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Growth models used for describing the dynamics of body weight and height gen-

erally consider each trait independently. We proposed modeling height and

weight trajectories jointly with a nonlinear heteroscedastic mixed model based

on the Jenss‐Bayley growth function with correlated individual random effects

and using Bayesian inference techniques. Simulations showed that our model

provides good estimates of the growth parameters. We illustrated how it can

be used to assess the associations between maternal smoking during pregnancy,

an early‐life factor potentially involved in prenatal programming of obesity, and

children's growth from birth to 5 years of age. We used real data from the EDEN

study, a large French mother‐child cohort study with a high number of height

and weight measurements (a total of approximately 30 000 measurements for

each of the 2 traits across the 1666 children). Our results supported the existence

of a relationship between maternal smoking during pregnancy and growth from

birth to 5 years of age. Children from mothers who smoked throughout preg-

nancy were shown to display a higher bodymass index from the first fewmonths

of life onwards compared to children from nonsmokers. At 5 years of age, their

mean body mass index was 0.21 kg/m2 higher than unexposed children. It was

mainly explained by the fact that these children tended to be smaller at birth

but rapidly exceeded the weight of children from nonsmokers postnatally.

KEYWORDS
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1 | INTRODUCTION

Growth of children is used as an indicator of health and development and is influenced by genetic and environmental
factors. In epidemiology, growth is studied by different approaches that generally aim to identify critical periods when
growth is associated with later health or diseases, or as an outcome to study its determinants. Among them, structural
modeling is attractive to provide parameters with meaningful information on key growth features.1 Most growth models
are generally implemented to assess patterns of height and weight growth separately. However, there is an interest in
jointly studying their evolution given the high correlation between these 2 traits. Indeed, multivariate models have
proved their ability (1) to study the relationship between longitudinal series over time and (2) to enhance the prediction
of a longitudinal outcome when no or few past observations are available by incorporating the information from profiles
of other series.2,3 Appropriately modeling children's growth during the first few years of life creates statistical challenges
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http://orcid.org/0000-0003-0792-1104
http://orcid.org/0000-0003-4025-4390
http://orcid.org/0000-0002-1565-1629
http://orcid.org/0000-0003-0468-6858
http://orcid.org/0000-0002-4814-6370
mailto:sophie2.carles@gmail.com
https://doi.org/10.1002/sim.7407
http://wileyonlinelibrary.com/journal/sim


CARLES ET AL. 3991
due to the complexity of growth patterns. Repeated collections of height and weight measures are needed to study
growth and must account for the nonindependence of measures of a same individual across time. Mixed‐effects models
provide a flexible and powerful tool to analyze these data.4

Growth patterns have already been fitted using nonlinear models, based on the structural Jenss‐Bayley equation,5

using mixed‐effect models,6-8 that adequately fit growth data from birth to 8 years of age and describe individual growth
trajectories using 4 subject‐specific parameters with clinical interpretations.1 The likelihood of nonlinear mixed models
(NLMMs) does not have a closed‐form expression because of the integration of random effects, making inference about
parameters somewhat challenging.9 Stochastic versions of the Expectation Maximization (EM) algorithms as Monte
Carlo EM have been proposed.10 The “stochastic approximation EM algorithm” (SAEM) is one that is more efficient
computationally than Monte Carlo EM because of smoothing on the E step based on recycling simulations from between
iterations. This algorithm is now implemented in R11 in the package SAEMIX.12

Bayesian approaches to joint NLMMs have been proposed especially for HIV dynamics and have shown to be a
powerful way to analyze such complex data. Indeed, specifying prior distributions for the model parameters allows users
to gain insight from the results of previous studies but also to handle some parameter identifiability problems. The
Bayesian approach also offers a flexible way to fit complex models, especially hierarchical or multilevel ones.13 One
major interest, inherent to Bayesian reasoning, is that the full posterior distribution of parameters is available. Thus, this
approach is suitable for predictions that account for uncertainty in the parameters.14

Herein, we propose a joint Bayesian model of height and weight growth and illustrate how it can be used to
assess the associations between maternal smoking during pregnancy, an early‐life factor potentially involved in
prenatal programming of obesity, and children's growth from birth to 5 years of age. We used real data from the
EDEN study, a large French mother‐child cohort study with a high number of height and weight measurements
(a total of approximately 30 000 measurements for each of the 2 traits across the 1666 children). We hypothesized
that the Bayesian approach would offer computational facilities especially when the number of factors to consider
for their association with the growth trajectory is high. Our approach should allow us to simultaneously assess
the associations between the determinant of interest and growth in weight and height and infer the association with
body mass index (BMI).

In Section 2, we introduce the bivariate model based on the Jenss‐Bayley growth function. In Section 3, we apply this
model to simulated data to assess its ability to adequately fit growth data by providing accurate parameter estimates. In
Section 4, we apply the joint model on growth data resulting from the follow‐up of children from the EDENmother‐child
cohort study. In that section, we compare the separate modeling of height and weight to the joint modeling, and we
apply the joint model to assess the adjusted association between maternal smoking and height, weight and BMI growth.
Section 5 provides some elements of discussion.
2 | MODEL FOR POSTNATAL GROWTH DURING CHILDHOOD

