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Abstract
The oral cavity is an entry path into the body, enabling the intake of nutrients
but also leading to the ingestion of harmful substances. Thus, saliva and oral
tissues contain enzyme systems that enable the early neutralization of xenobi-
otics as soon as they enter the body. Based on recently published oral proteomic
data from several research groups, this review identifies and compiles the pri-
mary detoxification enzymes (also known as xenobiotic-metabolizing enzymes)
present in saliva and the oral epithelium. The functions and the metabolic activ-
ity of these enzymes are presented. Then, the activity of these enzymes in saliva,
which is an extracellular fluid, is discussed with regard to the salivary parame-
ters. The next part of the review presents research evidencing oral metaboliza-
tion of aroma compounds and the putative involved enzymes. The last part dis-
cusses the potential role of these enzymatic reactions on the perception of aroma
compounds in light of recent pieces of evidence of in vivo oral metabolization of
aroma compounds affecting their release in mouth and their perception. Thus,
this review highlights different enzymes appearing as relevant to explain aroma
metabolism in the oral cavity. It also points out that further works are needed
to unravel the effect of the oral enzymatic detoxification system on the percep-
tion of food flavor in the context of the consumption of complex food matrices,
while considering the impact of food oral processing. Thus, it constitutes a basis
to explore these biochemical mechanisms and their impact on flavor perception.
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1 INTRODUCTION

The oral cavity is an entry path into the body that allows
the ingestion of food, which is necessary for the intake
of macro- and micronutrients. However, food intake also
facilitates the entry of substances or biological entities
that may be harmful. This possibility explains the pres-
ence of enzymatic defenses at the oral level, especially
in saliva. Saliva consists of fluid secreted by the sali-
vary glands and periodontal tissues (crevicular gingival
fluid). Saliva is composed of water, salts, proteins, cell
debris, and microorganisms. The protein concentration
in saliva is approximately 0.2–2.0 mg/ml, and more than
3000 different proteins are present (Denny et al., 2008;
Sivadasan et al., 2015). These proteins fulfill various roles,
such as defense against microorganisms (immunoglobu-
lins and peroxidases), oral digestion (amylases), lubrica-
tion of the oral cavity (mucins), neutralization of toxic
molecules (proline-rich proteins and histatins), and the
transport of flavor molecules (lipocalins). Numerous fami-
lies of enzymes, such as esterases, carbohydrases, oxidore-
ductases, proteases, and transferring enzymes (Chauncey,
1961; Chauncey et al., 1954), are present in saliva. Some of
these enzymes are secreted by the salivary glands, while
others are derived from the lysis of desquamated epithe-
lial cells. Some proteins can also be of bacterial origin,
given the presence of microbiota in the mouth. Not all oral
proteins are found free in saliva. Some proteins are also
present in the oral mucosa, either in the cells of the oral
epithelium or bound to the surface of the oral epithelium,
forming the mucosal pellicle, a thin protein layer covering
the oral mucosa (Canon et al., 2018).
Among salivary enzymes, some are detoxification

enzymes (also known as xenobiotic-metabolizing
enzymes, or XMEs), which metabolize exogenous or
endogenous substances, thereby decreasing their reac-
tivity and facilitating their excretion into the circulatory
system (Liska, 1998). The presence of XMEs has been
reported in the oral mucosa (Mallery et al., 2011), tongue
(Takiguchi et al., 2010), and saliva (Alam et al., 2016; Fab-
rini et al., 2014). These studies have also demonstrated the
ability of oral XMEs to metabolize pharmaceutical active
ingredients or molecules present in food. In particular,
detoxification systems have been suggested to be impor-
tant for the early management of orally toxic xenobiotics
(Yamahara & Lee, 1993). Notably, the consumption of cer-
tain foods, such as Brassicaceae vegetables, can increase
the salivary concentration of specific XMEs (Sreerama
et al., 1995). Very recently, it was also suggested that
oral XMEs may be involved in the metabolism of aroma
compounds in the mouth and therefore may modulate
flavor perception (Ployon et al., 2020). Aroma compounds
are low-molecular-weight odorant molecules released in
the mouth during the eating process. These compounds

can reach the olfactory mucosa via the retronasal route,
where they activate olfactory receptors present in the
plasma membranes of sensory neurons. Importantly,
numerous aroma compounds are molecules that are toxic
at high concentrations. For instance, aldehydes are highly
reactive due to their functional group that enable them
to undergo various reactions including covalent adducts
with biomolecules (O’Brien et al., 2005). However, the low
concentration at which they are present in foods (usually
below the “no-adverse-effect-level” NOAEL concentra-
tion) generally precludes any harmful effects (Dinu et al.,
2020), although their metabolization by XME is possible.
The phenomenon of the metabolization of aroma com-

pounds in the mouth was first reported in the early 1980s
(Hussein et al., 1983). The authors observed a decrease in
aroma compounds concomitantwith the appearance of the
corresponding metabolites after rinsing the mouth with
aroma solutions (Hussein et al., 1983). In 2002, Buettner
confirmed that salivary compounds decrease the release
of esters, aldehydes and thiols, suggesting that they play
the role of salivary enzymes (Buettner, 2002a, 2002b).
More recently, the metabolization of carbonyl compounds
by saliva has been reported by Muñoz and coworkers
(Muñoz-González et al., 2018; Muñoz-González et al.,
2019) andwas found to be stimulated byNicotinamide ade-
nine dinucleotide (NADH), which strongly supports the
involvement of Nicotinamide adenine dinucleotide (phos-
phate) (NAD(P)H)-dependent oxidoreductases. In agree-
ment with these findings, oxidoreduction of carbonyl com-
pounds was also observed in the presence of an oral
mucosa model (Ployon et al., 2020). Taken together, these
studies suggest the involvement of XMEs in the metab-
olization of aroma molecules. This metabolization may
affect both the quantity (decrease of the initial molecule)
and the quality (formation of new molecules that may
be odorant) of aroma compounds reaching the olfactory
receptors. From a sensory perspective, it was proposed that
metabolic activity in the nasal and oral cavities impacts
odorant perception (Ijichi et al., 2019; Robert-Hazotte,
Schoumacker, et al., 2019; Starkenmann et al., 2008). This
hypothesis has been confirmed by two recent studies. The
first study reported that metabolites impact the activation
of olfactory receptors and perception (Ijichi et al., 2019),
while the second demonstrated that aroma metaboliza-
tion by saliva and the oral mucosa modulate the length of
aroma persistence (Muñoz-Gonzalez et al., 2021).
The purpose of this review is to examine published

proteomes to provide a broad and detailed inventory of
XMEs present in saliva and the oral epithelium and to
discuss their potential activities with aroma compounds.
After introducing the detoxification steps, the identified
enzymes and their activities are presented in the oral con-
text. When data in the oral context were lacking, choice
was made to discuss information about metabolization at



5518 ORAL ENZYMATIC DETOXIFICATION SYSTEM. . .

F IGURE 1 Enzymatic detoxification system in the oral cavity. Scheme summarizing the entry of xenobiotics in the oral cavity and their
management by the detoxification system present in the saliva or in the oral mucosa

the olfactory level as the same enzyme families exist in
the oral and nasal cavities (Uhlén et al., 2015) and some
biochemical reactions involving these enzymes have been
reported in both cavities (Ijichi et al., 2019). However, it is
important to consider that the activity of these enzymes in
the oral cavitymay bemodulated by different physiological
parameters and the presence of food, which, for example,
can affect the pH, and thus the enzymatic activities, despite
the high buffering capacity of saliva. Finally, we review
the metabolic activities toward aroma compounds found
in saliva and the oral epithelium and discuss the potential
candidate enzymes that may be involved in these various
reactions.

