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Abstract: Inflammatory bowel diseases (IBD) are incurable disorders whose prevalence and global
socioeconomic impact are increasing. While the role of host genetics and immunity is well docu-
mented, that of gut microbiota dysbiosis is increasingly being studied. However, the molecular
basis of the dialogue between the gut microbiota and the host remains poorly understood. Increased
activity of serine proteases is demonstrated in IBD patients and may contribute to the onset and
the maintenance of the disease. The intestinal proteolytic balance is the result of an equilibrium
between the proteases and their corresponding inhibitors. Interestingly, the serine protease inhibitors
(serpins) encoded by the host are well reported; in contrast, those from the gut microbiota remain
poorly studied. In this review, we provide a concise analysis of the roles of serine protease in IBD
physiopathology and we focus on the serpins from the gut microbiota (gut serpinome) and their
relevance as a promising therapeutic approach.

Keywords: inflammatory bowel diseases; gut serpinome; proteases; gut microbiota; holobiont

1. Introduction

Inflammatory bowel diseases (IBDs) comprise the chronic relapsing inflammatory
disorders Crohn’s disease (CD) and ulcerative colitis (UC). Both are thought to arise in
genetically prone individuals under the influence of environmental factors that trigger
excessive activation of the host immune response. The gut microbiota is currently con-
sidered an important regulator of innate and adaptive immunity [1]. Its composition and
functions are modulated by many environmental factors, such as diet, xenobiotics and
infectious and toxic agents [2,3]. The changes in the microbiota induced by the environ-
mental perturbations of the recent decades could contribute significantly to the global
epidemic evolution of IBD. There is increasing evidence for the involvement of imbalanced
host–gut microbiota interactions in IBD pathogenesis [4]. It has been shown that dysbiosis
induces multiple deleterious processes, including an alteration of the fermentation-derived
products such as carbohydrates, vitamins and short-chain fatty acids [5]. Dysregulation of
bile acid biotransformation is also reported [6].

The imbalance of proteolytic activity in the digestive tract has been scarcely investi-
gated till now, but it constitutes an important modality of dialogue between the microbiota
and the host. Recent studies have involved proteases from the host and the gut microbiota
in the pathogenesis of IBD. Indeed, both intestinal and fecal samples from CD and UC
patients showed excessive serine protease activity as compared to healthy controls [7]. This
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uncontrolled activity is likely to play key roles in a variety of signaling pathways, inflict
tissue damage and exacerbate gut inflammation [8–10]. The regulation of such proteases by
their endogenous inhibitors would therefore represent a promising therapeutic alternative
for treating or controlling IBD.

Serine protease inhibitors (serpins) comprise the most widely distributed superfamily
of protease inhibitors, and their anti-inflammatory properties have been demonstrated in
inflammatory disorders [11–13]. Over the past few decades, the attention of the medical and
research community has been focused on host serpins for disease management. Meanwhile,
the role of their gut bacterial counterparts has been dismissed. A broader view should
include gut microbial serpins with the potential to act as suicide substrates targeting
host and microbial proteases involved in IBD. This would cover the full pan-microbial
genome that reflects the total number of non-redundant serpin-encoding genes in the
human gut microbiota.

In this review, we present an overview of the role of the gut microbiota and proteases in
IBD; we highlight the importance of serpins, mainly those produced by the gut microbiota,
and propose to group them under the term gut serpinome.

2. Impact of Inflammatory Bowel Diseases and Available Treatments

The prevalence of IBD continues to evolve around the world. Until the 2010s, the
incidence of IBD in industrialized countries (Europe, North America, Oceania) continued
to grow, reaching an average of 10 new cases per 100,000 inhabitants per year [14]. There is
a significant disparity in the distribution of new cases, with a north–south and west–east
gradient in Europe [15]. Over the same period, the disease affected increasingly younger
patients, with a significant increase in incidence in children and adolescents [16]. Since 1990,
newly industrialized countries in Africa, Asia and South America have shown a subtle
increase in IBD incidence with, also, a heterogeneous distribution by region [14,17,18].
Considering the chronicity of CD and UC and the relatively low mortality, the prevalence
of the disease continues to increase, reaching more than 6.8 million patients in Europe and
the US today [19].