2.1 | A general 3‐stage hierarchical model

The joint model consists of the following 2 nonlinear mixed‐effects submodels: one for height and the other for weight.
Compared to the univariate model, the joint model allows (1) considering height and weight longitudinal patterns as
nonindependent profiles, and (2) capturing and characterizing the relationship between them and predicting BMI in dif-
ferent groups of interest. It should allow us to identify whether children in subgroups of interest have atypical weight
trajectories considering their height trajectory and describe the repercussions on the BMI. In addition, it should allow
us to improve the predictive ability for growth trajectories. Notably, when there are no or few observations for a growth
profile, incorporating the information available for the other one should improve the prediction of its theoretical pattern.
It could be a way to correct the bias linked to the exclusion of informative data and is a key advantage in cohort studies
where there are loss to follow‐up children. The model can be displayed as a general 3‐stage hierarchical Bayesian model
along the same line as in Davidian and Giltinan.15
2.1.1 | Stage 1: intraindividual variability

We start by writing the NLMM under its classical formulation, as follows:

yijk ¼ f ϕik; tijk
� �þ eijk; (1)
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k=(H,W) denotes the 2 outcomes of interest, ie, height and weight. yik ¼ yi1k;…; yinikk
� �T

denotes a nik vector of
observed measures of height or weight for individual i at time tijk, i = 1,…, N, j = 1,…., nik. f is a nonlinear function of

a m vector of individual specific parameters ϕik. eik ¼ ei1k;…; einikkð ÞT is a nik vector of residual errors of height or weight
that are assumed to be independently and normally distributed with a null mean and variance σ2ek so that

eik ¼ eijk
� �

∼N 0; σ2ek Inik
� �

; (2a)

where Inik is the identity matrix.
To describe residual variances of height and weight, we used general variance functions involving residual variations

with age to account for a potential heteroscedasticity, as described by Foulley et al and Duval et al16,17:

log σ2eijk

� �
¼ δ0k þ δ1ktijk þ δ2kt2ijk:

Applied to height and weight models separately, we selected, among the 3 underlying submodels described below,
the one that minimized the fit parameters assessed by the Watanabe Akaike Information Criterion (WAIC) (see supple-
mentary material I and II for details on WAIC, method, and values)
M1:
 log σ2eijk

� �
¼ δ0k (where δ1k=δ2k=0), ie, homogeneous residual variances� �
M2:
 log σ2eijk ¼ δ0k þ δ1ktijk (where δ2k=0), ie, linear adjustment of logvariances according to age� �

M3:
 log σ2eijk ¼ δ0k þ δ1ktijk þ δ2kt2ijk , ie, quadratic adjustment of logvariances according to age
On our data, the best improvement of the fit parameters was obtained using the model M2 for height and M3 for
weight leading to the following equations:
Height:
 log σ2eijH

� �
¼ δ0H þ δ1HtijH ;� �
Weight:
 log σ2eijW ¼ δ0W þ δ1WtijW þ δ2Wt2ijW :
Formulas 1 and 2a are equivalent in the Bayesian hierarchical models to writing the conditional distribution of the
data given the individual parameters ϕik as

yik∣ϕik∼N f ik; σ
2
ek Inik

� �
; (2b)

where yik=(yijk) for j = 1,…., nik is a nik vector and similarly fik is defined as fik=(f(ϕik, tijk)) for j = 1,…., nik.
For the weight and height modeling, f is a modification of the initial nonlinear Jenss‐Bayley equation that improves

the interpretation of parameters and accounts for mathematical constraints.8 This growth function allows the expression
of expectations of height in centimeters (cm) and weight in kilograms (kg) for the individual i at time tijk, as follows:

f ϕik; tijk
� � ¼ exp Aikð Þ þ exp Bikð Þtijk þ exp Cikð Þ 1− exp − exp Dikð Þ tijk

� �� �
(3)

with k=(H,W) and ϕik=(Aik,Bik,Cik,Dik)
T.
2.1.2 | Stage 2: interindividual variability

Individual effects are treated as random with the following multinormal distribution:

ϕi∼N μi;Ωð Þ; (4)

where ϕi=(ϕiH ϕiW)T with height ϕiH and weight ϕiW vector components having mean vector

μi ¼ μiH μiWð Þ T ¼ μAiH ;…; μDiH ; μ
A
iW ;…; μDiW

� �T
and variance covariance matrix Ω ¼ ΩHH ΩHW

ΩWH ΩWW

� �
of dimension

2 m × 2 m.
In Formula 3, exp(AiH) describes the length at birth of subject i. For weight modeling, to bypass the neonatal weight

loss not correctly fitted by the model, birth weight measures were excluded and the minimum weight in the first 4 days of
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life was selected for each child. Consequently, in the weight model of subject i, exp(AiW) represents the extrapolated
weight at time 0 without accounting for neonatal weight loss; for any trait k, exp(Bik) is the growth velocity of height
or weight beyond 2 years of age; exp(Cik) is the spurt of height/weight growth in the first 2 years of life, and exp(Dik)
is the trajectory curvature in early life (combination of growth velocity and deceleration rate in the beginning of life).
Means μik of the distribution shown in (4) are related to a matrix of explanatory variables Xi of dimension m×p (inter-
cept and discrete or continuous covariates) via a classical linear model involving a p dimensional vector of parameters βk.