2 CHARACTERIZATION OF THE
DETOXIFICATION SYSTEM IN THE ORAL
CAVITY

2.1 Generalities on oral detoxification

Xenobiotic detoxification has been historically classified
into three groups of protein actors according to their
level of action in the detoxification process (Figure 1):
phase I enzymes activate xenobiotic compounds (usu-
ally by oxidation). This phase includes such enzymes as
cytochromes P450 (CYP450) or flavin monooxygenases
(FMOs; Liska, 1998). The functionalized compounds are
subsequently conjugated to hydrophilic groups (or directly
without phase I oxidation) by phase II enzymes, such
as Uridine diphosphate (UDP)-glucuronosyl transferases
(UGTs) or glutathione transferases (GSTs; Jancova et al.,
2010). The products formed are conjugates whose solu-
bility is generally higher than that of the corresponding
substrates. Finally, phase III transport systems primarily
act at the membrane level (“ATP-Binding Cassette” ABC
transporters or “Multidrug Resistance Protein”MRP trans-
porters) to facilitate the excretion of the formed conju-
gates from the cell to the circulatory system when they

are generated in the cell. In the oral context, studies have
reported the presence of phase I (Sreerama et al., 1995;
Takiguchi et al., 2010; Yamahara & Lee, 1993) and phase
II (Fabrini et al., 2014; Giebultowicz et al., 2009; Mallery
et al., 2011) XMEs, whereas phase III excretion systems
are poorly described at the oral level, as noted in a recent
review (Bierbaumer et al., 2018). Phase III systems are
probably only present at the level of the oral mucosa.
Indeed, saliva is an extracellular biological fluid contin-
uously secreted and renewed. Thus, at the opposite of
the intracellular fluid in which metabolites can accumu-
late, they do not accumulate in saliva as they are diluted
in the continuous secretion and eliminated with saliva
swallowing.

2.2 Exploration of oral proteomes

Based on recent proteomic data, we have established a list
of the families of detoxification enzymes that are present in
the oral cavity, with a focus being placed on those that may
react with aroma compounds. To this end, we explored
four salivary proteomes and one from the buccal epithe-
lium (Denny et al., 2008; Ghosh et al., 2012; Grassl et al.,
2016; Pappa et al., 2018; Sivadasan et al., 2015). For each
proteome, all isoforms of the main families of phase I
and II detoxification enzymes (Hodges & Minich, 2015;
Liska, 1998) were screened by their names and listed. A
focus was placed on the XMEs showing reactivity with
odorant molecules, which is well documented in the con-
text of nasal mucosa (Dahl & Hadley, 1991; Heydel et al.,
2019; Sarkar, 1992). In addition, we also includedmetabolic
enzymes that may have reactivity with aroma compounds
(e.g., carbonic anhydrases [CAs] primarily catalyze CO2
hydration but also have esterase activity with several com-
pounds and thus belong to XMEs; Supuran, 2008). Ninety-
one XMEs were identified among the five proteomes ana-
lyzed, which represents approximately 2% of the total
salivary proteins (4876 proteins confidently detected at
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the highest level in saliva by Pappa et al., 2018). These
XMEs belong to three groups following the official enzyme
nomenclature (Figure 2): NAD(P)H-dependent oxidore-
ductases (Table 1), transferases (Table 2), and hydrolases
(Table 3). The greatest diversity of salivary XMEs is found
in the group of oxidoreductases (48 enzymes from 8
families) with several isoforms of major families, such
as CYP450, aldehyde dehydrogenase (ALDH) and short-
chain dehydrogenase/reductase (SDR; Figure 2). Con-
cerning transferases, five families, among which the two
main UGT and GST families, were identified. The group
of oral hydrolases includes four families: CA, carboxyl
esterase (CES), epoxide hydrolase (EPHX), and paraox-
onase (PON)/arylesterase. In the following section, the
functions of each enzyme are indicated, with a focus being
placed on those relevant in the oral context when they are
known.

3 XMEs IDENTIFIED FROM SALIVARY
AND ORALMUCOSA PROTEOMES

3.1 Oxidoreductases

Oxidoreductases constitute a large family of enzymes that
use NAD(P)H to catalyze oxidation or reduction reac-
tions of chemicals (Selles Vidal et al., 2018). Various
chemical families can be metabolized by oxidoreductases,
such as amines, sulfur compounds, alcohols, ketones, car-
boxylic acids, and aldehydes (Table 1). Based on the pro-
teomes analyzed, we identified eight families of enzymes
present in saliva and able to catalyze such reactions,
namely, alcohol dehydrogenases (ADHs), ALDHs, aldo-
ketoreductases (AKRs), carbonyl reductases (CBRs), CYPs,
FMOs, NADPH quinone oxidoreductases (NQOs), and
SDRs (Table 1). Some isoforms of the familiesADH,ALDH,
AKR, CBR, CYP450, and SDR were also found in the oral
mucosa (Table 1, asterisks). Some families are known to
catalyze both oxidation and reduction (i.e., forward and
reverse reactions) depending on the availability of reduced
or oxidized cofactors and on the substrate (e.g., ADH,
ALDH, AKR, NQO), while other enzymes are mainly spe-
cific for either oxidation (e.g., CYP450, FMO) or reduction
(CBR, SDR; Selles Vidal et al., 2018).

3.1.1 Aldehyde dehydrogenase

Aldehydes form an important family of aroma compounds
known for their reactivity in the mouth (Buettner, 2002b;
Muñoz-González et al., 2018; Ployon, et al., 2020). The
concentration of aldehydes in food is low. Their toxic-
ity is not a concern with regard to their concentration

F IGURE 2 Repartition of oral XMEs identified from
proteomic data. (a) Repartition of XMEs between three groups:
oxidoreductases, transferases, and hydrolases. Number of members
for each enzyme family is given. (b) Enzyme families identified in
the hydrolases group. (c) Enzyme families identified in the
transferases group. (d) Enzyme families identified in the
oxidoreductases group
Abbreviations: ADH, alcohol dehydrogenase; AKR,
aldo-ketoreductase; ALDH, aldehyde dehydrogenase; CA, carbonic
anhydrase; CBR, carbonyl reductase; CES, carboxyl esterase; CYP,
cytochrome P450; EPHX, epoxide hydrolase; FMO,
flavin-monooxygenase; GST, glutathione transferase; MT, methyl
transferase; NAT, N-acetyl transferase; NQO, NADPH-quinone
oxidoreductase; PON, paraoxonases; SDR, short-chain
dehydrogenases/reductase; SULT, sulfotransferase; UGT,
UDP-glucuronosyl transferase.

