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Abstract

In this paper, the fusion of an active set method (ASM) and an interior point

method (IPM) is used, with a Newton method, to solve for the steady-state flows,

heads and outflows of a pressure dependent water distribution system. The outflow

constraints which arise from the pressure dependency are handled by an ASM and

the linkflow constraints are handled by an IPM. The authors believe that this is the

first time an ASM and an IPM have been used together in this way to solve a real

world optimization problem. Including flow constraints in a network model allows a

variety of flow control devices (flow control valves, check valves, pumps) to be mod-

elled e�ciently. The new method does not require damping. The separate treatment

methods for the two constraint sets means that the linear inequality constraint qual-

ification condition cannot be violated during iteration, unlike the case where all the

constraints are handled by an ASM. The method is shown to quickly converge on nine

case study networks the largest of which has more than 157,000 links and 150,000

nodes and 6,000 linkflow constraints. When tested on those same nine networks, the

popular interior point optimizer package IPOPT is shown to take between about 2–4

times as long as the new method for 5 of the networks, 7 and 9 times as long for 2

networks and about equal time on the 2 remaining networks. For the largest network

IPOPT takes 34 minutes while PHYAI takes 4 minutes. The generality of the method

means that it has application to network design and management, capacity analysis

and self-cleaning networks.

Keywords: Networks, convex programming, interior point methods, active set meth-

ods, flow control
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INTRODUCTION

Water Distribution Network Modelling Background

The traditional demand dependent models (DDMs) ((Cross 1936), (Martin & Peters

1963), (Wood & Charles 1972), (Todini & Pilati 1988)) of water distribution systems

(WDSs) deliver the nominal nodal demands regardless of the pressures in the system.

This can lead to model solutions which are mathematically correct but which are not

physically realizable. For example, if the pressure at a node falls below a certain level in

a real network, then the nominal demand cannot be realized. As a consequence, attention

has turned to pressure dependent models (PDMs) of WDSs and much research e↵ort

has been directed at finding powerful and robust solvers to quickly find the steady-state

linkflows, outflows and heads of real PDM WDSs.

PDM models require a pressure outflow relationship (POR ) which describes the out-

flow at each demand node as a function of available pressure: nodes at which the pressure

is below a preset minimum level, hm, have zero outflow while those at which the available

pressure is above a maximum preset service pressure, hs, will have the nominal demand

delivered. The POR describes the proportion of the nominal demand that is delivered for

pressures between hm and hs. The interested reader is directed to Sayyed et al. (2015) or

Deuerlein et al. (2019) for discussions of some commonly used PORs .

Both Bhave (1981) and Tabesh (1998) proposed solving the PDM problem by using a

two-step iterative procedure called Node Flow Iteration. Here the problem is first solved

as a DDM and then the demands are corrected according to a chosen PDM relationship.

More recently, Jun & Guoping (2013) proposed a solution technique in which the PDM

problem is solved by repeatedly solving the corresponding DDM problem by the Global

Gradient Algorithm (GGA) of Todini & Pilati (1988) in an extension to the widely-used

WDS DDM solver, EPANET (Rossman 2000) and adjusting the demands after each so-

lution. Lippai & Wright (2014) introduced artificial reservoirs, artificial check valves and

artificial flow control valves to prevent the outflows from lying outside a prescribed inter-

val. Elsewhere, Piller & van Zyl (2014a) used the power equation or the Fixed and Variable

Area Discharge (FAVAD) pressure-dependent leakage equation at nodes with leakage to

model the dependence of flow on pressure. A review of many of the available approaches

for simulating or emulating PORs can be found in Suribabu et al. (2019).

The PDM problem can alternatively be viewed as an optimization problem with linear

constraints on the outflows at the nodes and the authors used this approach to solve the

unconstrained primal-dual and dual problems by a Newton method with line search to

find the heads, linkflows and outflows of a PDM WDS (Elhay et al. 2016). The authors

later developed (Deuerlein et al. 2019) a content-based active set method (ASM) for the

PDM convex optimization problem

min
q,c

f(q, c) | AT
q + c = o, gi(c)  0, i = 1, 2, . . . ,mg, (1)
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where the content function, f , is strictly convex, A is a node-arc incidence matrix, the gi

define mg linear constraints and q and c are the vectors of decision variables representing

the network link flows and nodal outflows, respectively. The resulting ASM is robust and

rapid and well-suited for PDM WDSs. Indeed, the Newton-type methods used in the ASM

are particularly suitable for WDS models because even though the equations involved are

non-linear, they are very structured and sparse and so even models that have hundreds

of thousands of degrees of freedom can be quickly and conveniently solved on modern

desktop computers. In addition, using the inverse POR , h(c), as the authors did, brings a

computational advantage: the Darcy-Weisbach head loss model is quadratic and pseudo-

head loss function, h(c), for the Wagner (and any similar POR ) is also superlinear. The

consequence is that, although in similar circumstances damping or regularization might

be necessary, in this case they are not because the convergence ball for the problem is

larger and as a result good convergence is more easily achieved.