Different types of immunosuppressant drugs are used alone or in combination to
induce and maintain remission [20]. The current therapeutic strategy consists of a gradual
increase in treatment intensity, from medication to surgery, depending on the patient’s
response. Medical treatment includes aminosalicylates, immunomodulators, steroids,
biological treatments (anti-TNFα and anti-α4β7) and leukapheresis. Half of the patients
with CD or UC will have to undergo surgery (colectomy, anastomosis, deviation) during
their lifetime [21]. In addition to the cumbersome treatment and the potential for side
effects, none of them are curative.

Several studies showed that IBDs strongly affects quality of life. In fact, they induce
psychological distress related to the symptoms and to the uncertainty of the course of
the disease. In addition, fatigue, which is a common feature of the disease, impacts daily
activities as well as leisure, professional, family and private life [22,23].

Besides human consequences for the patient and their relatives, IBDs have a significant
economic impact. A recent study carried out by the Crohn’s & Colitis Foundation in 2020
showed that annual mean health care costs were three-fold higher in IBD patients than
those without IBD (around USD 23,000 vs. USD 6956/patient/year) [24]. Patients with
IBD also incurred more than twice the out-of-pocket expenditures and had lifelong indirect
costs related to disease management [24].

All these data stress the increasing cost burden of IBD patients and emphasize the
need for novel cost-effective therapeutic strategies.

3. Role of the Gut Microbiota in the Pathogenesis of IBD

Trillions of microorganisms reflecting all kingdoms of life inhabit the gastrointestinal
tract (GIT) [25–27]. This gut microbiota represents a complex community whose mem-
bers interact with each other and with the host to control several processes essential for
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maintaining host homeostasis and health [28–30]. Alterations in the composition and
function of the gut microbiota have been reported in many studies related to digestive
inflammation [31–36]. This intestinal dysbiosis was shown to influence the production of
microbiota-derived metabolites and further impact the microbiota–host crosstalk (Figure 1).
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Figure 1. Schematic illustration of gut serpinome involvement in intestinal homeostasis and IBD. During homeostasis, the
gut microbiota elicits an immune tolerance phenotype in the host. The activity of luminal serine and cysteine proteases
is tightly regulated by their specific serpins of both gut microbial and host origin. A key feature of IBD is the alteration
of the composition of the gut microbiota, dysbiosis, characterized by the decrease in microbial diversity with a loss of
beneficial symbionts and the expansion of pathobionts. The dysregulation of the proteolytic balance with an increased
protease activity over serpins alters the intestinal barrier and exacerbates inflammation. SCFA: short-chain fatty acid.

Dysbiosis may involve the reduction of the overall microbial richness, diversity and/or
a loss of beneficial microorganisms. However, since a common understanding of what
constitutes a healthy microbiota is still lacking, it is unclear how to delineate a dysbiotic
one. Previous reports have linked reduced microbial diversity to the disease, referring
to the loss of metabolic redundancy [32,37]. The loss of Faecalibacterium prausnitzii, for
instance, which belongs to Clostridium cluster IV, has been typically observed in patients
with CD and UC [38–40]. F. prausnitzii is known for its anti-inflammatory properties
related to NF-kB inhibition, stimulation of anti-inflammatory cytokine secretion such as
IL-10 [41,42] and production of the short-chain fatty acid (SCFA), butyrate [43]. SCFAs
are the end-products of microbial fermentation, which regulate the immune response
and contribute to intestinal integrity. Consistent with the depletion of SCFA-producing
bacteria (F. prausnitzii and specific Roseburia species) in IBD, a reduction in fecal SCFA levels
was noted in a metabolomic analysis of IBD patients [44,45]. Lower levels of tryptophan
and its metabolites were detected as well in patients with IBD as compared to healthy



Int. J. Mol. Sci. 2021, 22, 6088 4 of 16

controls [46]. Evidence suggests that tryptophan metabolites of microbial origin could
exert anti-inflammatory effects [46] and regulate the homeostasis of the gut microbiota.

