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Abstract: Most of the world’s mountain glaciers have been retreating for more than a century in
response to climate change. Glacier retreat is evident on all continents, and the rate of retreat has
accelerated during recent decades. Accurate, spatially explicit information on the position of glacier
margins over time is useful for analyzing patterns of glacier retreat and measuring reductions in
glacier surface area. This information is also essential for evaluating how mountain ecosystems
are evolving due to climate warming and the attendant glacier retreat. Here, we present a non-
comprehensive spatially explicit dataset showing multiple positions of glacier fronts since the Little
Ice Age (LIA) maxima, including many data from the pre-satellite era. The dataset is based on
multiple historical archival records including topographical maps; repeated photographs, paintings,
and aerial or satellite images with a supplement of geochronology; and own field data. We provide
ESRI shapefiles showing 728 past positions of 94 glacier fronts from all continents, except Antarctica,
covering the period between the Little Ice Age maxima and the present. On average, the time series
span the past 190 years. From 2 to 46 past positions per glacier are depicted (on average: 7.8).

Dataset: 10.6084/m9.figshare.13700215

Dataset License: CC-BY-4.0

Keywords: glacier retreat; climate change; little ice age; pre-satellite era; global scale

1. Summary

Most of the world’s mountain glaciers have been losing mass since the second half
of 19th century due to the rise of global temperature [1]. Glacier retreat is evident on
all continents, and the rate of retreat has accelerated during recent decades [2–4]. In
the European Alps, for example, glaciers have lost 25–30% of their surface area over the
past 60 years, and the rate of ice loss is accelerating rapidly—it has been 200–300% faster
in the past two decades than 40 years ago [5–7], and similar rates of retreat have been
measured in other areas of the world [8]. The biotic and abiotic consequences of glacier
retreat have received increasing attention in recent years, with research focusing on the
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biotic colonization, the formation and evolution of soils along glacier forelands, and the
geomorphological hazards related to deglacierization [9–14], as well as on the impacts
of glacier retreat on meltwater availability and human wellbeing [15,16]. In this context,
broad-scale, spatially explicit information on the dynamics of glacier retreat is essential to
assess the ecological dynamics of biotic colonization across multiple regions and to develop
adequate adaptation and mitigation strategies to reduce geomorphological risks and cope
with meltwater scarcity in arid regions.

Several databases summarizing information on glacier retreat are currently available
(e.g., World Glacier Monitoring Service [17] and Global Land Ice Measurements from
Space [18,19]). In most cases, they provide recent outlines obtained through remote sens-
ing. For some glaciers, the GLIMS initiative also provides past outlines, such as glacier
extent at the end of the Little Ice Age (LIA). However, these databases generally do not
provide information on glacier extent at multiple time points, covering the retreat occurring
during the last century. For many glaciers, high-quality data on margins are available
since the end of the LIA (from the late 19th century in part of Northern Europe, to as
early as the 17th–18th century in other mountain ranges such as the tropical Andes; see
e.g., [20]). These data have been obtained through geomorphologic analyses mainly based
on morpho-stratigraphic positions, morphology, and relationships of moraines which is fur-
ther dated by in situ relative and absolute dating methods (e.g., radiocarbon, lichenometry,
dendrochronology, optically stimulated luminescence, and terrestrial cosmogenic nuclide
dating), analysis of old/repeated photographs and paintings, historical archives and maps
including topographical maps, and remotely sensed data [21–24]. The data are typically
analyzed using multi-data integrative methods and summarized in long multi-temporal
retreat maps. However, because they are derived from disparate sources, the data require
manual processing for analysis and presentation. As a consequence, such datasets are
mainly available fragmentally for some specific glaciers and for some restricted areas. Thus,
there is a need to synthesize such long multi-temporal glacier fluctuation datasets from all
over the world to develop spatially explicit datasets showing positions of glacier fronts
since the Little Ice Age (LIA) maxima at one place.