Addition of Controls

However, when combinations of throttle control valves (TCVs), check valves (CHVs),

flow control valves (FCVs), pressure sustaining valves (PSVs), pressure reducing valves

(PRVs) or pumps are added to the models, new di�culties arise (Deuerlein et al. 2012). In

some cases the methods fail to converge (see Simpson (1999) and Deuerlein et al. (2008)) or

even converge to the wrong solution (Gorev et al. 2016). These di�culties are compounded

by the fact that in many cases there is no indication that the computed solution is in fact

wrong or not physically realizable.

Control devices are increasingly used in WDSs. Limited resources during hot summers,

contamination of ground water and the need for more flexible and resilient systems are

only a few of the drivers for this development. There is no doubt that the planning and

operation of modern systems using smart devices require robust and e�cient hydraulic

modelling software.

An FCV constrains the flow in a link to be below some chosen value, qmax, that is

independent of the di↵erence between the heads at the link’s initial and final nodes. If

the flow is below qmax, the valve is opened fully and behaves like a minor loss element.

If conditions are such that the unrestricted flow would be higher than qmax, the FCV

acts to restrict the flow. It is natural then to model the action of such a device by a

mathematical constraint. Applying linkflow constraints to the minimization of the content

associated with a WDS is then a constrained optimization problem and this formulation

of the problem provides some interesting returns: the characterisation of the conditions

under which solutions exist and are unique can be studied and a wide range of optimization

techniques, including ASMs and interior point methods (IPMs), can be brought to bear

on the problem.

Formulation of the Problem Addressed

A number of di↵erent approaches to the solution of flow constrained problems have
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been reported. Piller & van Zyl (2014b) used quadratic external penalty methods applied

to the valves’ head loss equations. The penalty terms are interpreted as a minor head

loss. Later, Alvarruiz et al. (2018) and Rossman et al. (2020) used linear external penalty

methods in the loop method to model flow regulating devices. The external penalty terms

in these methods generate very large resistance factors and, when these exist alongside

normal resistance factors in the models, the resulting matrices can have very large con-

dition numbers. This leads, in many cases, to the need for damping or regularization

schemes to be incorporated into the methods in order to avoid divergence.

In Piller et al. (2020) the authors presented a new content-based active set method,

ASMFC, for the determination of linkflows, nodal heads and outflows in a PDM WDS

which has linkflow constraints. This time the problem addressed was

min
q,c

f(q, c) |

8
><

>:

A
T
q + c = o,

gi(c)  0, i = 1, 2, . . . ,mg,

sj(q)  0, j = 1, 2, . . . ,ms

. (2)

The necessary and su�cient Karush-Kuhn-Tucker (KKT) conditions for the unique mini-

mum of the content function, f , optimization problem were given and a Newton method

based on this formulation led to the ASMFC. The method was demonstrated by applying

it to eight case study networks, N1–N8, with between 934 and 19,647 links and between

848 and 17,971 nodes. These case study networks each had 60 cotree linkflow constraints

which either (i) limit the maximum flow in a link to be between 0 and ±10% of its un-

constrained value or (ii) prescribe a link flow equality constraint (LFEC), i.e. the flow in

link j is set by requiring qmax,j = qmin,j . The method rapidly found the solutions to all

eight case study networks. An advantage of the method is that FCVs and pumps can be

modelled and heuristics are not needed to determine the status of control devices in the

system: their states are found as part of the solution. Furthermore, there is no risk of

isolated demands in this case since in PDM problems the nodal outflow can reduce to zero

if the pressure is insu�cient.

In some settings flow velocities are required to be above a certain lower limit. Self-

cleaning networks (Abraham et al. 2018), for example, limit the flow capacity in all the

network’s cotree (by closing some valves) to ensure higher velocities in the spanning tree

links. Interest in this area led the authors to conduct investigations into the performance

of the ASMFC on problems like these. In these new tests the eight case study networks had

constraints applied to (almost) every link in each network’s cotree (rather than limiting

the number of constraints to 60). Confining the constraints to the network cotrees ensured

that no parts of the networks were isolated from sources. This led, for the largest network,

to ⇡ 1700 constraints being imposed. It was found that the ASMFC converged rapidly

for six of the eight networks but for networks N4 and N7, convergence with the ASMFC

remained elusive. Now, it is known (see Piller et al. (2020) for details) that, provided

certain conditions which are known to hold in this case are met, the solution to this

problem always exists and is unique. The problem to finding these solutions, it emerged,
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was poor starting values - a common problem in the numerical solution of nonlinear

systems. If, on these more challenging problems, the ASMFC is started at a point close

to the true solution it reliably converges quite rapidly. But without good starting values

stalling and cycling (failure to converge) were observed.

