest loading scores and biggest
contribution to the predictive model are represented by stars. (B) Box plot and graphical representation of all the individual peak intensities observed on the
muscle sections, and ionic map for m/z 4128.7, m/z 4155.6, m/z 5442.5, and m/z 8565.0 for representative tissue section samples from “DHo,” “DHi,” and
“NH.” (C) NH spectral data classification using the predictive model: the spectra from NH classified as DHi are shown in red, and the spectra from NH
classified as DHo are shown in yellow. Serial cross sections were stained with Sirius Red to reveal the connective network and with hematoxylin and eosin
to reveal the tissue structure. DHi = inner parts of PSE-like hams; DHo = outer parts of PSE-like hams; NH = normal hams; PSE = Pale Soft Exudative.
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Chemometrics

Neuronal network analysis was performed using
Orange software (Demsar et al., 2013). The number
of neurons per hidden layer was set at 100 with an
activation function by logistics. The solver parameter
for weight optimization was “Adam,” a stochastic
gradient-based optimizer. The alpha parameter, the
regularization term, was set at 0.0001, and the maxi-
mum number of iterations was set at 200. Internal
validation was performed using a stratified 5-fold
cross-validation. The classification results using the
predictive model are given for each sample of PSE-like
muscle defect (DH, n=6) and normal (NH, n="7)
hams. The classification assignment is given (NH/
DH) and shown in gray in the case of misclassification.
The score probability of classification assignment is
given for each class, i.e., DH and NH.
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Results

Spatial variability of the DH defect

The spatial variability of the PSE-like defect that
occurs in cooked hams was investigated by MSI by
MALDI-TOF. To determine whether the defect pro-
gressed internally within the ham, indicating a local
heterogeneity, the relationship between NH molecular
maps with both DHi and DHo was studied. The training
set used to build the predictive model was composed of
the spectral data of the DHi and DHo. Then, the data
from the NH were classified using this model to deter-
mine the class to which they were closer: DHi or DHo.
The model’s performance was evaluated by cross-
validation accuracy, which was 87%. The model’s per-
formance can be expressed as its capability to describe

Table 1. Evaluation and results of the predictive model, using a neural network algorithm, to classify PSE-like

muscle defect and normal hams

MALDI-TOF MS spectral
fingerprint

ATR-FTIR spectral fingerprint

MALDI-TOF MS and ATR-FTIR
spectral fingerprints

Evaluation results of the predictive model by neural network algorithm

AUC 1.000 1.000 1.000

CA 0.846 0.846 1.000

F-1 0.840 0.844 1.000

Precision 0.880 0.885 1.000

Recall 0.846 0.846 1.000

Classification results using the predictive model by neural network algorithm
Score Score Score
Identification Clas‘siﬁcation probability Clas‘siﬁcation probability Clas'siﬁcation probability
assignment assignment assignment
PSE N PSE N PSE N

N17 N 0,218 0,782 PSE 0.661 0.339 N 0.011 0.989
N30 N 0,238 0,762 0.090 0.910 N 0.033 0.967
N41 N 0.064 0.936 0.013 0.987 N 0.001 0.999
N42 N 0.013 0.987 0.006 0.994 N 0.002 0.998
N54 N 0.015 0.985 PSE 0.969 0.031 N 0.095 0.905
N78 N 0.254 0,746 0.005 0.995 N 0.009 0.991
NIl N 0.385 0,615 0.014 0.986 N 0.013 0.987
PSE24 PSE 0.996 0.004 PSE 0.949 0.051 PSE 0.957 0.043
PSE47 PSE 0.973 0.027 PSE 0.988 0.012 PSE 0.993 0.007
PSE50 PSE 0.996 0.004 PSE 0.995 0.005 PSE 0.999 0.001
PSE68 N 0.345 0.655 PSE 0.994 0.006 PSE 0.999 0.001
PSE77 N 0.436 0,564 PSE 0.761 0.0,239 PSE 0.516 0.484
PSES80 PSE 0.999 0.001 PSE 0.629 0.371 PSE 0.999 0.001

The evaluation results of the predictive model are given for each spectral method, i.e., MALDI-MS and IR, and are expressed as AUC, CA, F-1, Precision, and
Recall values (from 0 to 1). AUC is the Area under ROC, the Receiver-Operating Curve; CA is the Classification Accuracy, the proportion of correctly classified
samples; F-1 is a weighted harmonic mean of precision and recall; Precision is the proportion of true positives among instances classified as positive, e.g., PSE-
like hams correctly identified as PSE-like hams; and Recall is the proportion of true positives among all positive instances in the data, e.g., the number of PSE-like
hams among the normal hams. The classification results using the predictive model are given for each individual sample of PSE-like muscle defect (“PSE,” n = 6)
and normal (“N,” n="7) hams. The classification assignment is given (N or PSE), shown in gray in the case of misclassification. The score probability of

classification assignment is given for each class, i.e., PSE and N.