in food (e.g., for benzaldehyde, NOAEL of 400 mg/kg in
rats oral studies, while concentration in food is 0.0003
to 8.9 ppm (Final Report on the Safety Assessment of
Benzaldehyde, 2006), therefore they do not present a risk
for human health. Nevertheless, they can be metabolized
upon entrance in the oral cavity. Aldehydes can be oxidized
to carboxylic acid by ALDH enzymes. The main salivary
ALDH is the isoform ALDH3A1, which exhibits specific
expression in saliva (Giebultowicz et al., 2009). ALDH3A1
is overexpressed after consumption of broccoli and coffee
(Sreerama et al., 1995). Salivary ALDH3A1 participates in
the detoxification of exogenous aldehydes entering the oral
cavity, and its activity is modulated by compounds present
in food or water. It is activated by thymoquinone (Laskar
et al., 2017) and sulforaphane (Alam et al., 2016) but
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F IGURE 3 X-ray structures of oral XMEs bound to flavor compounds from the Protein Data Bank. For each enzyme, the X-ray structure
is represented as white cartoon with the aroma molecule shown as sticks and spheres and colored green. (a) Aldehyde Dehydrogenase 3A1
bound to propiophenone derivative (PDB 3SZB; Khanna et al., 2011). (b) Glutathione Transferase Alpha 1 bound to
glutathionyl-dihydrocinnamaldehyde (PDB 6YAW; Schwartz, Menetrier, et al., 2020). (c) Carboxyl Esterase 1 bound to palmitic acid (PDB
2DQY; Bencharit et al., 2006)

inhibited by arsenic (Younus et al., 2020). In a crystallo-
graphic study, the covalent binding of a propiophenone
derivative (aroma compound with a fruity flavor) to a cys-
teine residue at the active site of ALDH3A1 (X-ray struc-
ture shown in Figure 3) was shown to inhibit its activity
(Khanna et al., 2011). This finding suggests that the activ-
ity of ALDH3A1 could be modulated by a variety of aroma
molecules and that biophysical and structural methods
can be useful to characterize these processes. Although
ALDH3A1 is probably the predominant ALDH in saliva,
other isoforms are also present, notably four members of
the ALDH1 group (Table 1). Importantly, ALDH1A1 was
suggested to have a better capacity than ALDH3A1 to
detoxify food aldehydes (e.g., up to 100-fold better catalytic
efficacy with anisaldehyde, vanillin, or cinnamaldehyde;
Solobodowska et al., 2012).

3.1.2 Alcohol dehydrogenase,
aldo-ketoreductase, carbonyl reductase, and
short-chain dehydrogenase/reductase

Aldehydes can be oxidized or reduced by specific oxi-
doreductases depending on the NAD(P)H/NAD(P)+ ratio.
ADH, CBR, SDR, or AKR enzymes can reduce aldehy-
des into their corresponding alcohols (Barski et al., 2008;
Selles Vidal et al., 2018). ADHs are also able to catalyze the
reverse reaction, that is, oxidation of alcohols into the cor-
responding aldehydes (Edenberg &McClintick, 2018). Sev-
eral members of ADH, AKR, CBR, and SDR were detected
in saliva and the oral epithelium (Table 1). Concerning the
AKR family, it is worth noting the presence of certain iso-
forms specific to steroid biosynthesis (AKR1C group) in
saliva, as their involvement in the metabolism of aroma
compounds cannot be excluded. The role played by iso-
forms from the AKR1A and AKR1B groups in the detoxifi-
cation of reactive food aldehydes in the intestine has been
reported (Barski et al., 2008; Zhong et al., 2009). The pres-
ence of these groups in the oral cavity suggests that detox-
ification activity is initiated immediately upon entrance

of aldehydes in the digestive tract. AKR1B1 and AKR1B10
were also reported to metabolize glutathionyl compounds
(Shen et al., 2011), suggesting that the reduction of carbonyl
compounds after their conjugation by phase II enzymes is
possible.Moreover, several works have observed the reduc-
tion or oxidation of food aldehydes in the presence of saliva
or oral cells (Buettner, 2002a; Muñoz-González et al., 2018;
Ployon, et al., 2020) and appeared to be dependent on the
NADP content (Muñoz-González et al., 2018).

3.1.3 Cytochrome P450, flavin
monooxygenase, and NADPH-quinone
oxidoreductase

Several CYP450 isoforms were found in the selected pro-
teomes. CYP450s represent a family of enzymes known
to react with many substrates and play a major role in
the detoxification of various compounds via their oxida-
tion process (Guengerich et al., 2016). In rats, CYP450s
have been identified in the olfactory mucosa, and their
ability to metabolize aroma compounds, such as coumarin
and quinoline, was shown (Thiebaud et al., 2013). In
humans, the presence of CYP450s was demonstrated by
immunohistochemistry in the parotid glands (Kragelund
et al., 2008), and their activity was confirmed for cer-
tain isoforms in oral tissues (Vondracek et al., 2001). In
the latter study, the metabolization activity of CYP450s
in the mouth was reported for carcinogenic substances
and drugs (polycyclic hydrocarbons and nitrosamines).
The activity of CYP450s toward aroma compounds has
not been documented to the best of our knowledge.
Nevertheless, all these observations suggest that aroma
compounds can be metabolized by CYP450 enzymes at
the oral level. Similarly, FMOs catalyzing the monoxy-
genation of sulfur and amine compounds (Krueger &
Williams, 2005) and NQOs catalyzing the reduction of
quinone compounds (Bianchet et al., 2004) could also
be involved in the oral metabolism of aroma compounds
belonging to these chemical families. Notably, an increase
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in the expression of NQO1 (DT-diaphorase) in saliva
following the intake of coffee and broccoli has been
reported (Sreerama et al., 1995). This observation empha-
sizes the importance of diet on the enzymatic equipment
present in the oral cavity and suggests that the enzyme
content of saliva is dynamically adapted to specific reactive
compounds.

3.2 Transferases

These enzymes catalyze transfer reactions of hydrophilic
groups and are generally involved in facilitating the solu-
bilization of metabolized products (Jancova et al., 2010).
All families of transferases were represented in the salivary
proteomes (Table 2), namely: arylamine N-acetyl trans-
ferase (NAT), GST, methyltransferase (MT), sulfotrans-
ferase (SULT), and UGT. Some isoforms of the GST, UGT,
and MT families have also been identified in the oral
mucosa (Table 2, asterisks).