Damping, a technique used by the authors in Elhay et al. (2016) to overcome conver-

gence failures in PDM problems, has been helpful where initial values are far from the

solution or where link characteristics are modelled by sublinear functions or even when very

large and very small resistance factors in the same models lead to poor matrix condition-

ing. It has, however, the disadvantage that the co-energy functions (content, co-content or

Lagrangian) need to be frequently evaluated and these add an undesirable computational

burden. This led the authors to investigate alternative methods and resulted in the new

hybrid method of this paper, HYAI.

The Solution

The di↵erence between the problems defined in (1) and (2) turns, of course, on the

addition of the linear inequalities sj(q)  0 (the linkflow constraint set) and seeing that

those constraints are not always well-handled by the ASM, an alternative way of handling

them was found. The constraints sj(q)  0 in (2) could theoretically be implemented

by omitting those constraints from the definition of the problem and adding an indicator

function term I�(sj(q)) to the objective function. Here, I�(·) is defined by

I�(x)
def
=

⇢
0 x  0

1 x > 0
. (3)

Log barrier IPMs replace the function I�(·) in (3) by a logarithmic penalty function,
1
t�(q), which drives the optimization away from the constraint boundaries while keeping

them in the interiors of the constraint intervals. The key element in the HYAI method,

and the reason it is said to be hybrid, is that it uses a log barrier penalty to enforce

the linkflow constraints while continuing to use the ASM approach to handling the POR

constraints (via the inverse POR function) on the nodes. The new method is denoted by

HYAI to suggest the hybridization of an ASM and an interior point method (IPM). The

method borrows from the theory of IPMs for dealing with the linkflow constraints but

cannot properly be said to be an IPM in view of its use of the ASM. It will be seen that

implementing HYAI requires only a small modification of the ASMFC method.

The penalty terms in HYAI are such that the barrier terms more closely approach I�(·)
as t increases. Thus, larger values of t give solutions which are closer to the exact solution

or the ASMFC solution. But finding the minimum of f(x) can be di�cult with Newton’s

method when t is large because the Hessian of f varies rapidly near the boundaries of the

feasible set (Boyd & Vandenberghe 2009, 564). This di�culty can be overcome by first

finding a solution for a small value of t and then solving a sequence of problems in which

the solution for each value of t is used to start the Newton method for a larger value of t.

This process of continuation can then be used to arrive at a solution for su�ciently large
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t.

When a linkflow constraint in an ASM saturates, that e↵ectively causes the link to

be removed from the system. Removing a link from the system can, in some instances,

cause disconnections in the system’s main graph. By comparison, in the hybrid IPM of this

paper the full arc-node incidence matrix (ANIM) is always used and some terms are added

to the diagonal matrix of head losses. These added terms can assist with convergence.

Unlike external penalty methods which sometimes need damping, in this log barrier IPM,

damping is avoided by projecting linkflows back to the interior of the constraint interval.

The uniqueness and existence of the problem flows is assured provided the linearly

independent constraint qualification (LICQ) is not violated at the solution (Deuerlein

et al. 2017) because if the LICQ holds then unique Lagrange multipliers exist and a

feasible solution exists. The LICQ requires that the matrix of equality constraints (the

mass balance constraints together with the saturated or active constraints) has full rank.

For the ASMFC method, the linkflow constraints are part of the LICQ matrix. The

violation of the LICQ is equivalent to the isolation of some demand nodes and this can

occur if, for example, the linkflow constraints are not confined to the cotree. So, where

there are constraints on links in the spanning tree, one should establish (although it is

usually impractical to do so) at each iteration that the LICQ is not violated.

The LICQ matrix for the HYAI method is comprised only of (i) the network node-arc

incidence matrix, and (ii) the matrix of active outflow constraints, since the linkflow con-

straints are handled by the IPM, not the ASM. In the Appendix it is shown that the HYAI

method LICQ matrix has full rank provided the NAIM has full rank and importantly, that

the LICQ matrix and the ANIM of the augmented graph of the network, a key matrix in

the method, have the same rank. This fact eliminates a point of failure in the Newton

method which is at the basis of the new method. Whether or not a solution exists in the

feasible set can be determined by a linear program (see Boyd & Vandenberghe (2009, 579)

for details).

Contribution of the New Method

Network designers seek to balance conflicting requirements: (i) the need to satisfy the

demands and (ii) the cost of the network construction and maintenance. The search for

this balance leads to the need to minimise the head losses, which depend on link diameters

and the squares of the velocities (thereby limiting the e↵ects of abrasion at singularities,

elbows and shrinkages). A PDM solver with linkflow capacity constraints can be used to

help find the optimal solution which balances these requirements. An important problem

concerns modelling network capacity: the study of networks for which every link has

flow constraints. Capacity problems arise, for example, in transport (communications

networks and urban tra�c flows) and power systems. A WDS capacity analysis which

finds flows that are such that the corresponding velocities are bounded above and below,

vmin  v  vmax can assist network designers in two important ways. The first is that the

lower fluid velocity limit can be set su�ciently high to ensure that the links so constrained
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are self-cleaning i.e. have flow velocities high enough to prevent the particle sedimentation

that would otherwise occur. For example, in some settings, the fluid velocities in a WDS

are required to be limited to no more than 1.5 m/s (sometimes the linkflow constraints

are limited to every cotree link and are set to create higher velocities in just the spanning

tree links).