μik ¼ Xiβk (5)

In models without covariates, the vector of “fixed” effects βk is restricted to intercept elements

β0Ak ; β0Bk ; β0Ck ; β0Dk
� �T

corresponding to the population means of growth parameters. In models with covariates on
growth parameters (cf Section 4), βk includes both a vector of m parameters intercepts β0Ak ; β0Bk ; β0Ck ; β0Dk and a vector
of mpcov regression coefficients β1Ak…: βpcovAk ,…, β1Dk…: βpcovDk pertaining to the pcov covariates of interest.
2.1.3 | Stage 3: hyperprior distributions

We specified standard prior distributions usually used for Bayesian hierarchical models14,18 and parameter values that
take advantage of published studies in the field of growth, including ours.8

The prior distributions are described in Table 1 (in rjags notations). Briefly, for the weight submodel, a mean value of
1 for the A parameter specifies the prior expectation of the extrapolation of the average minimal weight after birth to be
2.7 kg and a precision (inverse of variance) of 16 (95% probability in the range [1.70, 4.40]). We defined a mean B param-
eter value of −5, a mean C parameter of 1.5, and a mean D parameter of −5 with a precision of 16. The same approach
was applied for the height submodel. The priors for the height model parameters (see Table 1 for prior distribution) were
adapted to provide plausible birth lengths and height trajectories.

In the presence of covariates, to keep the values generating realistic growth trajectories, we assumed the prior distri-
bution for all the coefficients of the βk vector except the intercept terms to be normally distributed with a mean zero and
a precision of 16, (ie, a variance of 0.0625 or a standard deviation of 0.25), ie, in the range [−0.49, 0.49]) with a 95% prob-
ability for k=(H,W).

For the simulation study, prior normal distributions with a mean of zero and precision of 0.1 were specified on the
parameters of the residual variance function δ0H and δ1H for height and δ0W , δ1W and δ2W for weight. For the application,
we used precision parameter of 16. The precision matrix Γ=Ω−1 of the 8 individual parameters (A, B, C, D for height and
TABLE 1 Prior distributions used for hyperparameters involved in the Bayesian model (rjags notation)

Parameters Weight (k=W) Height (k=H)

β0Ak dnorm(1; 16) dnorm(4; 16)

β0Bk dnorm(−5; 16) dnorm(−4; 16)

β0Ck dnorm(1.5; 16) dnorm(3; 16)

β0Dk dnorm(−5; 16) dnorm(−5; 16)

β1 A−Dð Þk
to βp cov A−Dð Þk

dnorm(0; 16) dnorm(0; 16)

Ω−1 dwish(R−1, 9)

Residual variance

Simulation study

δ0k dnorm(0; 0.1) dnorm(0; 0.1)

δ1k dnorm(0; 0.1) dnorm(0; 0.1)

δ2W dnorm(0; 0.1) NA

Application

δ0k dnorm(0; 16) dnorm(0; 16)

δ1k dnorm(0; 16) dnorm(0; 16)

δ2W dnorm(0; 16) NA
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weight) was supposed to follow a Wishart distribution W(R, ν), a convenient distribution for positive‐definite matrices
due to conjugacy properties. Γ is thus a priori centered on νR and has ν degrees of freedom.19 Here, R=Γ0/ν, where
Γ0 ¼ Ω−1

0 is the prior mean of the precision matrix. Setting the prior on the precision Γ is equivalent to assuming that
the covariance Ω has an inverse Wishart distribution IW(R−1, ν) with E(Ω)=R−1/(ν− 2m− 1 ). Notably, in Winbugs
and rjags, the Wishart distribution is specified by R−1= νΩ0 instead of R. The parameter ν should be equal or higher than
the dimension of the precision matrix for the prior being proper; low values indicate less informative prior information.20

Here, ν was set equal to the number of parameters (2 traits with m components each) plus one ie, ν=2 m + 1 as advocated
by Gelman and Hill.21 Therefore, we used, according to rjags notations, Γ=Ω−1 ~W(R−1, 9) with R−1 chosen from pre-
vious estimations of the variance‐covariance between the height and weight model parameters7(see supplementary
material III for detailed values).
2.2 | Bayesian implementation

2.2.1 | Algorithm and software

The full conditional posterior distribution of all model parameters was calculated using Markov Chain Monte Carlo
(MCMC) methods within the rjags package (version 3‐15) in R software (version 3.1.0).22 In this package, MCMC
methods are simulated using the Gibbs sampler. Within this iterative process, after choosing arbitrary starting values,
each parameter of the model is sampled for each iteration t from the conditional distribution given all the others param-
eters at iteration t‐1. In other words, for each iteration s, each component θj of the whole vector of parameters θ will be
sampled conditional on the most recent values of the other components of θ.20,23
2.2.2 | Computational aspects

Models were run for 60 000 iterations (with 20 000 burn‐in iterations not used for posterior inference) using 3 chains
initialized with different starting values. Chains were thinned by selecting every 20th iteration such that the autocorre-
lation was sufficiently low. Inferences were made on a total of 1500 samples (500 samples per chain).
2.2.3 | Convergence assessment

Convergence assessments were based on visual inspections of the simulation trace plot for each parameter and on the
Brooks‐Gelman‐Rubin criteria (ie, criterion lower than 1.05).23-25 This criterion compares between and within chain
variability using the ratio of the total to the within chain variations. A criterion close to 1 indicates a good convergence.
2.3 | Model selection and evaluation

In the application (see Section 4), to test the effects of smoking covariates on height and weight trajectories, models with
and without those covariates were compared using the Deviance Information Criterion (DIC)26 and the WAIC27 (see
supplementary material I for details on both criterions).