Dysbiosis may also be linked to the expansion of potentially harmful microbes or
pathobionts. Multiple studies revealed a higher prevalence of Bacteroides fragilis in IBD sam-
ples [47,48]. Strains of enterotoxigenic B. fragilis secrete various virulence factors that target
the epithelial barrier and thereby contribute to intestinal inflammation [49,50]. Adherent
Invasive Escherichia coli (AIEC) [51,52], Mycobacterium avium subsp. paratuberculosis [53],
Enterococcus faecalis [54,55], Salmonella typhimurium [56] and many other bacterial pathogens
have also often been associated with IBD.

Understanding the drivers of disease severity and the impact of bacteria and/or their
metabolites on IBD progression will uncover cardinal targets and novel therapeutic approaches.

4. Proteases as Key Targets in Intestinal Inflammation

Proteases have received increasing attention over the last few years. The importance
of these enzymes as potential therapeutic targets or biomarkers for IBD has led to extensive
efforts in the screening of their specific inhibitors. Here, we examine the impact of host and
gut microbial serine and cysteine proteases which are controlled by microbial serpins.

4.1. Role of Human Proteases in IBD

Serine proteases are involved in a multitude of biological processes, such as the
immune response, digestion and blood coagulation, and are key signaling molecules in
gastrointestinal physiology and in the inflammatory response [57]. Host cellular sources of
serine proteases encompass a wide range of cell types, from intestinal epithelial cells to resi-
dent and infiltrated cells. Immune cells such as neutrophils and mast cells are key sources of
serine proteases, which are stored in their granules. In fact, tryptase, chymase, cathepsin G
(CatG) and granzyme B are secreted by mast cells [58], while neutrophils release neutrophil
elastase (NE), proteinase 3 (PR3) and CatG at the site of inflammation [59]. Under physi-
ological conditions, serine proteases’ activity is tightly regulated, while a disequilibrium
in their proteolytic activity is linked to several gastrointestinal disorders, including IBD.
Indeed, an increase in serine protease expression and activity has been demonstrated in the
colonic tissue and fecal samples of IBD patients compared to healthy controls [7,10]. Such
deregulated proteolytic activity was shown to participate in the inflammatory response
and to cause structural and functional alterations in the gut epithelium through (i) the
activation of protease-activated receptor (PAR), (ii) the cleavage of junctional protein and
(iii) the processing of cytokines and chemokines. A recent study demonstrated that the pro-
inflammatory effects of colonic thrombin, whose activity showed a 100-fold increase in the
biopsies of IBD patients [60], are mediated through the activation of PAR1 and PAR4 [61].
Only PAR1 inhibition prevents 2,4,6-Trinitrobenzenesulfonic acid (TNBS)-induced colitis
in rats. Among mast cell serine proteases, tryptase was shown to activate PAR2 and the
subsequent Akt/mTOR pathway, therefore promoting IBD-induced intestinal fibrosis [62].
PAR4 activation by CatG triggers altered epithelial permeability and inflammation via
myosin light-chain kinase (MLCK) activation, leading to myosin light chain (MLC) phos-
phorylation and tight junction (TJ) destabilization [63]. Junctional proteins, along with PAR,
are key elements in the inflammatory response and in increased permeability mediated by
serine proteases. For instance, chymase causes enhanced epithelial permeability through
the redistribution of the TJ proteins ZO-1 and occludin [64]. Leukocyte transmigration to
the inflammation site is associated with the direct proteolytic degradation of the vascular
endothelial cadherin by CatG and NE [65]. Furthermore, the processing of CXCL-5 and
CXCL-8 chemokines by CatG and PR3 results in higher chemotactic proprieties towards
neutrophils [66].