The second way that capacity analysis assists the designers stems from the fact that

(Boyd & Vandenberghe 2009, 252) the Lagrange multipliers measure the first order sen-

sitivity of the objective function’s (in this case the content’s) optimal value with respect

to perturbations of the constraint. Thus, an examination of the steady-state Lagrange

multipliers for the lower velocity bound could indicate how much pumping is necessary

in a system and how much extra energy is required to achieve that level of pumping or

reduction of head loss.

The authors believe that the HYAI method is the first in which the constraints for some

of the problem’s objective function variables are handled by using an active set method

while others are handled by an interior point method in this way. Its suitability to this

approach stems from the fact that the optimization variables naturally separate into two

sets: those for the nodes and those for the links.

In this paper the HYAI method is developed and its e↵ectiveness is evaluated and

compared to that of ASMFC by its application to the eight case study networks previously

used in the evaluation of the ASMFC together with a ninth, much larger network. The

new method is shown to solve all the networks considered in this study (some of which

previously could not be solved with ASMFC) and its reliability is established by showing

the high level of agreement between its solutions and those of ASMFC.

The method is tested on nine networks the largest of which has about 6,000 linkflow

constraints: a number which is unrealistic for network control but which is entirely rea-

sonable in the context of design and post-analysis of the resulting outflows and saturation

capacities. Moreover, the authors believe that the intensive study of the mathematical

background (i) is of value in its own right and (ii) helps provide robust solutions to prac-

tical problems. Existing solvers often struggle to find the correct solution even in rather

simple cases. It is the objective of the authors to provide a mathematically-based method

that is able to find the correct solution for all cases where such a solution exists.

It is shown that, when tested on the nine case study networks, the popular interior

point package IPOPT (Wachter & Biegler 2006) takes about 2–4 times as much wall-clock

time as PHYAI on 5 networks, 7 and 9 times as long on 2 networks and about the same

time on the remaining two networks. In the case of the largest network, IPOPT took

about 34 minutes to solve the problem while the new method took about 4 minutes.

The solution of a small example problem is described in detail in the Appendix to help

clarify the application of the new method.

The usefulness of the new method, either in its own right or as a method that can be

paired with ASMFC, is discussed.

Some summary statistics for four of the nine case study networks which are in the
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public domain and summary statistics for the corresponding solution data are provided as

supplementary material to the paper.

DEFINITIONS AND NOTATION

Consider a WDS whose network graph has np links, or arcs, and nj + nf nodes, or

vertices: nj is the number of nodes at which the heads are unknown and nf � 1 is the

number of source nodes with fixed heads. The links of the network include control valves,

pumps and pipes. Denote by q = (q1, q2, . . . , qnp)
T 2 Rnp the vector of unknown flows in

the system, h = (h1, h2, . . . , hnj )
T 2 Rnj the unknown heads at the nodes in the system,

u = (u1, u2, . . . , unj )
T 2 Rnj the vector of node elevations and r(q) = (r1, r2, . . . , rnp)

T

the vector of link resistance factors. Let A denote the np ⇥ nj , full rank, unknown-head

ANIM: the ji element of A is (i) �1 if node i is at the end of arc j, (ii) 0 if arc j does not

connect to the node i, and (iii) 1 if arc j starts at node i. Let A0 denote the ANIM, with

a similar definition, for the fixed-head nodes. Let h
0 denote the vector of elevations of

the nf fixed-head nodes. Denote a = A0h
0. Denote by ⌘ the exponent used in the head

loss formula: ⌘ = 2 for the Darcy-Weisbach model and ⌘ = 1.852 for the Hazen-Williams

model. Furthermore, denote by G(q) 2 Rnp⇥np the diagonal matrix whose diagonal

elements are defined as [G(q)]jj = rj |qj |⌘�1. Then, ⇠(q) = (⇠1(q1), ⇠2(q2), . . . , ⇠np(qnp))
T =

G(q)q is the vector whose elements model the head losses of the links in the system. In

general, (e.g. for the Darcy-Weisbach formula) r = r(q) but for the Hazen-Williams

formula r is independent of q. Denote the vector of the nominal demands at the nodes

with unknown-head by d = (d1, d2, . . . , dnj )
T 2 Rnj and denote by nd the number of nodes

with non-zero demands. Denote by c(h,d) 2 Rnj the vector whose elements are the POR

function values at the nj nodes of the system and denote 1 = (1, 1, . . . , 1)T . Throughout

what follows, the symbol O denotes a zero matrix and o denotes a zero column vector of

appropriate dimension for the particular case. The shorthand notation x+ a, where x is

a vector and a is a scalar, will be used to denote the case where every component of x has

a added to it. Furthermore, it will be assumed that any matrix inverses which are shown

do, in fact, exist. In what follows all the values of t will be powers of 10: t = 10e.