3.2.1 Glutathione transferase

GSTs form a large family of transferases that catalyze glu-
tathione (GSH) transfer reactions on generally hydropho-
bic substrates (Hayes et al., 2005a). GSH is a tripeptide car-
rying a free thiol on its cysteine residue and a major phys-
iological reducing agent. Cytosolic GSTs are classified into
several families named by Greek letters (e.g., GST Alpha
1, abbreviated GSTA1; Mannervik et al., 2005). The differ-
ent classes of GST show substrate overlap, enabling the
management of numerous compounds of various chemical
families (Hayes et al., 2005b). It should be noted that cer-
tain GSTs also have a noncatalytic binding function called
the ligandin function, enabling the transport or scavenging
of smallmolecules (Oakley et al., 1999). The analysis of pro-
teomes suggests the presence of alpha, kappa, mu, omega,
pi, and theta classes in saliva. The induction of alpha, mu,
and pi classes in saliva after the consumption of coffee
or broccoli has been shown previously (Sreerama et al.,
1995). It is important to reiterate in this context that the
expression of GST is induced by certain compounds, such
as the isothiocyanates contained in Brassicaceae (Kumari
et al., 2016; Nakamura et al., 2000). Concerning GSTP1,
its expression is particularly high in saliva, exhibiting a
production of approximately 1.2 mg/day in human adults,
probably secreted by the salivary glands (Fabrini et al.,
2014). GSTP1 is inactivated by an antimicrobial salivary
compound, hypothiocyanite, and maintenance of its activ-
ity requires the presence of a reducing agent (Fabrini et al.,
2014). A recent study demonstrated the presence of GSTA1
and GSTP1 in the olfactory epithelium and the GSH con-
jugation activity of several odorant molecules, such as

cinnamaldehyde (X-ray structure shown in Figure 3), car-
vone, or hydroxynonenal, suggesting a role in periolfac-
tion (Schwartz, Menetrier, et al., 2020). Notably, these two
enzymes were also determined to be involved in the olfac-
tory metabolism of aldehyde 2-methylbut-2-enal, an odor-
ant with pheromone (mammary pheromone) properties
in newborn rabbit olfactory epithelium (Robert-Hazotte,
Faure, et al., 2019). As conjugation improves solubility
while forming nonodorant products (Winter et al., 2011),
the presence of GSTs in saliva may decrease the amount of
aroma molecules that can reach the olfactory epithelium.

3.2.2 UDP-glucuronosyl transferase

The second major family identified is that of the UGTs.
These enzymes catalyze the transfer of a glucuronosylmoi-
ety from UDP-glucuronate to an acceptor containing a
carbonyl, hydroxyl, thiol, or amine functional group (Lv
et al., 2019; Rowland et al., 2013). This reaction enables
the solubilization of potentially toxic molecules to facili-
tate their elimination. The superfamily of UGTs is divided
into five families that differ particularly in their substrate
specificity, even if overlap exists. The members found in
oral proteomes are essentially of the UGT1A class, which
can recognize drug-like substrates, as well as fatty acids,
bilirubin, phenols, and sulfur compounds (Rowland et al.,
2013; Table 2). UGTs are transmembrane enzymes found in
themembrane of the endoplasmic reticulum, nucleus, and
plasmamembrane. At the olfactory level, in addition to the
identification of different classes (Heydel et al., 2016), the
participation ofUGTs in the termination of the odorant sig-
nal has been demonstrated by the decrease in the volatility
of aromatic alcohol-type odorant compounds (e.g., eugenol
and guaiacol; Lazard et al., 1991). Conjugationwould result
in a decreased response at the olfactory level, as also pre-
viously reported in rats (Thiebaud et al., 2013). At the oral
level, UGTs have been found in the cells of the oral epithe-
lium and are active in the metabolism of food compounds,
such as polyphenols, some of which are odorant (Mallery
et al., 2011).

3.2.3 Methyltransferase

Methyltransferases catalyze methyl group transfers from
the S-adenosyl methionine (SAM) cofactor to various com-
pounds having an O, N, or S acceptor atom. Mallery et al.
(2011) have demonstrated the presence and activity of cat-
echol O-methyltransferase (COMT) in the oral epithelium
and salivary glands. COMT could metabolize phenols in
the mouth, given its spectrum of activity (Weinshilboum
et al., 1999). Othermethyltransferases have been identified:
thiopurine S-methyltransferase (TSMT) and histamine
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N-methyltransferase (HNMT), which canmethylate sulfur
compounds or amines, respectively, (Weinshilboum et al.,
1999). Aroma compounds that could be substrates for these
enzymes would be metabolized into methylated com-
pounds, which have different properties, such as volatility
and/or odorant properties, compared to their precursors.
For instance, Ijichi et al. (2019) found that 2-furfuryl thiol
(2-FT; boiling point: 147◦C at 12 mm Hg; vapor pressure:
3.98 mmHg at 25◦C; odor type: coffee) was metabolized to
furfuryl methyl sulfide (FMS; boiling point: 64◦C–65◦C at
15 mm Hg; vapor pressure: 1.58 mm Hg at 25◦C; odor type:
alliaceous/sulfurous) following incubation with saliva as
well as in the oral cavity.

3.2.4 Sulfotransferase

SULTs act by transferring a sulfonyl group to a hydroxyl
or amine group using the 3′-phosphoadenosine-5′-
phosphosulfate cofactor (PAPS) as the donor (Gamage
et al., 2006). Similar to GSH or glucuronate transfer,
sulfonyl transfer improves the water solubility of the
formed product. Two isoforms of SULTs were detected in
saliva: SULT1A1 and SULT2B1. However, the presence of
SULTs has not been reported in the oral mucosa based on
immunohistochemistry experiments (Mallery et al., 2011)
or in the buccal proteome that was analyzed. SULT1A1
is capable of handling various phenols by conjugating a
sulfonyl on the alcohol function (Gamage et al., 2006).
Hydroxymethyl furfural, an aroma compound, was shown
to be sulfoconjugated by SULTs (Sachse et al., 2016).

3.2.5 Acetyl transferase

Arylamine N-acetyltransferase (NAT) is the only acetyl
transferase present in the salivary proteomes analyzed.
NAT1 catalyzes the transfer of acetyl groups from acetyl
coenzyme A to the nitrogen atom of various cyclic ary-
lamines, thus generating the corresponding arylamides
(Sim et al., 2014). Among the substrates of NAT1, numer-
ous arylamine environmental contaminants can be cited
such as aniline and alkylaniline (Liu et al., 2007). Acetyl
transfer is considered to be a detoxification step, as it
decreases the concentration of substrates, whichmetabolic
hydroxylation of primary amino group generates toxic N-
arylhydroxylamines (Liu et al., 2007). Given the toxicity
and mutagenicity of heterocyclic arylamines, which can
be formed during food pyrolysis (Choi et al., 2006; Felton
& Knize, 1990), NAT could be important for early detox-
ification of arylamine in the oral cavity, although, to our
knowledge, there is no study that has been carried out in
this context.

3.3 Hydrolases

Hydrolases are enzymes that catalyze the dissociation
of covalent bonds using a water molecule. Some hydro-
lases are involved in the detoxification processes such as
esterases (Ross &Crow, 2007). Interestingly, previouswork
indicated possible metabolization of aroma esters by sali-
vary esterases (Buettner, 2002b; Pérez-Jiménez et al., 2020).
Thus, we explored oral proteomic data to identify such
enzymes. It includes notably CES and PON (Table 3). CAs
also have esterase activity and will be discussed further
later. Salivary true lipases are not considered in this review
because they hydrolyze the ester bonds of long-chain tri-
acylglycerols and have been proposed to be involved in
fat perception (Pepino et al., 2012) but are unlikely to
be involved in the metabolism of molecules of lower
molecular weight such as aroma compounds. Historically,
esterase activity has been measured in saliva with com-
mon laboratory substrates (thiophenyl acetate and thio-
phenyl butyrate; Lindqvist & Augustinsson, 1975) but also
more recently with aroma compounds, such as aliphatic
or aromatic esters (Buettner, 2002b; Genovese et al., 2009;
Muñoz-González et al., 2019; Pérez-Jiménez et al., 2020;
Perez-Jimenez et al., 2019).