We focused on time-series of glacier margins from the LIA maximum extent to the
present, with representative examples from the major mountain ranges of the world, except
Antarctica. We performed a literature search of glaciers with well-documented retreat
series worldwide (i.e., long and spatially explicit time series of glacier margins); the dataset
was further complemented with data from several alternative sources (i.e., topographic
maps, historical images, and drawings), field work, and remotely sensed data. We focused
on mountain glaciers (see [25] for definitions), even though our dataset also included a few
glaciers that are linked to icecaps in Iceland and Greenland (Figure 1).
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Figure 1. Distribution of glaciers included in the dataset (red dots). Due to proximity, some dots are superimposed. The
blue shaded areas show the number of extant glaciers for 1.5◦ × 1.5◦ cells (source: [18,19]).
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The dataset includes dated margins for 94 glaciers from all the continents except
Antarctica (Figure 1). From 2 to 46 past positions are included (average: 7.8 lines per
glacier); at least four past positions are shown for 97% of the glaciers. In total, we provide
728 glacier outlines and/or frontal positions for the period from the 16th century to the
present. The average length of the time series is 188 years; the length is ≥85 years for 94%
of the glaciers. About 97% of the glacier margins date to the period from the 19th century
to today, with a marked increase of data over the second half of the 20th century (Figure 2).
The oldest outlines are largely restricted to areas where researchers have dated the LIA
maximum back to the 16th–18th centuries (e.g., South America [26,27]).
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Common Era.

Although the dataset includes glaciers from all continents (Figure 1), there are dif-
ferences in coverage among areas, as observed for other environmental datasets [28,29].
Specifically, 35% of the data are from Europe (including Svalbard); 29% are from Asia
(including Papua New Guinea); 15% from South America; 11% from Northern and Central
America, 8% from Oceania (New Zealand); and 2% are from Africa. Our primary objec-
tive was not to obtain a complete, global scale dataset with equal coverage from all the
continents, but instead to collate high-quality data with multiple positions from several
glaciers around the world. We encourage users to add to our dataset information from
additional glaciers.

The present work is part of the European Community’s Horizon 2020 project IceCom-
munities (Grant Agreement no. 772284). IceCommunities combines innovative methods
and a global approach to boosting our understanding of the evolution of ecosystems in
recently deglaciated areas. IceCommunities investigates chronosequences ranging from
recently deglaciated terrains to late successional stages of soil pedogenesis. Through envi-
ronmental DNA metabarcoding IceCommunities identifies taxa from multiple taxonomic
groups (bacteria, fungi, protists, soil invertebrates, and plants), to obtain a complete re-
construction of biotic communities along glacier forelands over multiple mountain areas
across the globe and to measure the rate of colonization at an unprecedented level of
detail. Information on assemblages is then combined with analyses of soil, landscape, and
climate to identify the drivers of community change. IceCommunities also assesses the
impact of ecogeographical factors (climate and the regional pool of potential colonizers) on
colonization. Analyses of functional traits are also used to reconstruct how functional di-
versity emerges during community formation, and how it scales to the functioning of food
webs. IceCommunities will help to predict the future development of these increasingly
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important ecosystems, providing a supported rationale for the appropriate management of
these areas.

2. Data Description

The dataset is downloadable from https://doi.org/10.6084/m9.figshare.13700215
(accessed on 4 October 2021). It contains the following data files (Tables 1–4):

Table 1. Description of the datasets.

Filename Description

IC_glac_lines
(*.shp, *.shx, *.prj, *.dbf)

ESRI shapefile (EPSG:4326) containing the 728 reconstructed
positions of glacier margins for the 94 glacier analyzed. For

each line, glacier name, dating, source, GLIMS id, and
maximum extent are reported in the associated table.

IC_glac_ sites
(*.csv)

Table reporting the description of the study sites (glacier
name, GLIMS id, country, coordinates of the centroid, mean
elevation, mean annual temperature, annual precipitation,

lithology, area, and number of reconstructed lines)
IC_glac_references

(*.csv) Table reporting the references cited in IC_glac_lines

IC_glac_lines

Table 2. Variable identities, definitions, and attributes for the dataset IC_glac_lines.

Identity Definition Unit Storage Range

glacier Glacier name - Character -
dating Dating year CE Integer/character 1500 to 2019
source Reference - Character -

GLIMS_id Id - Character -
max_extent Maximum glacier extent 1 - Character (y/n) -

1 For each glacier, “y” identifies the margin(s) at LIA maximum. The information is missing (i.e., all “n”) when
the reconstructed series is incomplete (e.g., Brewster glacier: 1986–2011).

IC_glac_sites

Table 3. Variable identity, definition, and attributes for the dataset IC_glac_sites.