Turning now to PDM problems, assume, for simplicity and without loss of generality,

that every node has the same minimum pressure head, hm, and the same service pressure

head, hs. Individualized minimum and service pressure heads can be implemented by

replacing hm by hmi and hs by hsi throughout but presents no further di�culty. This

modification does not change the method and only complicates data management and

notation.

Define the pressure fraction, z(h)
def
= (h� (u+ hm))/(hs � hm). Suppose that �(·) is a

bounded, smooth, monotonically increasing function which maps the interval [0, 1]! [0, 1].

The POR at a node is defined by

c(hi) =

8
><

>:

0 if z(hi)  0

di �(z(hi)) if 0 < z(hi) < 1

di if z(hi) � 1

. (4)
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The inverse function of the POR , the head, hi(c) expressed as a function of outflow c at

node i, will be required for the development of the method. But, the function hi(c) is

not in general everywhere di↵erentiable and so in its place a multivalued, sub-di↵erential

mapping is considered:

h(ci) =

8
>>>>><

>>>>>:

; if ci < 0

(�1, hm + ui] if ci = 0

(hs � hm)��1
⇣

ci
di

⌘
+ hm + ui if 0 < ci < di

[hs + ui,+1) if ci = di

; if ci > di

. (5)

Note that, in what follows, careful distinction is made between the scalar variables, h,

which represent the heads and the multivalued, sub-di↵erential mapping, h(c) which rep-

resents the inverse POR .

METHOD

The problem addressed in this paper is: find the heads, linkflows and nodal outflows

in a PDM WDS which has (possibly a large number of) linkflow constraints. The PDM

imposes constraints to the nodal outflows and linkflow constraints are introduced in the

modelling of flow controls. The constraints are expressed as

✓
w1(c)

w2(c)

◆
def
=

 
nj �c
nj c� d

!
 o,

✓
w3(q)

w4(q)

◆
def
=

 
np q � qmax

np qmin � q

!
 o. (6)

As a formalism, any links which do not have finite constraints are treated as having

�1 = qmin,j  qj  qmax,j = 1 (in practice only the links which have finite constraints

will be treated in these vectors). Define the vector �(q) whose components are the log

barrier terms (Boyd & Vandenberghe 2009, §11.2.1) which constrain the link flows

�(qj) = � ln(�wj) (7)

where j ranges over the components of w3 and w4. Denote the content term

 (ci) =

(
(hs � hm)

R ci
0 ��1

⇣
x
di

⌘
dx, if di > 0,

0 if di = 0

denote  (c) = ( (c1), (c2), . . . , (cnj ))
T and denote

✓(c) = rc (c) = (hs�hm)
�
��1(c1/d1), ��1(c2/d2), . . . , ��1(cnj/dnj )

�T
. Of central inter-

est here is the restriction of the content function C(q, c), where the components of c are

defined only on the intervals 0  ci  di.

C(q, c) =

npX

j=1

Z qj

0
⇠j(s)ds� a

T
q + c

T (u+ hm) + 1T (c) (8)
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More formally, the problem addressed in this paper is:

Problem 0.1 Find the linkflows, q, and outflows, c, which minimize the objective func-

tion C(q, c) subject to the mass balance (equality ) constraints

�AT
q � c = o (9)

and the (inequality) constraints (6).

The problem, restated using a log barrier technique to restrict the linkflows to the interior

of their constraint intervals, is to find

min
q,c

⇢
C(q, c) +

1

t
�(qT )1

�
subject to �A

T
q � c = o & o  c  d. (10)

(Note that the scalar function � applied to the row vector qT here produces a row vector

result.) The Lagrangian of (10) is

L(q, c,h,�,µ) =
Pnp

j=1

R qj
0 ⇠j(s)ds� a

T
q + 1T (c) + c

T (u+ hm)� h
T (AT

q + c)

+µ
T (c� d)� �T

c+ 1
t�(q

T )1

subject to � � o, µ � o.
(11)

Here, h, the vector of heads, represents the Lagrange multipliers for the mass balance

equality constraint and � and µ are the vectors of non-negative Lagrange multipliers for

the inequality constraints on the outflows, c.