Cysteine proteases, widely distributed among living organisms, possess a catalytic
Cys–His–Asn triad, where the cysteine is responsible for nucleophilic attack. Cysteine
proteases are involved in numerous biological processes, such as senescence, apoptosis,
inflammation, major histocompatibility complex class II (MHC II) immune responses
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and extracellular matrix remodeling [67]. Among the cysteine proteases, caspases and
cathepsins have been studied for their potential role in IBD pathogenesis. In humans, the
caspase family is composed of 12 members and most of them are key actors in programmed
cell death, proliferation and inflammation [68]. At gene level, the caspase 9 gene has been
suggested to be an IBD susceptibility gene [69]. In a recent study, altered expression of
inflammatory caspases (caspase 1, 4 and 5) has been shown to be involved in intestinal
inflammation in IBD patients [70]. The human genome encodes for 11 cysteine cathepsins,
which have been shown to have a role in chronic inflammatory diseases [71]. At the
very least, cathepsin B and L expression is increased in intestinal macrophages in the
inflamed mucosa of IBD patients and their combined inhibition resulted in the reduction of
experimental colitis severity [72].

With these data, serine and cysteine protease inhibition might represent a promising
alternative to treat IBD. Confirmation of this assumption requires an investigation of the
role of their microbial counterparts in inflammation.

4.2. Role of Microbial Proteases in IBD

Proteases have been widely explored in several pathological conditions. However,
only recently, the gut proteases have emerged as a functional partner playing key roles in
health and disease. These enzymes are essential to bacterial viability, the stress response as
well as pathogenicity [73]. Many proteases, including high-temperature serine protease
A (HtrA), are tightly regulated to prevent intrusive bacterial growth and avoid uncon-
trolled proteolysis in cells [74]. Serine proteases of the HtrA family belong to the core
set of peptidases and are widely distributed among Gram-negative and Gram-positive
bacteria [75]. These proteases have long been linked to inflammation and infectious dis-
eases as the inactivation of htrA genes reduces the virulence properties of diverse bacterial
pathogens [76]. These virulence features of HtrA have been linked to lower bacterial
fitness, greater susceptibility to stress conditions during infection and/or reduced secretion
of virulence factors. HtrA proteases may be exposed to the extracellular milieu as well
and elicit bacterial colonization and invasion of host tissues in specific pathogens such
as Bacillus anthracis, Borrelia burgdorferi, Campylobacter jejuni and Helicobacter pylori [77–80].
These bacterial pathogens are adept at escaping host defenses and surviving in a very
hostile environment. Recently, extracellular HtrAs have been involved in the bacterial
invasion process by directly targeting extracellular matrix components, proteoglycans and
junctional proteins [81]. HtrA-mediated cleavage of E-cadherin was reported for C. jejuni,
H. pylori and E. coli as well [82–85]. At the molecular level, HtrA proteases target the
calcium-binding sites across specific repeats in the extracellular E-cadherin domain [86].
The loss of this protein has been closely linked to intestinal barrier dysfunction, a common
feature of IBD. Other microbial serine proteases that have been involved in pathogen–host
interactions include VaT-AIEC from AIEC. VaT-AIEC is involved in bacterial adhesion
and invasion of host intestinal cells, which further contributes to in vivo pathogenesis [87].
Serine protease autotransporters (SPATE) secreted by enterohemorrhagic E. coli (EHEC)
are believed to contribute to IBD pathogenicity as well via the proteolytic cleavage of
mucin and the degradation of coagulation factor V—the latter effect potentially exacerbates
hemorrhagic colitis [88,89].

Proteolysis has been adopted by non-virulent bacteria as well and contributes to gut
inflammation. For instance, Subtilisin, a serine protease produced by the non-pathogenic
Bacillus subtilis, has been shown to activate prothrombin and trigger platelet aggregation
and plasma clotting [90] and may contribute to the increased risk of thromboembolic events
reported in patients with IBD [91].