3.3.1 Carboxyl esterase

CESs (for the crystal structure of CES1, see Figure 3) can
hydrolyze esters but also amides and lipids (Pindel et al.,
1997). Among the CESs, the CES2 isoform is of particular
interest because the metabolic activity of the homologue
enzyme frommicemodulates the activation of an olfactory
receptor in vitro (Kida et al., 2018).

3.3.2 Paraoxonase

Paraoxonases (PONs) were also found in saliva but not
in the oral epithelium proteome that was analyzed. These
enzymes hydrolyze esters, such as phenyl acetate, but also
have the notable property of hydrolyzing many aliphatic
and aromatic lactones (Draganov et al., 2005). Research
on the role of salivary PONs in the metabolism of lac-
tones should be conducted in the future, as lactones are an
important class of aroma molecules (Dufosse et al., 1994;
Maga & Katz, 1976).

3.3.3 Carbonic anhydrase

CAs, which are known primarily for their ability to
buffer salivary medium by modulating the carbon diox-
ide/carbonic acid balance, include catalysts that are also
capable of hydrolyzing esters (Supuran, 2008). Several CA
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isoforms are present in saliva, and some are also present
in the oral epithelium (Table 3). CA6 is the major iso-
form secreted by the salivary glands as a defense protein
(Kivela et al., 1999). It has even been suggested that the
total esterase activity of saliva is largely derived from CA6
(Tecles et al., 2016), although in this study, only one sub-
strate (4-nitrophenyl acetate) was considered.

3.3.4 Epoxide hydrolase

EPHXs were identified in the salivary proteomes only.
These enzymes catalyze the hydrolysis of molecules con-
taining the highly reactive epoxide group into their cor-
responding diols (Morisseau & Hammock, 2005). Indeed,
EPHX1 was shown to convert various epoxides such as
styrene oxide, 1-methyl-1-phenyloxirane, indene 1,2-oxide,
and cyclohexene oxide (Václavíková et al., 2015). EPHX3
was shown to have high affinity and catalytic efficacy for
fatty acid epoxides (Decker et al., 2012). These reactive
molecules can be found in food (Manson, 1980) and some
epoxides are aroma compounds, notably glycidate esters
also known as oxiranes (Zviely, 2005). EPHX have not
been studied in the oral context to our knowledge and fur-
ther work is needed to claim any reactivity with aroma
epoxides.

4 WHAT ARE THE CONDITIONS
ENABLINGMETABOLIZING ENZYMES
TO BE ACTIVE IN SALIVA?

It can be reasonably assumed that the enzymes identified
are most likely active in the cellular context of the oral
mucosa, as demonstrated for several of them in previous
studies (Mallery et al., 2011; Ployon, Brule, et al., 2020).
However, the activity of enzymes in saliva is worthy of
discussion, although historically, many enzymes active in
a salivary context have been identified (Chauncey, 1961;
Chauncey et al., 1954; Giebultowicz et al., 2009; Nickerson
et al., 1957; Sreerama et al., 1995). Tomaintain their activity,
enzymes need specific conditions, that might be altered by
the presence of food in themouth. Therefore, different sys-
tems are present in saliva to regulate the variation of these
conditions. Some of the factors affecting these conditions
are discussed in the following paragraph.

4.1 pH and temperature

The pH of saliva is between 6.2 and 7.4 (Schipper et al.,
2007), which is a condition compatible with the majority
of human enzymes, enabling them to retain their three-

dimensional structure necessary for their catalytic func-
tion. Although saliva has an efficient buffering capacity
due to enzymatic systems, such as CAs that can maintain
pH by modulating the carbon dioxide/carbonic acid bal-
ance (Kivela et al., 1999), it should be noted that tempo-
rary but abrupt changes in pH can occur. For instance,
the ingestion of acidic foods, such as soft drinks, wine or
certain cheeses, or the consumption of sweet foods pro-
moting the development of bacteria that produce acidic
metabolic compounds (lactic and butyric acids; Schwartz,
Canon, et al., 2021) may affect the pH of the oral cavity and
thus the activity of enzymes.
The temperature of the oral cavity is 36◦C and varies

extremely slightly (Moore et al., 1999). This temper-
ature corresponds to an optimum for many salivary
enzymes, and because of its stability, it is not a regulat-
ing/modulating factor for these activities. Under certain
consumption conditions (hot or cold food), this tempera-
ture can vary significantly over a very short period of time
(Barclay et al., 2005) and can therefore briefly affect the
activity of certain enzymes, especially those having a high
velocity (Schneyer, 1951).

4.2 Cofactors

The documented presence of most enzyme cofactors in
saliva indicates that the enzymes functioning with cofac-
tors are likely to be active in saliva. GSH is present in
saliva at a concentration close to mM (Tothova et al., 2015),
enabling GSH-dependent enzymes to function (GSH-
transferases and GSH-peroxidase). Interestingly, the pres-
ence of GSH reductase (Sivadasan et al., 2015) in salivary
proteomes suggests the possibility of regeneration of oxi-
dized GSH to reduced GSH in saliva. NADH and FAD
cofactors are also present in saliva (Kumar et al., 2018).
NAD(P)H enables the functioning of many families of sali-
vary oxidoreductases (Table 1). It should be noted that
NAD(P)H is subjected to oxidation to NAD(P)+ by the
action of lactoperoxidase, generating the hypothiocyanite
ion during the elimination of H2O2 (Hogg & Jago, 1970).
A large number of molecules and enzymes intervene to
maintain the salivary redox balance (Schwartz, Neiers,
et al., 2020, 2021). Depending on the concentration of the
oxidized or reduced form of the NAD(P)H cofactor, the
reactions involved may be affected in one direction or the
other (oxidation or reduction). Data reporting the presence
of cofactors acetyl-CoA, pyridoxal phosphate (PLP), PAPS,
and SAM in saliva are scarce. The release of these cofactors
in saliva could occur during lysis of desquamated epithe-
lial cells or oral bacteria, as well as from food, as some of
themare formed fromvitamin precursors (e.g., vitaminsB5
and B6). It is also conceivable that some salivary enzymes
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are already complexed with their cofactor, especially in the
case of covalent binding, as with cysteine-conjugate beta
lyases (CCBLs) covalently bound to PLP (Cooper et al.,
2011). It is important to consider that saliva is continuously
secreted into the oral cavity, while several factors have been
reported to modulate the salivary flow. Stimulations, such
as mastication or sensory food cues (Morquecho-Campos
et al., 2020), increase secretion of saliva, especially the con-
tribution of the parotid glands (Dawes et al., 2015; Mackie
& Pangborn, 1990), which influences the enzymatic com-
position and concentration (Dawes, 1969) and thus reac-
tions occurring in the mouth. For instance, basic proline-
rich proteins, which scavenge tannins to prevent them
from interacting with other proteins, such as digestive
enzymes, are only secreted by the parotid glands (Shimada,
2006). Thus, to consider the composition of saliva during
food consumption it is important to carry out in vivo stud-
ies in conditions close to consumption, but also to perform
research on the salivary factors affecting the activity of oral
enzymes.