ATR-FTIR = Attenuated Total Reflectance-Fourier Transform InfraRed; IR = Infrared; MALDI = Matrix-Assisted Laser Dissociation Ionization; MS = Mass

Spectrometry; PSE = Pale Soft Exudative; TOF = Time of Flight.
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the spectral classes, in percentage, and its use as a tool
to determine the class in which the new spectral data
belonged. The m/z intensities on which the model’s
performance rely are those showing the highest scores:
m/z 4128.7, m/z 4155.6, m/z 5442.5, and m/z 8565.0.
These 4 peaks are represented in Figure 1A with stars
on the mean spectra. The two first peaks, m/z 4128.7
and m/z 4155.6, are significantly more intense in the
DHi compared with the DHo and those of the NH.
This result confirmed the hypothesis according to
which the structural defect is internal, and that the
DHo present more similarities to the NH. Boxplots
and all the individual intensities measured on each
pixel are shown in Figure 1B, as well as an example
of an ionic map for each ion. It appeared very clear that
these two ions are co-localized and that their intensities
are correlated. The mass shift of 27 Da could be due to
oxidation of arginine (to glutamic acid) (https://abrf.
org/delta-mass), and the oxidation product of arginine
may be glutamic semialdehyde, a carbonyl that is a
very well described modification in meat products
(Estévez, 2011). Indeed, the carbonylation of proteins
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from chicken breast meat has been studied and linked
to PSE meat (Estévez, 2015; Carvalho et al., 2017).
Despite the absence of direct protein identification
using MSI by MALDI-TOF, altogether these results
could suggest that m/z 4128.7 and m/z 4155.6 are
the same protein or peptide from the same protein, with
the presence of an amino acid modification. The inten-
sities plot of m/z 5442.5 was lower in the DHi, while
those of m/z 8565.0 were higher in the DHo.
Furthermore, the ionic map of these ions indicated that
their intensities were not homogenous on the tissue sec-
tion but showed spatial specificity, which could not be
seen without imaging by mass spectrometry.

Then, the predictive model, mainly based on these
ion intensities, was used to classify the spectral data
from NH. Thanks to this approach, the spectral data
from NH could be classified as being closer to the
DHi or the DHo. Spectral data using this predictive
model were classified for every spectrum of the sec-
tions from NH and were represented as a color map:
the spectrum belonging to the DHi in red and the spec-
tra belonging to the DHo in yellow (Figure 1C).

Table 2. Evaluation and results of the predictive model, using a neural network algorithm, to classify PSE-like
muscle defect and normal ham, including all the m/z class attributes

Class N N N N N N N D D D D D D
Identification N17 N30 N41 N42 N54 N78 NI1 PSE24  PSE47  PSE50 PSE68  PSE77  PSE80
Neural Network N N N N N N N PSE PSE PSE N N PSE

Neural Network (D)  0.218 0.238  0.064 0.013 0.015 0254 0.385 0.99 0.973 0.996 0.345 0.436 0.998
Neural Network (N)  0.782  0.762 0936 0987 0985 0.746 0.615  0.004 0.027 0.004 0.655 0.564 0.002