Denote R = diag
�
�1,�2, . . . ,�nj

 
and T = diag

�
µ1, µ2, . . . , µnj

 
. In view of the

problem’s convexity, the necessary and su�cient conditions for a solution to Problem 0.1

are given by the KKT conditions:

⇠(q⇤)�Ah
⇤ � a+

1

t
rq�(q⇤) = o (12)

h(c⇤)� h
⇤ �L

⇤T
�
⇤ +U

⇤T
µ
⇤ = o (13)

�AT
q
⇤ � c

⇤ = o (14)

�L⇤
R

⇤
c
⇤ = o (15)

U
⇤
T

⇤(c⇤ � d) = o (16)

�
⇤ � 0, µ

⇤ � 0 . (17)

where h(c⇤) = ✓(c⇤) + u + hm, L⇤ is a matrix made up of rows of the identity whose

indices correspond to those of the nodes at which the lower constraint is saturated (or

binding) and U
⇤ is a matrix made up of rows of the identity whose indices correspond

to those of the nodes at which the upper constraint is saturated. Relations (15) and (16)

represent the complementary slackness conditions, Eq. (12) is the conservation of energy

equation and (13) defines h according to (5).

The Newton method for the ASM system without flow control (see Deuerlein et al.

(2019) for details) reduces (essentially) to
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0

BB@

np nj nb

np F
(m) �A O

nj �AT
O �S(m)

b

T

nb
eO �S(m)

b M b
(m)

1

CCA

0

B@
q
(m+1) � q

(m)

h
(m+1) � h

(m)

c
(m+1)
b � c

(m)
b

1

CA = �

0

B@
⇢
(m)
e

⇢
(m)
m

h(c(m)
b )� h

(m)
b

1

CA (18)

where M = rc✓(c) is a diagonal matrix, the diagonal elements of which hold the c

derivatives of the inverse POR function h(c); the matrix F denotes the diagonal matrix

whose diagonal elements are q-derivatives of the corresponding terms in G(q)q; the energy

and mass residuals are defined by ⇢(m)
e = ⇠(q(m))�Ah

(m)�a and ⇢(m)
m = �AT

q
(m)�c(m);

Sb is a selection matrix for the junction nodes associated with constraints that are not

saturated and the subscript b indicates that the quantity in question is confined to those

components which are associated with an outflow constraint that is not saturated. The

index set for these components is, following the notation in Piller et al. (2020), denoted

Icb and it has nb elements. Similarly, denote by Iq the set of indices which represent the

links with finite constraints and denote by nIq the number of linkflow constraints.

The gradient of the log barrier term in (12) and the Hessian of (7) (which will be

incorporated into the equivalent of (18)) are now discussed.

The log barrier terms

From (7), rq� =
P

j
1

�wj
rqwj so rq� = v = (v1, v2, . . . , vnp)

T where

vj =

⇢
1

(qj�qmax,j)
� 1

(qmin,j�qj)
= 1

w3,j
� 1

w4,j
if j 2 Iq,

0 otherwise.
(19)

In view of the linearity of the constraints, r2
qwj = 0 for w3 and w4 so

r2
q� =

X

j

✓
1

wj
rqwj

◆✓
1

wj
rqwj

◆T

. (20)

The j-th term in the sum (20) is

1

(qj � qmax,j)2
+

1

(qmin,j � qj)2
=

1

w2
3,j

+
1

w2
4,j

(21)

so if we denote C3 = diag {q � qmax}, and C4 = diag {qmin � q} then

�
def
=

X

j

r2
q(qj � qmax,j) +r2

q(qmin,j � qj) =

0

B@
C

�2
3 +C

�2
4 O O

O O O

O O O

1

CA . (22)

A typical log barrier function �(q) and its first two derivatives, rq�(q) and r2
q �(q), are

shown in Fig. 1. Note that r2
q�(q) > 0 and, importantly, this establishes that the IPM
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preserves strong convexity for this problem and this in turn guarantees that the uniqueness

of the solution is preserved.

Setting the gradient of the log barrier Lagrangian (11) to zero

rB =

0

B@
⇠(q)�Ah� a� 1

tv

�AT
q � c

h(c)� h�L
T
�+U

T
µ

1

CA =

0

B@
o

o

o

1

CA (23)

gives the system of equations to be solved by the Newton method. It is evident from the

form of the first block equation in (23) that the log barrier term can be considered a minor

head loss. The Jacobian of this system is

V =

0

B@
F + 1

t� �A O

�AT
O �I

O �I M

1

CA

so the system for the Newton update is now V
(m)

⇣
�q(m+1)T , �h(m+1)T , �c(m+1)T

⌘T
=

�r(m)
B . Denote, dropping superscripts where the context is clear,

bF = F +
1

t
�

b⇢e = G(q)q �Ah� a� 1

t
v

⇢m = �AT
q � c

⇢c = h(c)� h�L
T
�+U

T
µ

It is worth noting here that the log barrier terms 1
tv and 1

t� can be viewed as minor head

loss terms and the vector 1
tv represents the surrogate Lagrange multipliers for the linkflow

constraints at steady state (Boyd & Vandenberghe 2009, 567). As well, it is clear that

only a minimal e↵ort is required to modify code to solve a PDM WDS by ASM in order

to handle linkflow constraints via this technique. Figure 2 shows a typical function made

up of a link head loss, ⇠(q), and the corresponding log barrier term v(q)/t. The surrogate

Lagrange multipliers, ⌫ and  for head losses h1 and h2 are also shown.