To validate the selected model, posterior predictive checks derived by Gelman et al were performed.23 At each sim-
ulation (retained iteration) (s=1,….,S), simulated replicated data yrep s were generated under the model from the predic-
tive distribution of θs at the corresponding simulation. At each simulation, using a Chi‐squared discrepancy measure, we
assessed, for height and weight separately, the test quantity for replicated datasets T yrep s

k ; θs
� �

and for observed data
T(yk,θs). We calculated the posterior predictive P value for each trait k (pBk

) that corresponds to the proportion of
simulations S for, which

T yrep s
k ; θs

� �
≥T yk; θ

sð Þ;

where T yk; θ
sð Þ ¼ ∑N

i¼1∑
n
j¼1

yijk −E yijk jθs
� �� �2

Var yijk jθs
� � and T yrep s

k ; θs
� � ¼ ∑N

i¼1∑
n
j¼1

yrep s
ijk −E yijk jθs

� �� �2

Var yijk jθs
� � .

To assess the sensitivity of posterior inferences to prior distribution, a sensitivity analysis using noninformative priors
was performed (see supplementary material IV).
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3 | SIMULATION STUDY

3.1 | Simulated growth data

We performed a simulation study to assess and illustrate the ability of the model (see supplementary material III for
model syntax) to adequately estimate the key growth features with respect to classical properties of estimators (bias, stan-
dard, and mean square error). Datasets were simulated mimicking height and weight growth of typical children. A total
of 200 datasets were generated each containing the anthropometric data of 500 children with 10 measurements at time
points ranging from day 5 to day 1825. Specifically, data were generated at days 5, 30.44 (1 month), 91.32 (3 months),
182.64 (6 months), 273.96 (9 months), 365.25 (1 year), 730.5 (2 years), 1095.75 (3 years), 1461 (4 years), and 1826.25
(5 years). Population parameters values were guided by the results obtained from a previous study through a frequentist
SAEM algorithm.7

1. Each individual parameter was sampled from a multinormal distribution with the mean parameter values as
described in Table 2 (see true values). The 8‐dimensional variance covariance matrix between the individual height
and weight parameters was empirically chosen according to previous research7 (see values of Ω0 in supplementary
material III).

2. Heights and weights were then predicted at each time point (days 5‐1825) for each child in the simulated dataset by
applying the Jenss‐Bayley equation. We considered these values as the true height and weight measurements free
from measurement error.
TABLE 2 True values, bias, and probability coverage obtained from the Bayesian joint model of height and weight on 200 simulated

datasets

Parameter True Value Bias Relative Bias 95% Coverage Probability RMSE

AW 1.00000 −0.00063 −0.00063 95.5 0.00892

BW −5.00000 0.00028 0.00006 93.5 0.00395

CW 1.50000 −0.00005 −0.00003 94.5 0.00069

DW −5.00000 0.00089 0.00018 92.5 0.01261

AH 4.00000 −0.00002 −0.00001 95.5 0.00030

BH −4.00000 −0.00023 −0.00006 95.5 0.00338

CH 3.00000 −0.00005 −0.00002 95.0 0.00081

DH −5.00000 −0.00036 −0.00007 95.5 0.00504

δ0W −3.00000000 0.01541804 −0.00513935 94.0 0.21804405

δ1W 0.00200000 −0.00003799 −0.01899257 95.5 0.00053719

δ2W −0.00000050 0.00000002 −0.04195978 96.0 0.00000030

δ0H 0.40000000 0.00312113 0.00780282 94.5 0.04413940

δ1H 0.00040000 0.00000213 0.00533664 97.5 0.00003019

AWAW 0.01444 0.00011 0.00795 95.5 0.00162

BWBW 0.04000 0.00079 0.01985 95.5 0.01123

CWCW 0.05444 0.00082 0.01508 94.0 0.01161

DWDW 0.09556 0.00105 0.01094 95.5 0.01478

AHAH 0.00111 0.00001 0.00983 94.0 0.00015

BHBH 0.01111 0.00032 0.02925 94.0 0.00460

CHCH 0.01778 0.00044 0.02455 95.5 0.00617

DHDH 0.06778 0.00152 0.02245 97.0 0.02152

(A−D)k(A−D)k refers to the variance of the 4 parameters describing the trait k corresponding to the diagonal values of the variance–covariance matrix Ωkk,
where k=H for height and k=W for weight.
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3. Consequently, we introduced some measurement error to generate data that would be closer to those reported in
practice. For each individual in the simulated dataset, the observed data at given time points were obtained by
sampling one value from a normal distribution. The mean was the predicted value (2) and the standard error varied
with age according to the selected residual variance function (see Section 2.1). To generate standard error values for
height (σeijH ) at each time, the parameters δ0H and δ1H describing the residual variances were fixed to 0.4 and 0.0004,
respectively. To calculate standard error for weight (σeijW ), δ0W , δ1W, and δ2W were fixed to −3, 0.002, and −5 × 10−7,
respectively. These values correspond to a residual standard deviation increasing from 5 days to 5 years from 1.22 to
1.76 cm for height and from 224 to 602 g for weight.

We ran the Bayesian model on the 200 simulated datasets. We fixed a burn‐in period of 10 000 iterations for 3 chains,
ran the chains for an additional 20 000 iterations, and collected samples at intervals of 20 iterations.

The bias (ie, difference between the true value of the parameters (step 1) and the mean estimate obtained), the
relative bias (ie, ratio of the bias over the true value), the RMSE (ie, root mean square error), and the probability coverage
(ie, the proportion of 95% credible interval containing the true value) were additionally computed. The expectation of the
posterior distribution was used to compute the estimates for each parameter.
3.2 | Simulation results

Estimates obtained for the 8 main parameters (A, B, C, and D for height and weight parameters) were quite satisfactory
from a frequentist point of view. Absolute and relative biases were closed to 0, and the coverage probabilities ranged
from 92.5 to 95.5% (Table 2 summarizes the results for the main parameters and their variance; results for the covariance
between parameters are described in supplementary material V). Most of the other parameters (ie, variances and
covariances) were also adequately estimated by the model.