Identity Definition Unit Storage Range

glacier Glacier name - Character -
country Country name - Character -

GLIMS_id Id - Character -
lon_wgs84 Longitude (centroid) DD Numeric −149.631 to 170.173
lat_wgs84 Latitude (centroid) DD Numeric −47.530 to 78.899

elev_m Mean elevation m a.s.l. Integer 51 to 5120
mat_◦C Mean annual temperature 1 ◦C Numeric −13.28 to 9.49

pcp_mm Annual precipitation 1 mm Integer 181 to 4515
litho Lithology 2 - Character -

area_km2 Glacier area 3 km2 Numeric 0.014 to 8091.670
N_positions Number of reconstructed lines - Numeric 1 to 27

1 Retrieved from CHELSA [30]. 2 Codes identifying lithology refer to the lithological classes used in Hartmann
and Moosdorf [31]. Specifically: mt, metamorphics; ss, siliciclastic sedimentary rocks; pa, acid plutonic rocks; su;
unconsolidated sediments; pb, basic plutonic rocks; va, acid volcanic rocks; sc, carbonate sedimentary rocks; vb,
basic volcanic rocks; sm, mixed sedimentary rocks; and vi, intermediate volcanic rocks. 3 Most-recent available
estimate; retrieved from GLIMS database v20200630 [18,19].

https://doi.org/10.6084/m9.figshare.13700215
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IC_glac_references

Table 4. Variable identity, definition, and attributes for the dataset IC_glac_references.

Identity Definition Unit Storage Range

References Sources used to reconstruct
or date glacier margins - Character -

3. Methods

We focused on time-series of glacier margins from the LIA maximum extent to the
present, with representative examples from the major mountain ranges of the world,
except Antarctica. We first performed a literature search of glaciers for which there are
long and spatially explicit time series of glacier margins. Data from the literature were
complemented with new data, obtained mostly from topographic maps; historical, aerial,
and satellite images; and field surveys. Some of the glacier margins and dates are based
on our measurements made in the field. Older positions are based mainly on moraines
that are clearly visible on images and in the field, and have been dated using lichenometry,
dendrochronology, radiocarbon, and cosmogenic nuclides. The reconstruction of LIA
maxima and subsequent glacier extent have been carried out differently by different studies,
in most of cases using a multi-data layer integration approach (MDIA, [32]). This approach
incorporates individual layers of information extracted from geomorphological mapping,
analysis of photo sequences, historical archives, maps inferences, and hillshade DEM
analysis into a GIS environment. For many glaciers, glacial geomorphological evidence and
landforms (e.g., lateral, recessional, and hummocky moraines, supraglacial morainic ridges,
trim lines, and palaeo-channels) resultant due to LIA glaciation and latterly molded by
deglaciation are initially mapped using high-resolution remote sensing images and DEMs
and further validated in the field. These data are integrated with sequences of pictures
taken in the field in different times, or obtained from satellite/aerial images. Moreover,
additional information on the historical terminus, surface characteristics, and the extents
of individual glaciers was extracted from historical descriptions, documents, and maps
preserved since LIA maxima, and existing marks in the field. All the spatial data were
integrated into a spatial database, and the output was further validated against known LIA
positions from available regional chronologies (e.g., [26]).

We used four approaches to validate the dated margins for each glacier: (i) we per-
formed a double-check against the original publication; (ii) each shapefile was checked by
more than two co-authors, to confirm the consistence across areas of the world; (iii) the
database was reviewed by regional experts, i.e., by researchers experienced in the geomor-
phology and mapping of glaciated areas of a study region; and (iv) we then performed a
final check based on available high resolution satellite images in Google Earth.

Images were georeferenced and lines were digitized using QGIS 3.4.12; additional
analyses were performed using R 4.0.5.

4. User Notes

The final dataset is provided in ESRI shapefile format (WGS 84, decimal degrees—
EPSG:4326). Missing/anomalous data are present in both IC_glac_lines and IC_glac_sites.
They refer to some GLIMS IDs lacking (glacier not in the references database or extinct).
Additionally, it was not always possible to obtain precise datings for the glacier margins,
particularly those older than the first half of the 20th century (marked as “NA”, “LIA”,
“M2”, or “M3” and “(estimated- . . . )”. Sources of uncertainty included the following:

(1) For a number of glaciers, dating of old margins were based on published geomor-
phological chronologies of the region, rather than on the glacier itself. For example, LIA
moraines in the Peruvian Andes, although clearly visible in the field, have not been directly
dated for all the glaciers, therefore we assume ages similar to those of nearby glaciers [25].
Similarly, in the absence of direct dating, we assume that LIA moraines of glacier margins
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in the European Alps date to the last half of the 19th century, even though some variation
might exist among glaciers due to their different response time [33]. Cases with large age
uncertainties are explicitly acknowledged in the dataset.

(2) Even if a moraine has been directly dated (e.g., using lichenometry or radiocarbon
dating), the user must be aware that every technique has inherent uncertainties. The user
should refer to the reference(s) cited in the dataset for further information on this uncertainty.

(3) Finally, some level of spatial uncertainty exists, for instance when data are based
on old maps or images, mostly because of their limited quality and/or spatial resolution.
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