The system to be solved is now (cf. (18))

0

B@

np nj nj

np
bF �A O

nj �AT
O �I

nj O �I M

1

CA

0

B@
�q

�h

�c

1

CA = �

0

B@
b⇢e
⇢m

⇢c

1

CA . (24)

Note that in line with the ASM, the outflow updates are applied to only those nodes in

Icb . Denote by Sb 2 Rnb⇥nj the selection matrix made up of the rows of an nj identity

which correspond to those nodes with positive nominal demand and indices in Icb . Eq.
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(24) can, noting that nb  nj and that SbS
T
b = Inb , be rewritten more compactly as

0

B@

np nj nb

np
bF �A O

nj �AT
O �ST

b

nb O �Sb M b

1

CA

0

B@
�q

�h

�cb

1

CA = �

0

B@
b⇢e
⇢m

⇢cb

1

CA (25)

where M b 2 Rnb⇥nb is the diagonal matrix with the derivatives of the inverse POR

functions for nodes in Icb on its diagonal and cb 2 Rnb is the vector of unsaturated

outflows with di > 0 and ⇢cb is the outflow residual computed only for those outflows

which are not subject to active constraints. The system for the hybrid method is now seen

to be obtained from the ASM in Deuerlein et al. (2019) by simply adding the log barrier

penalty term 1
t� to the matrix F on the left and the log barrier term �1

tv to ⇢e on the

right. The block equations are

bF �q �A�h = �b⇢e (26)

�AT �q � S
T
b �cb = �⇢m

�Sb�h+M b�cb = �⇢cb (27)

or

A
T �q �A

T bF
�1

A�h = �AT bF
�1b⇢e

�AT �q � S
T
b �cb = �⇢m

�ST
b M

�1
b Sb�h+ S

T
b �cb = �ST

b M
�1
b ⇢cb

and adding these three equations gives

⇣
A

T bF
�1

A+ S
T
b M

�1
b Sb

⌘
�h = A

T bF
�1b⇢e + ⇢m + S

T
b M

�1
b ⇢cb . (28)

Once �h is found from the solution of this system, (26) gives

�q = bF
�1

(A�h� b⇢e) (29)

and then (27) gives

�cb = M
�1
b

�
Sb�h� ⇢cb

�
. (30)

The updated unknowns are found as

h
(m+1) = h

(m) + �h(m), q
(m+1) = q

(m) + �q(m), c
(m+1)
b = c

(m)
b + �c(m)

b (31)
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and the updated Lagrange multipliers are found as

�
(m+1) = �

⇣
h
(m+1) � hm � u

⌘
, µ

(m+1) = h
(m+1) � hs � u (32)

Relations (28)–(32) form the basis of the Newton iterative method. The iterations are run

until either (i) the relative di↵erence between the norms of successive iterates is su�ciently

small, (ii) too many iterations have been executed, (iii) there has been no reduction in

the di↵erence between successive iterates after a prescribed number of steps (stalling),

or (iv) The equation residuals are too small to warrant further computation because the

correction terms have become too small.

The key matrix in this system is the Schur complement in Eq. (28), A
T bF

�1
A +

S
T
b M

�1
b Sb. The term, Sb, represents the ANIM for the system’s pseudo links, the links

which connect the virtual nodes to a ground node. In the iterative process this term

acts like a Levenberg-Marquardt regularization term which helps with convergence. It is

revealing to note that the Schur complement can also be written

(AT
S

T
b )

✓ bF
�1

M
�1
b

◆✓
A

Sb

◆
(33)

showing that the right-hand-side matrix is the ANIM for the extended graph.

The linkflows are required to always be in the interior of their constraint intervals

so, after the linkflows have been updated, any updates which lie on the boundary of, or

outside, their constraint intervals must be projected back into the interiors of their con-

straint intervals. Setting of the distance, ⌧j , from the boundary to the linkflow projection

point inside the constraint interval, the projection tolerance, requires some delicacy and

is discussed later. The tolerance, ⌧j , should be adjusted for the value of t but should

never, as a consequence of the precision being used, be so small that the projection is onto

the constraint boundary since the log barrier terms in (19) and (21) do not then exist.

This is the reason that the HYAI method does not accommodate equality constraints,

qmin,j = qmax,j . Where a linkflow is required, moreover, to take a set value this should

be handled by treating that flow as known data and not handled as a tightly constrained

unknown. In addition, the mass balance should be corrected to take this into account and

the corresponding Lagrange multiplier can be found from the energy residuals.