Besides serine proteases, other effectors that merit consideration comprise gut cysteine
proteases. Among the most recognized clans in prokaryotic cysteine proteases, a single
family of cysteine exopeptidases, C40, constitutes more than 30% of all cysteine proteases
detected so far [92]. These proteases contribute to peptidoglycan turnover and serve as key
virulence factors targeting specific components of the host defense system. The role of gingi-
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pains and streptopain as key virulence factors of Porphyromonas gingivalis and Streptococcus
pyogenes, for instance, includes the (i) activation of the kinin system [93], (ii) degradation
of antibacterial peptides such as human α- and β-defensins [94], (iii) dysregulation of
cytokine-signaling pathways [95] and (iv) activation of matrix metalloproteases (MMPs),
such as MMP-2 [96]. Although gingipains are mainly linked to periodontal disease, pre-
vious studies have highlighted the complex pathogenic interactions between this disease
and IBD [97,98]. The administration of P. gingivalis altered the composition of the gut
microbiota and reduced the expression of the junctional proteins involved in intestinal
permeability [99]. IL-6 and TNFα expression was also increased [99].

These proteases offer a promising opportunity for therapeutic intervention in in-
flammatory and infectious diseases. However, limited data are available regarding the
protease/serpin interactions.

5. Serpins, Natural Inhibitors to Control the Activity of Serine Proteases
5.1. Overview of Serpins

Serine protease inhibitors, also known as serpins, constitute the largest and most
widely distributed superfamily of protease inhibitors. It bears over 3000 serpins identi-
fied in all living kingdoms, including animals, plants, fungi, protists, archaea and bac-
teria [100,101]. They generally consist of 350–400 amino acid residues with a molecular
weight between 40 and 100 kDa and fold into 7–9 α helices and three β-sheets [102]. Their
structure is highly conserved, which is important for their function. Besides their inhibitory
roles, serpins serve as hormone transporters [103,104], chaperones [100] as well as antian-
giogenic factors [105]. The mechanism of action of serpin-inhibiting proteases comprises a
unique conformational change of both molecules and the formation of a suicide complex
often referred to as a “mouse trap” [106]. Based on their phylogenetic relationships, serpins
can be subdivided into 16 groups named from A to P [102,107]. They often inhibit serine
proteases but may also target caspases [108] and papain-like cysteine proteases [109,110].
These inhibitors have been extensively studied in eukaryotes. Indeed, a total of 37 serpins
have been identified in humans, 30 of which are functional protease inhibitors [101,111,112].
They are involved in the control of various physiological processes, such as blood coagula-
tion (anti-thrombin), inflammatory responses (anti-trypsin, anti-chymotrypsin) and tissue
remodeling [100,113,114]. Unlike eukaryotic serpins, their prokaryotic counterparts are
relatively enigmatic. In vitro studies showed that this protein family exhibits inhibitory
potential [115]; however, its in vivo targets remain to be characterized. Interestingly, several
inhibitory prokaryotic serpins are found in extremophile bacteria, such as serpin from
Pyrobaculum neutrophilum [116]. These serpins are known to act as inhibitors at elevated
temperatures while resisting inappropriate conformational change.