Figure 1 illustrates the simulated and fitted (mean trajectories and 95% credible interval of the trajectories) weight
growth trajectories for 3 randomly selected children and provides a visual validation of the model adequacy. Height
growth trajectories were also well fitted by the model (see supplementary material VI).
FIGURE 1 Weight measures (simulated data) of randomly selected individuals and datasets (open circles), mean curves fitted by the joint

Bayesian model and 95% credible intervals
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4 | APPLICATION TO GROWTH DATA

4.1 | The EDEN study dataset

We applied the joint Bayesian model to the data from the EDEN study, a birth cohort designed to assess pre and early
postnatal determinants of child health and development.28 Within the frame of the study, between 2003 and 2006,
2002 pregnant women were recruited in the maternity wards of 2 university hospitals in the French cities of Nancy
and Poitiers. Women were recruited prior to 24 weeks of gestation defined by the date of the last menstrual period.
The child's birth weight, daily weights on days 1 to 5, and birth length were extracted from the obstetric records. Length
or height and weight postnatal measurements were collected from health booklet via mailed questionnaires and during
the study's clinical visits at 1, 3, and 5 years.
4.2 | Comparison between univariate and multivariate models

Our aim was to assess the better predictive ability of the joint model compared to models of height and weight separately.
We worked on a subsample of children from the EDEN study. More precisely, we considered boys only with at least 2
weight and/or 2 height measures: 942 boys had at least 2 weight measures (16 751 measures as a whole) and 917 had
at least 2 height measures (15 567 measures as a whole). We performed 2 types of evaluations:

First, we performed a comparison of the intraindividual variability of the height and weight predictions obtained
with the joint model of height and weight and with separate height and weight models. All these models were fitted
within the Bayesian framework. Three MCMC chains were launched for 20 000 iterations to compute the posterior dis-
tributions (after a burning phase of 20 000 iterations). To limit autocorrelation, each chain was thinned by selecting every
20th iteration. Individual height, weight, and BMI and the corresponding instantaneous velocities (details on calcula-
tions methods are given in previous studies7,8) were predicted at 3 months, 1, 2, 3, 4, and 5 years. From the posterior dis-
tributions of the individual predictions, we get the mean intraindividual variability and computed the mean over all
subjects (Table 3).

The intraindividual variability was systematically lower with the joint model for every growth characteristic consid-
ered in this work. In addition, we could compute directly the predictions for BMI.

Secondly, in the presence of missing values, we studied whether the precision of the predictions obtained for the
height growth was better when adding the available information on the weight growth and reciprocally. We randomly
selected 20% of the available height measures from our sample that we considered as missing values. It represented
3113 measures among the 15 567 available ones. All weight measures were kept. The joint model of height and weight
was used to predict the removed height measures. A height‐only growth modeling was used to predict the same infor-
mation. We assessed the differences between the observed measures of height that were removed and the mean predic-
tions obtained with the joint model on the one hand and with the univariate model on the other hand (Table 4).

The results show that when information on height is lacking at one age, including the information on weight slightly
improved the prediction since the variance of the difference was lower (variance = 2.10) compared to including only the
other height measures of the individual (variance = 2.36).

This joint modeling seems to have better predictive abilities than the height and weight models separately,
representing an important strength of this model.
4.3 | Application of the Bayesian joint model to the analysis of the association between
maternal smoking during pregnancy and growth

Our aim was to assess whether height, weight, and BMI growth patterns differ between children exposed to different
degrees of maternal smoking, namely, exposure during only the first trimester of pregnancy, throughout pregnancy,
and unexposed children. We analyzed weight and height records (30 515 and 28 381, respectively) of 1666 children with
complete information regarding maternal smoking during pregnancy and potential confounders.

To reduce confounding, we adjusted our analyses for the following variables: maternal education level (high school
or less; 2‐year university degree; 3‐year university degree), maternal prepregnancy BMI (overweight/obese or not),
maternal age at delivery (continuous), breastfeeding duration (≥3 months or <3 months), recruitment center, and child's
gender. For computational reasons, maternal age was centered on its population mean.



TABLE 3 Intraindividual variability of the predictions of height, weight, BMI, and their corresponding velocities obtained for the joint and

separate modeling of height and weight

Variable

Mean of the Intrasubject Variability

Joint Model of Height and Weight Univariate Weight Model Univariate Height Model

Weight, kg

3 months 0.0365 0.0405

1 year 0.0557 0.0563

2 years 0.1089 0.1127

3 years 0.1891 0.1943

4 years 0.3389 0.3460

5 years 0.5736 0.5848

Height, cm

3 months 0.2297 0.2819

1 year 0.2795 0.3068

2 years 0.5767 0.6449

3 years 0.8184 0.8953

4 years 1.1940 1.2951

5 years 1.9782 2.1741

IMC, kg/m2

3 months 0.2226

1 year 0.1259

2 years 0.1271

3 years 0.1310

4 years 0.1568

5 years 0.2050

Weight growth velocity, kg/month

3 months 0.0016 0.0021

1 year 0.0005 0.0006

2 years 0.0002 0.0002

3 years 0.0003 0.0003

4 years 0.0003 0.0003

5 years 0.0003 0.0003

Height growth velocity, cm/month

3 months 0.0199 0.0243

1 year 0.0045 0.0053

2 years 0.0012 0.0013

3 years 0.0012 0.0013

4 years 0.0016 0.0019

5 years 0.0018 0.0022

IMC growth velocity, kg/m2/month

3 months 0.0090

1 year 0.0014

2 years 0.0003

(Continues)
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TABLE 3 (Continued)