4.3 Partner proteins or enzymes

Some XMEs require the presence of partner enzymes.
For example, CYP450s require the presence of NADPH-
CYP450 reductase, which is necessary for electron transfer
during the oxidation mechanism (Guengerich et al., 2016).
This enzyme is present in saliva (Pappa et al., 2018), sug-
gesting that CYP450s should be functional in this fluid.
The inactivation of salivary GSTP1 by salivary hypothio-
cyanite has been documented to cause the oxidation of
exposed cysteine residues (Fabrini et al., 2014). Oxidations
linked to exogenous molecules may also occur during food
intake. Therefore, it is important to point out the role of
redox maintenance proteins ensuring the regeneration of
salivary thiol proteins (for a complete review, see Schwartz,
Neiers, et al., 2021). More generally, the antioxidant capac-
ity of saliva plays a major role in the functioning of oral
enzymes and influences the ability of saliva to metabolize
flavor compounds (Muñoz-González et al., 2018; Piombino
et al., 2014).

4.4 Substrate and inhibitor
concentrations

The presence in themouth of different potential substrates
for one XME can lead to competition between all sub-
strates, regardless of whether they come from food or are
endogenous compounds. This competition can lead to a
decrease in the velocities of enzymatic reactions by various
mechanisms (competitive, noncompetitive, and incompet-

itive inhibition). For instance, the intake of a drug during a
meal may saturate the corresponding XMEs, thereby lead-
ing to a decrease in the quantity of aromamoleculesmetab-
olized by these XMEs. Also, inhibitors of enzymatic activ-
ity can also be present in the diet. For instance, a plant-
based diet includes the consumption of tannins,which par-
ticipate in plant defense mechanisms. Tannins are known
to inhibit the enzymes of the digestive tract due to their
ability to interactwith and aggregate proteins (Canon et al.,
2013; Ployon et al., 2018). Thus, it is likely that tannins
also inhibit the activity of XMEs as reported for phase-I
and phase-II reactions (Krajka-Kuźniak, 2003). Neverthe-
less, studies on the effect of foodmatrix components on the
activity of oral enzymes are scarce.

5 ORALMETABOLIZATION OF
AROMA COMPOUNDS AND PUTATIVE
ENZYMES INVOLVED

The presence of saliva or oral mucosa has been demon-
strated to affect the release of several classes of aroma com-
pounds known to be substrates of XMEs, namely, aldehy-
des, ketones, esters, and thiols. A pioneering study using
gas chromatography/mass spectrometry (GC/MS), which
was conducted by Buettner in 2002, demonstrated the
reduction of these compounds within minutes of incuba-
tion with fresh saliva (Buettner, 2002a, 2002b). The metab-
olization of these compounds leads to the formation of
compounds belonging to different chemical families and
having sensory properties differing from those of precursor
compounds (Table 4, Figure 4). Accordingly, in nasal tis-
sue, a rapid synthesis ofmetabolites resulting fromodorant
metabolism and having odorant properties was recently
shown (Robert-Hazotte, Schoumacker, et al., 2019). Alter-
natively, a precursor may not be sensorially active, while
its metabolite may be. For instance, glycoside conjugates
(Muñoz-González et al., 2015) and cysteine conjugates
(Starkenmann et al., 2008) can bemetabolized by enzymes
classified beyond the XME group with probably a micro-
bial origin.

5.1 Aldehydes

In the case of aldehydes, their disappearance was corre-
lated with the appearance of their corresponding alco-
hols, suggesting their reduction by salivary enzymes. This
effect was observed for short chain aliphatic aldehydes
(hexanal, methional, octanal) and aromatic aldehydes
(phenylacetaldehyde) in the presence of saliva (Buettner,
2002a; Ijichi et al., 2019; Muñoz-González et al., 2018;
Muñoz-González et al., 2019). Two aldehydes with longer
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F IGURE 4 Aroma metabolization involving XMEs in the oral cavity. Metabolization reactions observed from studies on saliva and oral
epithelium showing the aroma compounds, their metabolites, representative XMEs and possible microbial enzymes. Variations of detection
thresholds between aroma molecules and their corresponding metabolites have been represented with a scale (one dot, low detection; three
dots, high detection)

aliphatic chains (nonanal and decanal) were also investi-
gated (Buettner, 2002a). However, the decreases in the lev-
els of these aldehydes were not associated with the appear-
ance of metabolites, suggesting that hydrophobic inter-
actions with salivary proteins, such as mucins, can also
occur and impact aroma release (Pages-Helary et al., 2014).
Another reported case concerns trans-2-hexen-1-al. The
oxidation of this compound to hexenoic acid was noted by
Ployon, Brule, et al. (2020) in the presence of a model of
oral mucosa. More globally, Muñoz-González et al. (2018)
demonstrated that metabolization phenomena were cor-

related with salivary protein concentration and salivary
antioxidant potential. Furthermore, in this study, the addi-
tion of NADH cofactor increased the reduction of octanal
to octanol by saliva. This observation strongly suggests the
involvement ofNAD(P)H-dependent enzyme systems.Dif-
ferent oxidoreductases present in the oral cavity and iden-
tified from proteomic data analyzed in this review (Table 1)
are able to catalyze these reactions, as described above
(ADH, ALDH, AKR, CBR, SDR, and CYP450). Dedicated
studies are warranted to decipher which enzyme(s) is (are)
involved in these activities.
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5.2 Ketones

For ketones, reduction reactions were primarily observed
in the presence of oral mucosa (Table 4; Ployon, Brule,
et al., 2020). Monoketones such as 2-pentanone and 2-
octanone were not found to bemetabolized, however dike-
tones such as 2,3-butanedione and 2,3-pentanedione were
metabolized in presence of saliva (Muñoz-González et al.,
2018). The particular case of pentan-2,3-dione is inter-
esting. This compound is metabolized to two possible
products, 2-hydroxy-pentan-3-one and 3-hydroxy-pentan-
2-one, and this mechanism echoes a similar observation
(Zaccone et al., 2015). In this case, metabolic activity was
observed in the presence of human bronchial/tracheal
epithelial cells and was attributed to the dicarbonyl and
xylulose reductase (DCXR) enzyme (Zaccone et al., 2015).
Additionally, in the olfactory epithelium, the rapid syn-
thesis of these metabolites also involves DCXR activity
(Robert-Hazotte, Schoumacker, et al., 2019). This enzyme
is also detected in saliva (Table 1). Other enzymes were
also observed to metabolize ketones, including the poten-
tial aldehyde reductases (AKR, CBR, and SDR) identified
in the previous paragraph.