m/z Class Attributes

1123.45 0.71 0.45 0.93 0.40 0.78 0.91 0.93 0.71 1.13 1.19 1.68 0.48 1.59
1141.52 0.27 0.53 0.53 0.28 0.15 0.92 0.90 0.64 1.39 1.97 0.45 0.22 245
1159.83 0.16 0.38 0.36 0.24 0.15 0.55 0.67 0.48 0.90 1.60 0.27 0.20 2.15
1409.07 0.29 0.30 0.54 0.20 0.14 0.55 0.53 0.32 0.79 1.26 0.51 0.20 1.47
1547.11 0.19 0.16 0.24 0.15 0.17 0.62 0.34 0.30 0.67 1.15 0.18 0.25 1.76
1623.01 0.29 0.39 0.43 0.30 0.34 0.71 0.69 0.54 1.04 1.75 0.47 0.32 2.30
1811.76 0.17 0.35 0.19 0.19 0.16 0.43 0.43 0.39 0.56 0.96 0.21 0.26 0.86
1998.73 0.48 0.62 0.73 0.46 0.70 0.66 0.63 0.71 0.71 0.85 1.06 0.48 0.97
2154.31 3.47 2.92 3.45 1.81 7.20 2.35 1.23 0.66 0.76 0.99 0.50 0.74 1.23
2239.21 0.50 0.30 0.39 0.21 0.37 0.59 0.16 0.71 0.80 0.43 0.77 0.31 0.69
2287.61 0.29 0.19 0.26 0.19 0.30 0.64 0.35 0.56 0.41 0.72 0.48 0.29 1.25
2378.15 0.61 1.41 0.50 0.59 0.96 0.80 1.34 1.43 1.25 1.24 1.38 1.08 1.33
2574.58 0.30 0.81 0.35 0.28 0.47 0.87 0.62 0.82 1.10 0.87 0.49 0.80 0.89
2701.67 0.44 0.58 0.40 0.31 0.47 0.44 0.44 0.55 0.51 0.63 0.48 0.52 0.56
3277.30 0.52 1.10 0.67 0.87 2.01 0.89 0.78 1.78 0.87 1.75 2.34 1.31 2.10
3476.56 0.66 0.16 0.29 0.20 0.37 0.45 0.33 0.61 0.37 0.49 0.44 0.79 1.49
4564.62 0.14 0.23 0.18 0.50 1.19 0.54 0.79 3.59 0.89 2.93 2.73 1.38 3.61
5182.11 0.07 0.09 0.06 0.05 0.35 0.31 0.20 0.04 0.04 0.05 0.03 0.08 0.08
5601.50 0.05 0.05 0.02 0.03 0.08 0.19 0.04 0.16 0.10 0.09 0.07 0.16 0.24
6948.88 0.89 0.11 0.30 0.44 0.51 0.72 0.56 1.29 0.54 0.54 0.97 2.49 3.40

PSE = Pale Soft Exudative.
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Plasma protein fingerprint to predict the
PSE-like muscle defect

The second part of the study aimed to assess the
capacity of protein fingerprinting by MALDI-TOF
mass spectrometry and ATR-FTIR spectroscopy to
predict the PSE-like muscle defect in hams. Plasma
samples were chosen since it is essential not to depre-
ciate the carcass and to develop an easy-to-use
method, blood sampling being easier than muscle
biopsies. In the first part of this study, the prediction
capacity of both spectral approaches was assessed
separately using multivariate analysis. Then, both
data matrixes were analyzed using the most discrimi-
nant spectra features to determine the synergy of both
of these spectral methods. The predictive model built
using neural network analysis from MALDI-TOF
spectra showed a classification accuracy of 84.6%
and a precision and recall of 88% and 84.6%, respec-
tively, resulting in the correct classification of 100%
of NH samples, whereas 2 DH samples were misclas-
sified (Tables 1-2). This misclassification has to be
moderated by the number of observations and by their
corresponding score probability. Indeed, in both
cases, the score probabilities were 56.4% and
65.5% for the DH class and 43.6% and 34.5% for
the NH class. The neural network built with FTIR
spectra showed a classification accuracy of 84.6%
and a precision and recall of 88.5% and 84.6%,
respectively. This resulted in the correct classification
of 100% of DH samples, whereas 2 NH samples were
identified as a false negative, classified as DH
(Table 1), with a score probability of 66.1% and
96.9%.

To demonstrate the synergy of both spectral finger-
prints in predicting the PSE-like muscle defect, both
approaches were combined. The respective top 30 fea-
tures found to be the most relevant in the neural net-
works obtained with MALDI-TOF and FTIR spectral
fingerprints were analyzed to build a new predictive
model. The results showed a classification accuracy
of 100%, with a precision and recall of 100% and
100%. Thus, the classification results confirmed the
relevance of such a combinatory approach since it
improved the correct classification assignment up to
100%. All the individual spectra were correctly classi-
fied, meaning that the neural network successfully pre-
dicted the PSE-like muscle defect in all cases.
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Conclusions

The spectral approaches used in this study have
proven efficient to characterize the PSE-like muscle
defect from the tissue to the molecular scales. This inte-
grative study resulted in the definition of relevant pro-
tein markers to better understand the defect evolution
within ham. Then, the spectral approaches were found
to be highly discriminative in predicting PSE-like
defect using a plasma sample and thus were without
any depreciation of the carcass. Furthermore, this proof
of concept has demonstrated the synergy of both spec-
tral methods, thereby opening up new perspectives
regarding their application in industrial conditions.
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