Variable

Mean of the Intrasubject Variability

Joint Model of Height and Weight Univariate Weight Model Univariate Height Model

3 years 0.0002

4 years 0.0001

5 years 0.0001

TABLE 4 Distribution of the differences (observed‐predicted values) for the subsample of 20% randomly suppressed height measures

obtained with the joint modeling and univariate modeling of height

Model Minimum First Quartile Median Mean Third Quartile Maximum Variability

Joint −11.23 −0.82 0.04 −0.03 0.84 7.49 2.10

Univariate −12.27 −0.89 0.01 −0.06 0.85 7.90 2.36
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4.4 | Associations between maternal smoking and height and weight growth parameters

We obtained a DIC of 121 013 for the model without the smoking covariates. The DIC value was smaller for the model
that included smoking covariates (120 997). This was also true with WAIC (121 646 versus 121 669 for the models with
and without smoking covariates). Hence, the model including the smoking covariates was preferred. These differences in
DIC/WAIC suggest an association between maternal smoking and growth.

Furthermore, our model with smoking covariates had a global posterior predictive P value of .48 for height and .60 for
weight. Graphical plots of T(yrep,θ) against T(y,θ) also indicated good predictive ability of the model (joint distribution of
simulation draws of T(y,θ) and its replication T(yrep,θ) are illustrated in supplementary material VII).

Figure 2 describes the collected weight observations for 6 randomly selected children with a mean growth trajectory
predicted by the model (ie, mean of the posterior distribution) and its 95% credibility interval. This finding provides a
visual indication that the model adequately fits weight data. Similar conclusions were made for height data (figure
related to height is given in supplementary material VI).
FIGURE 2 Weight measures (open circles), mean curves fitted by the joint Bayesian model and 95% credible intervals of randomly selected

children from the EDEN study
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Table 5 describes the association between maternal smoking and the main growth parameters of height and weight.
Several credibility intervals of regression coefficients associated with maternal smoking on growth parameters (AH, AW,
BW, and DH) did not include zero suggesting an association between maternal smoking and growth. Women who smoked
throughout pregnancy delivered children with lower birth lengths (AH parameter regression coefficient = −0.015, 95%
credibility interval: −0.021, −0.008), compared with nonsmoking women. The AW parameters were also lower for these
mother‐child pairs. Maternal smoking throughout pregnancy was also associated with higher BW parameters in children,
indicating a higher growth velocity of weight from 2 years of age onwards. Maternal smoking exclusively during the first
trimester was associated with a higher DH parameter, indicating a higher curvature degree of the height growth curve in
the first months of life.

More moderate associations were observed for some parameters (Figure 3). The posterior distribution of the regres-
sion coefficients for both maternal smoking exclusively during the first trimester and maternal smoking throughout
pregnancy shifted toward positive values for height BH. The regression coefficient for the height DH parameter also
shifted toward positive values for maternal smoking throughout pregnancy. The posterior distribution of the regression
coefficient for CH shifted toward negative values for maternal smoking during the first trimester exclusively. This finding
provides evidence of a greater height growth velocity after 2 years of age in exposed children from both groups (for BH), a
greater height spurt in the first 2 years of life in children exposed in early pregnancy (for CH), and a greater curvature of
height in children exposed throughout pregnancy (for DH).

To quantify the differences in height, weight, and BMI between the children exposed during only the first trimester or
children exposed throughout pregnancy and the reference category, we simulated height, weight, and BMI at day 5, 15,
25, 30, and then at each month from 30 days to 5 years for fictitious children in each smoking group (10 000 children per
group), setting fixed values for covariates (male gender, breastfeeding less than 3 months, birth in Poitiers, and having
mothers with a normal BMI, a high school level or less, and an age of 30 years at delivery). The mean height, weight
and BMI values at each time point were computed among subgroups of children. The differences in the mean values
between children whose mothers smoked exclusively during the first trimester or throughout pregnancy and the refer-
ence category (ie, children whose mothers did not smoke) were then computed. Table 6 and Figure 4 illustrate the mean
posterior estimates of these differences and their 95% credibility intervals.

Maternal smoking during only the first trimester was not associated with any difference in BMI, height, or weight at
the selected ages. Children whose mothers smoked throughout pregnancy were born shorter (mean difference at 5 days:
−0.71 cm, 95% credibility interval: −1.03, −0.38) and lighter. These babies had a 0.05 kg/m2 lower BMI at 5 days (95%
credibility interval: −0.23, 0.12). On average, those children reached the weight and height trajectories of the reference
category between 4 and 6 months and approximately 4 years later, respectively. Children exposed to maternal smoking
throughout pregnancy tended to weigh more than children of nonsmoking mothers at the end of the study period: At 4
and 5 years of age, they weighed 231 and 301 g more (credibility intervals: −36, 505 and −24, 639, respectively). Children
whose mothers smoked throughout pregnancy tended to be smaller and heavier than those from nonsmokers over the
TABLE 5 Mean differencesa in height and weight model parameters between each maternal smoking category and the reference category

(no maternal smoking) and 95% credibility intervals, 1666 children 0 to 5 years old from the EDEN study