5.2. Non-Gut Microbial Serpins

Prokaryotic serpins have been gaining interest, as indicated by the growing number
of serpin-encoding genes since 2013, increasing from 445 to 53,367 [117]. These inhibitors
account for 31 and 13% of the fully sequenced genomes of archaea and bacteria, respec-
tively [118,119]. They were first discovered in 2002 when Irving et al. (2002) characterized
12 serpin-like sequences in the genomes of some archaea and extremophile bacteria [120].
The origin of these proteins and their physiological role in prokaryotes remain to be elu-
cidated. We previously analyzed sequences of microbial serpins available in NCBI and
demonstrated that these inhibitors are sparsely distributed in different phyla, mainly
Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria. This analysis indicates that
serpins belong mostly to the human gut microbiota as well as marine and soil bacteria [121].
Owing to the presence of serpins in commensal and pathogenic prokaryotes that coexist
with eukaryotes, it has been proposed that prokaryotic serpins were acquired from eukary-
otes through horizontal gene transfer [119,120,122,123]. However, the occurrence of marine
and soil bacteria-harboring serpins does not support this statement. Thus, an alternative
hypothesis was proposed suggesting that serpins constitute an ancient superfamily that
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firstly appeared in prokaryotes prior to divergent evolution [120]. This hypothesis was
supported by a recent phylogenetic analysis using 6000 non-redundant sequences that
encompass serpins from all living kingdoms [124]. It was reported that most microbial
serpins belong to two main groups (T and U), where a large proportion exhibits a predicted
inhibitory function [124].

Only a few microbial serpins have been subjected to a functional characterization.
Thermopin from Thermobida fusca was the first to be studied. Although T. fusca is a moderate
thermophilic bacterium (optimum growth temperature: 55 ◦C), thermopin was predicted
to inhibit proteases [120]. This function was further confirmed by the ability to inhibit
chymotrypsin and the formation of a covalent complex, a typical feature of an inhibitory
serpin, with the targeted protease [115]. Thermopin is thermostable at 60 ◦C, a temperature
incompatible with the metastable folding of inhibitory serpins (such as α1AT) [115]. Inter-
estingly, structural adaptation to high temperatures allows the thermopin to fold properly
and preserve its inhibitory activity at high temperatures [115]. Of note, thermopin repre-
sents the only functionally characterized microbial serpin belonging to the group U [124].
Similar observations were reported with Thermoanaerobacter tengcongensis, an extremophile
bacterium isolated from a hot spring (optimum growth temperature: 75 ◦C). T. tengcongensis
encodes an inhibitory serpin, tengpin, belonging to the group T, that inhibits NE and is able
to form covalent complex [124,125]. Serpins were also characterized from the soil bacterium
Clostridium thermocellum known to degrade cellulose. C. thermocellum encodes two serpins,
namely PinA and PinB. PinA inhibits subtilisin type XXIV, savinase and esperase [126,127].
Since subtilisin-like proteases are present in several C. thermocellum genomes and are highly
abundant in soil, it was suggested that C. thermocellum uses PinA to protect cellulosome
from both endogenous and exogenous protease attacks [126,127]. C. thermocellum ser-
pin 1270 was shown to inhibit proteases from more than one structural class, a so-called
‘cross-class inhibition’ feature. In addition to inhibiting serine proteases (subtilisin, trypsin,
chymotrypsin), this serpin targets papain, which is a cysteine protease [128].

Genome analysis of Gloeobacter violaceus, isolated from soil and fresh water, demon-
strated the presence of a serpin-encoding gene. The expressed serpin, called vioserpin,
shares heparin-binding sites with eukaryotic serpins such as kallistatin and thrombin.
Vioserpin efficiently inhibits trypsin-like activity and forms a covalent complex [129]. Re-
cently, a new serpin (PI-QT) was identified from the metagenome of a sponge-associated
microorganism. PI-QT inhibits both trypsin and alpha-1-antichymotrypsin [130].

Besides the serpins mentioned above, miropin, a protease inhibitor produced by the
periodontopathogen Tannerella forsythia, was shown to inhibit not only NE, CatG and
trypsin but also microbial proteases such as subtilisin, calpain-like peptidase and gingipain
K [123,131]. This wide inhibition spectrum is mainly associated with the presence in the
reactive center loop of different cleavage sites, outside the usual P1-P1′ site, which allows
the formation of a covalent complex together with structural flexibility during complex
formation [123,131]. Recent reports indicate that miropin expression levels correlate with
gingipain expression, encoded by P. gingivalis [132]. Moreover, miropin efficiently inhibits
human plasmin, thereby enabling the bacterium to resist plasmin-mediated fibrinolysis and
allow bacterial survival in pathological conditions [133]. Hence, miropin was suggested to
mediate bacterial virulence and confer protection against both endogenous and exogenous
proteases [131,133].