5.3 Esters

In the case of esters, Buettner demonstrated the disap-
pearance of ethyl butanoate, ethyl hexanoate, and ethyl
octanoate after incubation with fresh saliva (Buettner,
2002b) and the correlated production of the correspond-
ing carboxylic acids (Pages-Helary et al., 2014). In a study
on the impact of saliva on wine aroma molecules, it
was shown that the concentration of total esters in wine
headspace decreased in the presence of human saliva
(Genovese et al., 2009). This effect was determined to be
more pronounced with white wine than with red wine;
thus, the authors suggested that the presence of tannins in
red wine can explain this difference due to their ability to
inhibit enzymatic activity. In 2019, Perez-Jimenez showed
the degradation of a series of esters by the enzymatic action
of fresh saliva (Table 4). A metabolizing effect, coincid-
ing with the appearance of the corresponding carboxylic
acids, was shown for ethyl hexanoate, ethyl octanoate, and
ethyl decanoate (Perez-Jimenez et al., 2019). This effectwas
inhibited in the presence of CaCl2, an esterase inhibitor,
confirming their role in ester metabolization. Another
study reported the metabolism of benzyl acetate to benzyl
alcohol in the presence of saliva and nasal mucus (Ijichi
et al., 2019). The conversion of ethyl hexanoate to hexanoic
acid was also shown in the presence of an oral mucosa
model (Ployon, Brule, et al., 2020). As suggested earlier, dif-

ferent esterases could be involved in these metabolic phe-
nomena (CES, PON, CA).

5.4 Thiols

Concerning thiol-type aroma molecules, a prior study has
shown their decrease in the presence of saliva (Buettner,
2002b). It must be kept in mind that thiols have partic-
ularly low detection thresholds and thus have a strong
contribution to perception (Table 4). Various oxidoreduc-
tases present in saliva can oxidize thiols. In addition, it
has been suggested that salivary peroxidases may also be
involved (lactoperoxidase and myeloperoxidase; Buettner,
2002b). Sulfur-containing aroma molecules, such as disul-
fide compounds, could be substrates for thiol-transferases,
such as thioredoxin, glutaredoxin, or GST omega. Further-
more, the metabolism of thiol compounds may also occur
through conjugation via certain transferases, such as UGT,
GST, or TPMT. In a recent study, the in-mouth metabo-
lization of 2-FT to FMS was reported (Ijichi et al., 2019).
Ijichi et al. (2019) attributed this biological reaction, which
is known to occur in mammals and microorganisms, to
the activity of a methyltransferase. Methyltransferase cat-
alyzes the transfer ofmethyl groups from a primarymethyl
donor, such as S-(5′-adenosyl)-l-methionine (SAM), to a
thiol group. Among methyltransferases, TPMT is a poten-
tial candidate, as it is known to be active on various thiols
(Wu et al., 2019) and is present in saliva (Table 2).

5.5 Cysteine conjugates and glycoside
conjugates: Evidence for microbial
enzymes

Two other classes of compounds have been reported to
be subject to oral metabolization: cysteine conjugates and
glycoside conjugates. For these two classes of compounds,
the precursors are not sensorially active per se. However,
the compounds formed after metabolization in the mouth
can be aroma compounds. Although the enzymes that are
expected to catalyze these reactions are not XMEs, they are
briefly described below to provide amore complete view of
the enzymatic reactions that can occur in the oral cavity.

5.5.1 Cysteine conjugates

Cysteine conjugates are compounds typically found in gar-
lic and onion but also in some white wines, such as Sauvi-
gnon Blanc (Tominaga et al., 1998). The metabolism of
cysteine conjugates leads to the production of compounds
with a free thiol function, which are therefore very fragrant
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(Starkenmann et al., 2008). In the latter study, a contri-
bution of the oral microbiota to this metabolization was
demonstrated, notably by the action of the anaerobic bac-
terium Fusobacterium nucleatum. The formation of sulfur
compounds after metabolization in the presence of saliva
was also shown in cabbage extracts (Frank et al., 2018). The
enzymes responsible for this activity are probably CCBL
enzymes capable of catalyzing the dissociation of the C–
S bond between the Cβ and Sγ atoms of cysteine, thereby
generating free thiols without cysteine groups. CCBLs cat-
alyze the beta-elimination of cysteine conjugates having
an electrophilic group on the sulfur atom, utilizing the
PLP cofactor converted to pyridoxamine phosphate for
catalysis (Cooper & Pinto, 2006). CCBLs are typical of
some anaerobes of the oral cavity but could also be of
human origin. Indeed, the presence of human transam-
inases has been identified in saliva, and these enzymes
exhibit cysteine–thiol lyase activity (Cooper&Pinto, 2006).
Aspartate aminotransferases (encoded by the GOT1 and
GOT2 genes), as well as kynurenine-oxoglutarate transam-
inase 3 (encoded by the KYAT3 gene), were detected in
saliva (and in the oral epithelium for GOT1 and GOT2;
Denny et al., 2008; Ghosh et al., 2012; Grassl et al., 2016;
Pappa et al., 2018; Sivadasan et al., 2015) and may also
be involved in cysteine conjugate metabolization as previ-
ously shown (Cooper & Pinto, 2006).

5.5.2 Glycoside conjugates

Glycoside conjugates constitute a class of compounds com-
monly found in various plant-derived foods and exposed
to metabolization by salivary enzymes. This metaboliza-
tion generally involves the hydrolysis of the sugar group
by glycosidases (Walle et al., 2005). Beyond the well-
known glycosylated polyphenols, such as flavonoids and
anthocyanins that have bitter taste properties (Roland
et al., 2013), which are outside the scope of the present
paper focused on aroma compounds, some simple phe-
nols may also have odorant properties. These properties
are observed for the phenol glycosides present in certain
wines with a smoky taste produced from berries harvested
near burnt forests (Mayr et al., 2014). Metabolization by
glycosidases releases free phenols (guaiacol, cresol, and
syringol), which have “smoky”-type sensory properties.
Other enzymatic products with odorant properties result-
ing from the deglycosylation of their precursors have been
identified, such as terpenes, benzene derivatives, and alco-
hols (Muñoz-González et al., 2015). In saliva, a bacterial
origin of glycosidase activity has been suggested, although
it is significant only after several days of reaction (Muñoz-
González et al., 2015), raising questions regarding their
contribution to the perception of a food during the time

of its consumption. The existence of human glycosidase
activity in saliva (Stradwick et al., 2017) and the oral epithe-
lium (Mallery et al., 2011; Walle et al., 2005) should also
be further investigated. This activity is believed to come
from human beta-glucosidase (encoded by GBA3), which
is present in the mouth (Ghosh et al., 2012) and is known
to participate in the in vivo metabolism of certain glycosy-
lated derivatives (Nemeth et al., 2003).