Outcomes

A B C D
Birth length Growth Velocity Spurt of Growth Curvature Degree

Extrapolation of Birth
Weight Childhood First Months First Months

βA (CI 95%) βB (CI 95%) βC (CI 95%) βD (CI 95%)

Height

Exclusively the first trimester −0.004 (−0.012, 0.005) 0.027 (−0.002, 0.057) −0.021 (−0.057, 0.015) 0.072 (0.004, 0.136)

Throughout pregnancy −0.015 (−0.021, −0.008) 0.021 (−0.002, 0.043) 0.005 (−0.023, 0.033) 0.039 (−0.012, 0.092)

Weight

Exclusively the first trimester 0.006 (−0.028, 0.040) −0.001 (−0.050, 0.048) 0.014 (−0.042, 0.067) −0.014 (−0.097, 0.067)

Throughout pregnancy −0.037 (−0.061, −0.012) 0.034 (0.000, 0.068) 0.009 (−0.032, 0.052) 0.022 (−0.035, 0.080)

Abbreviations: CI, credibility interval.
aAdjusted for maternal education level, BMI, and age at delivery, breastfeeding duration, recruitment center, and child's gender.



FIGURE 3 Posterior density of regression coefficients associated with maternal smoking during pregnancy and selected height and weight

parameters
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age range. Consequently, maternal smoking throughout pregnancy was positively associated with BMI in those children.
Between 570 and 600 days (19–20 months), the BMI of children whose mothers smoked throughout pregnancy already
surpassed nonsmokers, reaching 0.21 kg/m2 1825 days after birth, ie, at 60 months (credibility interval: 0.03, 0.40).

Posterior inferences regarding the measures of association between maternal smoking and growth were not modified
using noninformative priors in the sensitivity analysis (see supplementary material IV).
5 | DISCUSSION

We propose a method to jointly model height and weight in children 0 to 5 years of age. The simulation study indicated
that the joint modeling yielded unbiased estimates and a good coverage probability, reflecting its ability to adequately fit
theoretical growth data.



TABLE 6 Mean differences in body mass index (kg/m2), weight (g), and height (cm) between children exposed to maternal smoking during

only the first trimester, children exposed throughout pregnancy, and the reference category (children from nonsmoking mothers during

pregnancy)

Variable

Maternal Smoking

First Trimester Exclusively Throughout Pregnancy

Posterior Coefficient (95% Credibility Interval) Posterior Coefficient (95% Credibility Interval)

Difference of mean weight, g

5 days 19 (−77, 119) −103 (−176, −29)

30 days (1 month) 20 (−81, 124) −72 (−150, 6)

90 days (3 months) 29 (−100, 160) −29 (−129, 69)

180 days (6 months) 45 (−107, 201) 2 (−115, 116)

270 days (9 months) 58 (−114, 231) 18 (−112, 146)

365 days (1 year) 69 (−122, 262) 31 (−112, 175)

730 days (2 years) 88 (−155, 328) 90 (−90, 269)

1095 days (3 years) 94 (−194, 384) 158 (−58, 376)

1470 days (4 years) 97 (−255, 449) 231 (−36, 505)

1825 days (5 years) 98 (−323, 520) 301 (−24, 639)

Difference of mean height, cm

5 days −0.15 (−0.57, 0.27) −0.71 (−1.03, −0.38)

30 days (1 month) −0.02 (−0.42, 0.37) −0.60 (−0.90, −0.29)

90 days (3 months) 0.16 (−0.24, 0.55) −0.42 (−0.73, −0.11)

180 days (6 months) 0.23 (−0.2, 0.67) −0.29 (−0.61, 0.04)

270 days (9 months) 0.20 (−0.24, 0.65) −0.24 (−0.56, 0.09)

365 days (1 year) 0.14 (−0.32, 0.60) −0.22 (−0.56, 0.12)

730 days (2 years) −0.01 (−0.58, 0.57) −0.20 (−0.63, 0.24)

1095 days (3 years) 0.04 (−0.60, 0.69) −0.12 (−0.61, 0.38)

1470 days (4 years) 0.19 (−0.54, 0.94) 0 (−0.56, 0.58)

1825 days (5 years) 0.37 (−0.48, 1.24) 0.13 (−0.52, 0.82)

Difference of mean BMI, kg/m2

5 days 0.14 (−0.09, 0.38) −0.05 (−0.23, 0.12)

30 days (1 month) 0.08 (−0.13, 0.29) 0.07 (−0.09, 0.24)

90 days (3 months) −0.01 (−0.25, 0.24) 0.16 (−0.04, 0.36)

180 days (6 months) −0.02 (−0.27, 0.24) 0.15 (−0.04, 0.36)

270 days (9 months) 0.01 (−0.24, 0.27) 0.15 (−0.05, 0.35)

365 days (1 year) 0.06 (−0.20, 0.31) 0.15 (−0.04, 0.35)

730 days (2 years) 0.12 (−0.12, 0.36) 0.19 (0.02, 0.37)

1095 days (3 years) 0.09 (−0.13, 0.31) 0.21 (0.05, 0.38)

1470 days (4 years) 0.03 (−0.19, 0.25) 0.22 (0.05, 0.39)

1825 days (5 years) −0.02 (−0.25, 0.21) 0.21 (0.03, 0.40)
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The Bayesian framework offers a flexible technique to predict expected heights, weights, and BMIs of children,
allowing the study of its potential determinants, such as sociodemographical profiles or environmental exposures.
In our example, the joint model allowed the assessment of growth trajectories, the prediction of the mean
differences over time based on maternal smoking and of the credibility intervals, for weight and height but also
for BMI.