Although these serpins do exhibit an inhibitory effect, they seem most adapted to
extreme conditions and a distinct ecological niche, other than the GIT. It is, therefore,
important to explore the gut serpinome and delve further into its role in managing or
treating IBD.

5.3. Gut Serpinome and Inflammatory Bowel Diseases

The human gut microbiota encodes a large number of serpins, hereafter referred to as
the gut serpinome, which mainly encompasses inhibitory functions [121,124]. However,
only four serpins were functionally characterized till now. The studied microbial serpins,
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belonging to Bifidobacterium longum, Eubacterium siraeum and Eubacterium saburreum, appear
to play a role in host–bacterium crosstalk. Bifidobacteria are natural inhabitants of the
human gut and are known to display immunomodulatory properties. Members of this
genus revealed a large repertoire of genes enabling their adaptation and resistance to the
hostile GIT environment [134–136]. Among them, serpins are described to be involved in
this interaction. Indeed, an early study revealed the presence of serpin-encoding homologs
in a small number of bifidobacterial species [135]. Nevertheless, sequencing of the genomes
of more bifidobacterial species, together with recent advances made by metagenomic
analysis, allowed the identification of several additional Bifidobacterial species-encoding
serpins [121,137]. Intriguingly, induced transcription of Bifidobacterial serpins in response
to different environmental conditions in the GIT has been highlighted [134,135]. This
includes the presence of several prokaryotic and eukaryotic proteases [135,138]. SerpinBL,
belonging to B. longum, is able to form a stable covalent complex with fecal proteases from
mice. Thus, it was proposed that this serpin is released to protect B. longum against sur-
rounding proteases. Hence, SerpinBL confers to the bacterium the advantage to evolve and
survive in the competitive intestinal environment [135,139]. In line with this observation,
SerpinBL has also the capacity to inhibit NE [139]. Since NE is released by activated neu-
trophils at the site of intestinal inflammation and plays a pivotal role in several digestive
pathologies, such as IBD, it was suggested that SerpinBL secreted during inflammation
may modulate host–proteolytic activity [139]. Therefore, this inhibitory activity can con-
tribute to the immunomodulatory properties granted to B. longum [140] and may impart a
relevant role to this strain in preserving gut homeostasis [141]. The SerpinBL was recently
reported to attenuate the activation of enteric neurons, as well, in patients with irritable
bowel syndrome (IBS, a pathological condition with low-grade gut inflammation). These
results take on more importance when considering that fecal supernatants from IBS patients
exhibit increased levels of NE, involved in pain induction. Hence, SerpinBL, through NE
inhibition, potentially contributes to pain relief in IBS patient [142]. Reduced anxiety-like
behavior in mice with inflamed intestines treated with B. longum provides more evidence
to confirm this hypothesis [143]. Moreover, it was demonstrated that SerpinBL attenuates
gliadin-induced inflammation and impacts intestinal microbial composition in a mouse
model of gluten sensitivity [144]. These results stressed the role of B. longum in maintaining
human gut homeostasis through several mechanisms, including serpin expression.