6 DISCUSSION

Reactive compoundsmust be addressed as soon as possible
after their entrance into the organism. As a result, XMEs
actively participate in the detoxification of xenobiotics in
the oral cavity. Aroma compounds are generally hydropho-
bic molecules belonging to numerous chemical families
with different reactivities. Thus, XMEs are likely to par-
ticipate in their elimination depending on their chemical
structure. However, it was only very recently that studies
began to consider their reactivity toward aromamolecules.
The aim of this study was to review the existing evidence
of the presence of XMEs in the oral cavity (saliva and oral
mucosa) as well as pieces of evidence of the oral metab-
olization of aroma compounds in order to point out the
enzymes potentially involved. To this end, we screened
five recent proteomes to inventory XMEs among the thou-
sands of proteins present in the oral cavity (Denny et al.,
2008; Ghosh et al., 2012; Grassl et al., 2016; Pappa et al.,
2018; Sivadasan et al., 2015). Through this study, we identi-
fied 91 XMEs among three enzyme superfamilies, namely,
oxidoreductases, transferases, and hydrolases. It is impor-
tant to consider that proteomics enables the identification
of proteins but provides no information on their actual
activity. Indeed, the identification of a protein may orig-
inate from fragments resulting from the lysis of desqua-
mated cells. Nevertheless, the activity of certain enzymes
has been documented in the oral cavity, indicating that at
least several of these proteins are active in saliva and oral
tissues. XMEs are involved in the detoxification of com-
pounds entering the body through food intake, although
the role of some XMEs is opposite. For example, ADHs
catalyze the oxidation of ethanol to acetaldehyde, a car-
cinogenic compound actually more harmful than its pre-
cursor (Homann et al., 1997). Acetaldehyde can be neutral-
ized by ALDH2, and patients who are heterozygous for its
gene have higher levels of acetaldehyde (Väkeväinen et al.,
2000). This phenomenon indicates the importance of the
complex enzymatic network present in themouth that can
influence the metabolism of compounds entering the oral
cavity.
In this regard, it has been reported the metabolism

of aroma compounds in the presence of saliva
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(Buettner, 2002a, 2002b; Hussein et al., 1983; Muñoz-
González et al., 2018; Muñoz-González et al., 2019) or oral
cells (Ployon, Brule, et al., 2020; Muñoz-Gonzalez et al.,
2021) as well as in vivo conditions (Muñoz-Gonzalez et al.,
2021; Ijichi et al., 2019; see Table 4). Aroma compounds
participate in the sensory characteristics of food. These
compounds are generally present in very small quantities
in foods, but they contribute significantly to their quality
and acceptability. Regarding their metabolization, the
perception thresholds of the initial molecules (XME sub-
strates) are often different (generally lower) than that of the
products (Table 4, Figure 4). For example, aldehydes have a
perception threshold of 10–100 orders of magnitude below
the perception threshold of alcohols, that is, their metabo-
lites. This observation is also true for ketones (metabolized
to alcohols) and esters (metabolized to carboxylic acids
and alcohols). In other words, oral metabolism leads to
the formation of new molecules with higher detection
threshold, and therefore, likely to be less perceived than
their corresponding precursor. Up to now, most of the
works on oral aroma metabolism have been performed
using ex vivo conditions that although very relevant have
poorly considered the complexity of phenomena occurring
in the oral cavity during consumption. To our knowledge,
only two studies (Ijichi et al., 2019; Muñoz-Gonzalez et al.,
2021) have been carried out in vivo. In a recent study, Ijichi
et al. (2019) showed that certain aroma compounds are
metabolized in the oral cavity, forming products at a con-
centration above their detection threshold, which could be
perceived by the individual. In addition, Muñoz-Gonzalez
and her collaborators coupling both in vivo, in vitro
experiments and sensory evaluation have recently studied
the effect of oral metabolism of aroma compounds on
their persistence, which correspond to the length during
which an aroma compounds continue to be release from
the oral cavity and be perceived. They demonstrated that
the persistence of an aroma compound depends in part
on its metabolism in the oral cavity. Thus, the perceived
aroma intensity of the compounds that are metabolized in
the oral cavity decreases faster than that of the nonmetab-
olized compounds (Muñoz-Gonzalez et al., 2021). In this
study, authors have also shown that aroma compounds
adsorb onto the mucosal pellicle as previously reported
(Ployon, et al., 2020), while the aggregation of the mucosal
pellicle by tannins (Ployon et al., 2018) may disturb these
interactions. Thus, while oral metabolism plays a role in
aroma persistence, it is not the only mechanism involved.
Moreover, these both in vivo studies have been carried out
on aroma solutions in water. Thus, future studies that con-
sider more complex food matrices are needed to elucidate
the role of oral metabolism on food flavor perception.
Another aspect concerns the influence of the diet

on the modulation of XME expression. Indeed, several

studies have shown that XMEs can be overexpressed after
consumption of certain foods rich in bioactive molecules
(Hodges & Minich, 2015) with evidence for salivary XMEs
of the GST, ALDH, and NQO families, which are overex-
pressed after consumption of coffee or broccoli (Sreerama
et al., 1995). This finding suggests that dietary habits may
alter oral enzymatic arsenal with a potential effect on oral
xenobiotic metabolism. Similarly, the well-documented
genetic variability of XMEs (Relling & Evans, 2015) could
also influence oral xenobiotic metabolism through the
absence of a gene or the presence of allelic variants. A
last point concerns the role of the oral microbiota. In this
study, we focused on human enzymes, but it is important
to keep in mind that bacterial enzymes could also con-
tribute to the oral metabolism of aroma compounds. As
metaproteomic data of the oral microbiota are scarce or
poorly annotated due to the lack of characterization of
microbial enzymes, only human enzymes were included
in this study. Nevertheless, there is now strong evidence
regarding the likely involvement of microbial enzymes
such as glycosidases and CCBLs. Notably, these enzymes
catalyze reactions leading to the opposite observation
concerning detection thresholds: nonodorant precursors
result in odorant products after oral metabolization,
which balances the trend observed with the other aroma
families. In the context of wine, an ex vivo study showed
the ability of oral microbiota to produce aroma molecules
from grape odorless glycosidic precursors, with large
interindividual variability (n = 3; Muñoz-González et al.,
2015), suggesting that personal biological variabilities
can affect the flavor sensing (Frumento, 2018). Future
research may investigate the role of the oral micro-
biota in metabolism affecting the perception of certain
aromas.
In conclusion, the enzymes identified in this study based

on proteomic data constitute the oral enzymatic detoxi-
fication system. These enzymes may assure the handling
of exogenous compounds upon entrance in the oral cavity
via various possible reactions. Aroma compounds enter-
ing the oral cavity during food consumption are potential
substrates of this enzymatic system given actual knowl-
edge gained from ex vivo studies. According to pioneer
in vivo studies, it seems that this oral metabolism could
affect the perception of aroma compounds. Neverthe-
less, further studies are needed to understand this phe-
nomenon in real food consumption conditions. In addition
to the metabolism of aromamolecules, some oral XME are
also active on sapid molecules (e.g., oral COMT metabo-
lizes some food flavonoids, molecules with a bitter taste;
Mallery et al., 2011). Thus, in addition to investigating their
potential role in aroma perception, their putative role in
the context of taste compounds metabolization and per-
ception should also be further explored in the future to
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gain a deeper understanding of XME activity on flavor
perception.
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