FIGURE 4 Mean differences and 95% credibility intervals of body mass index (kg/m2), weight (kg) and height (cm) between children

exposed to maternal smoking exclusively during the first trimester and the reference category (children from non‐smoking mothers during

pregnancy) (upper part of the graph); between children exposed throughout pregnancy and the reference category (lower part of the graph)

from birth to 1825 days
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Our results showed that children from mothers who smoked throughout pregnancy had higher BMIs already in their
first months of life compared to children from nonsmokers. At 5 years, they had a 0.21 kg/m2 higher BMI. These results
support previous studies that found higher BMIs or risk of being overweight in children from mothers who smoked
during pregnancy.29,30 The potential mechanisms supporting the association between maternal smoking in pregnancy
and the child's growth trajectory in the frame of developmental programming have been discussed elsewhere.7,31,32

The model provides key information about the dynamics of the association. As described elsewhere, contrarily to a direct
BMI modeling approach, the different outcomes (eg, height and weight) do not need to be measured at the same time
points in joint modeling. Moreover, the model does not assume that the same number of repeated measurements are
available for the different outcomes.33 Therefore, joint modeling enables the use of all available information on height
and weight to predict BMI trajectory.

One of the main strengths compared to the frequentist approach is the fact that we can infer BMI and obtain cred-
ibility intervals for BMI trajectories of each category of maternal smoking during pregnancy in one step, using joint
models of height and weight and determine the differences between the trajectories of the subgroups of interest using
the posterior predictive distribution of the estimated parameters. Indeed, in the frequentist approach, the estimated
height and weight parameters can be used to estimate BMI in subgroups of interest and differences across subgroups,
but the uncertainty in the parameters is ignored. Consequently, the confidence intervals of the differences cannot be
assessed in a single step like the Bayesian approach and require additional simulation studies. In the Bayesian one,
the uncertainty of the parameters is considered in the predictions.

Another strength of our approach, related to structural models and not specific to the Bayesian framework, relies on
the interpretability of the growth parameters. They provide biological information on the individual growth processes
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compared to the main growth modeling parameters of the nonstructural techniques such as splines or fractional polyno-
mials. To our knowledge, a single recently published paper used a similar approach. In this study, the model developed
by Cole et al34 called the “Superimposition by Translation and Rotation” (SITAR) was generalized in the Bayesian frame-
work to jointly model multiple outcomes of embryonic growth. This multivariate model described individual growth by 3
subject‐specific parameters with an obvious meaning.2 This model was applied to study prenatal growth but could be
applied to postnatal growth data.

We intended to make the model as simple as possible using standard assumptions in NLMMmethodology. However,
distribution assumptions made about the data model could have been changed or made more complex in several ways.
First, the Jenss‐Bayley growth curve function was parameterized according to a modified form (Equation 3) based largely
on sign constraints on parameters A, B, and D resulting at the individual level in lognormal versus normal assumptions
on these parameters. Instead, we could have considered the original form:

f ϕik;tijk
� � ¼ Aik þ Biktijk þ exp Cikð Þ 1− exp Diktijk

� �� 	

with the usual normality assumptions on ϕik=(Aik,Bik ,Cik,Dik)
T.

However, because of convergence issues using this original form despite the use of truncated normal distribution for
a priori distribution of the parameters, we used the modified form for the final model.

We assumed that there was no correlation σeHW ¼ 0 between the residual components of height eijH and weight eijW
recorded at the same occasion j and on the same individual i. This is a reasonable assumption as long as the correlation
between the weight and height measurements at the same time originates from the subject i or the factors included in the
model.

We selected among 2 candidate functions ( log σ2eijk

� �
¼ δ0k þ δ1ktijk and log σ2eijk

� �
¼ δ0k þ δ1ktijk þ δ2kt2ijk) to

describe the residual variance of height and weight but did not perform a formal comparison with other possibilities.
Consequently, other functions, including functions with nonlinear terms, could have improved the aforementioned
model.

The normality assumption of the residual errors could also have been investigated. For instance, the Student t‐distri-
bution has been proposed for heavy tailed or contaminated data with outliers or, more generally, the generalized error
distribution for any type of kurtosis or skewness.35

We took advantage of results from previous studies by specifying prior distributions of the mean and covariate effects.
Regarding the interindividual variance covariance matrix, we adopted the inverse Wishart distribution. As previously
described, this practice is by far the most common because of its conjugate properties and, therefore, simplicity, but
having just one parameter as the degree of freedom forces to have the same uncertainty in all elements of the variance
covariance matrix. However, the influence of every prior distribution was limited in our study considering the large
amount of information in this dataset (both in terms of the total number of measurements on height and weight and
in the number of individuals recorded).

In conclusion, because of the complexity of the nonlinear mixed‐effects models used for the height and weight
modeling, the computational facilities offered by the Bayesian approach add to the above‐described advantages13

and is one of the key reasons we applied it. We showed that using datasets with rather large number of subjects
and measurements by subjects, our model was suitable for growth modeling. The good properties of this joint
model could be challenged in less favorable contexts. We assessed the associations between maternal smoking
and multiple dimensions of growth, considering several potential confounders in these associations. The model
we used could be extended by adding additional covariates of interest. However, the model is already complex,
and the computational time is nonnegligible. The ability to fit more complex models could consequently be limited
by practical aspects.
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