E. saburreum, another commensal member of the GIT [145], displays saburopin. This
serpin preferentially inhibits mammalian pancreatic elastase, prevalent in the GIT, where
E. saburreum might be encountered [146]. Similar to E. saburreum, E. siraeum, which naturally
colonizes the human intestine [147], was shown to express two distinct serpins named
siropin 1 and siropin 2. Siropins efficiently inhibit NE and PR3, two elastase-like proteases
abundantly expressed under intestinal inflammation and widely involved in the tissue
damage associated with IBD. To the best of our knowledge, siropins are the first microbial
serpins to inhibit human PR3. These results suggest an intriguing possibility that E. siraeum
produces siropins to modulate host-derived proteolytic activity, thereby to resist damage
caused by excessive host proteases. In line with this hypothesis, both siropins strongly
inhibit fecal proteases harvested from mice with DSS-induced colitis, mainly fecal elastase-
like activities. These data highlight the siropins’ potential to inhibit proteases associated
with gut inflammation [11]. However, additional analyses are still needed to decipher the
impact of E. siraeum and its secreted serpins in the gut physiology. Based on the role of the
studied serpins in dampening protease-mediating inflammation, it can be assumed that
the gut serpinome is potentially involved in the host–gut microbiota interaction, thereby
modulating the inflammatory response and the underlying proteolytic pathways as well.
Thus, there is growing interest in the gut serpinome as a novel therapeutic alternative
against intestinal inflammation. Recent studies have shown that intestinal parasite-derived
serpins may contribute to alleviate TNBS-induced colitis in mice [148,149]. Trichinella
spiralis was found to encode two antiproteases that target digestive serine proteases such



Int. J. Mol. Sci. 2021, 22, 6088 9 of 16

as trypsin, chymotrypsin and elastase, as well as cysteine proteases including cathepsin
and papain [148,149].

This ability to inhibit two distinct families of proteases highlights the importance
of intestinal parasite-derived serpins as members of the gut serpinome. Future studies
addressing their contribution to IBD might help to better elucidate the relevance of the gut
serpinome in digestive inflammation.

A summary of the different serpin groups and their biological functions is provided
in Table 1.

Table 1. Serpin groups and their main functions.

Clade Serpin Biological Functions References

A
Serpin A1, A3, A4, A5, A10, A12 Serine protease inhibition [150–155]

Serpin A6, A7 and A8 Hormone transport [156,157]
B Serpin B1, B2, B3, B4, B8, B10 Serine and cysteine protease inhibition [109,158–162]
C Serpin C1 Inhibition of thrombin, factor Xa and factor IXa [163–165]
D Serpin D1 Inhibition of thrombin [166]
E Serpin E1 and E2 Serine protease inhibition [167,168]
F Serpin F2 Inhibition of plasmin [169]
G Serpin G1 Inhibition of C1 proteinase and plasma kallikrein [170,171]
H Serpin H1 Chaperone [172]
I Serpin I1 Inhibition of plasmin, uPA and tPA [173]
U Thermopin Inhibition of chymotrypsin [115]
T Siropins, Tengpin, Miropin, SerpinBL Inhibition of eukaryotic proteases [11,125,131,139]

6. Conclusions

The present review highlights the limits of current therapies of IBD and the need for
innovative treatments. Apart from the gut microbiota dysbiosis and disbalanced pro/anti-
inflammatory cytokines, the proteolytic imbalance appears to exert pivotal functions in the
pathogenesis and maintenance of IBD. Here, we focused on the role of the gut serpinome
in the microbiota–host dialogue and its impact in maintaining proteolytic homeostasis
has been emphasized. Until recently, only four serpins from the gut serpinome had been
characterized and their therapeutic potential is being actively investigated. Interestingly,
the studied serpins show a large spectrum and high efficiency to inhibit proteases involved
in IBD pathophysiology. Such observations stress the enticing prospect of serpins from the
gut microbiota in the field of intestinal inflammation. An innovative axis would consist
of modulating the microbiota to promote the gut serpinome and thus fight against the
deleterious effects of proteases. However, there is quite a dynamic investment in microbial
serpins and much effort is still needed to decipher the gut serpinome. Therefore, there
is still some way to go before the implementation of this axis because, as underlined in
this review, the physiological roles of proteases are vast and any inhibition will have to
be targeted. Above all, this review integrates the microbiota into its host, considering the
whole as a unique supraorganism (holobiont) with multiple interactions.
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