Implementation Details

Starting values

The HYAI method for PDM problems itself requires starting guesses for the linkflows,

heads and outflows. The initial HYAI linkflows for unconstrained links or for links with

semi-infinite constraints were set to correspond to a velocity of 1/3 m/s. The finitely

constrained linkflows were set to the flow rate at the midpoint of the constraint interval.

The outflows were set to one half of the nominal demand di/2. The heads were set to
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hi(di/2), the value of the inverse POR for an outflow which is half the nominal demand.

Projection

In IEEE double precision arithmetic, the precision used in all the calculations reported

here, ✏m ⇡ 10�16. Taking a projection tolerance which depends only on t, or on t and the

length of the constraint interval, for example choosing ⌧ = (qmax � qmin)/t, can lead to

undesirable consequences. An example illustrates this point.

Example 1 Suppose t = 1020, qmax = 10�6, qmin = 0. Then qmax � qmin = 10�6 and

⌧ = (qmax � qmin)/t = 10�26 and the projection point will be computed as qmax � ⌧ =

10�6�10�26 = 10�6 in IEEE Double Precision arithmetic. Thus, this linkflow is projected

exactly onto the constraint boundary. Using ⌧ = 1/t does not help because again for any

qmax larger than about 10�4, qmax � ⌧ = qmax in IEEE DP. ⇤

If ✏p is a small multiple of the computer arithmetic’s machine epsilon, ✏m, then projecting

to qmin,j + ⌧min,j on the left boundary and to qmax,j � ⌧max,j on the right boundary with

⌧min,j = max

✓
1

t
, ✏p|qmin,j |

◆
, ⌧max,j = max

✓
1

t
, ✏p|qmax,j |

◆
(34)

ensures that the iterates are always projected to a point close to the boundary (and

consistent with the current value of t) but still inside the constraint interval.

Continuation

It was mentioned earlier that IPMs sometimes diverge for the large values of t that

are necessary to get su�cient accuracy. Where this happens it may be possible to find a

smaller value of t which delivers convergence and then use the solution for that t as the

starting value for a larger value of t. Very few iterations are then typically required for

the larger values of t. By this process of continuation it is possible to get convergence for

large values of t that might diverge with the usual starting values. The stopping test for

the HYAI solutions which start the ASMFC method need not use the same small stopping

tolerance which is ultimately required in the ASMFC. In the large network examples

discussed later, a HYAI stopping tolerance of ✏s = 10�4 was found su�cient to guarantee

convergence of the ASMFC. This suggests that if the HYAI method is being used on its

own and continuation is necessary, then the smaller values of t can be handled with larger

stopping tolerances. In the examples discussed below the authors used a sequence of

reducing stopping tolerances defined by ✏s = 1010/t to progress from solutions for t = 1012

up by factors of 10 to t = 1020.

An illustrative example of continuation is given in the next section. It is seen there

that the first value of the penalty parameter, t = 1012, required six iterations to satisfy

the stopping test with ✏s = 1010/t = 10�2. For the next value of the penalty parameter

t = 1013 the stopping tolerance was reset to ✏s = 10�3 and convergence took just one

iteration. Each of the subsequent values of t up to t = 1020, required only one iteration.
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Slightly more iterations were typically required for the continuation stages with larger

networks. Network N4, for example, took 35, 5, 1, 2, 5, 1 and 5 iterations for the values

of exponent e increasing from 14 to 20, respectively, giving a total of 54 iterations.

There are some practical factors which need to be considered when using continuation:

(i) it may need some experimentation to determine the largest value of t for which direct

convergence (i.e. convergence without using continuation) is possible (taking t smaller than

this value necessarily leads to more iterations than are necessary) and (ii) once that value

of t has been obtained it may take some more experimentation to determine the largest

factor by which to increase t (again, increasing t by too small a factor un-necessarily

increases the number of iterations). Finding a balance between the competing factors here

is necessary. The interested reader is referred to Boyd & Vandenberghe (2009, 570 ↵.)

Accuracy

A solution, bx(t), t > 0, to the problem

min
x

⇢
f(x) +

1

t
�(x)

�
subject to gi(x)  0, i = 1, 2, . . . ,m

is called a central point and every central point yields a dual feasible pair which provide

a lower bound of the objective function’s optimal value v⇤ (see Boyd & Vandenberghe

(2009, 565) for details). From this it follows that f(bx(t)) � v⇤  m/t and that the point

bx(t) is m/t-suboptimal. Thus, to find a solution with guaranteed accuracy of the objective

function ✏f requires only that bx(t) is a solution for t = m/✏f .

In this study the authors were able to calibrate the accuracy of the HYAI method

head, linkflow and outflow solutions by comparing them with those of the ASMFC. Thus,

for network N1, using exponents e = 13–19, the linkflows and heads agree to about 5

digits and the outflows agree relatively to about 10 decimals in infinity norm. At e = 20

the linkflows agree to more than 8 decimals, the heads to more than 11 and the outflows

to more than 13. These last numbers are about what one would expect with iteration

stopping tolerances of ✏s = 10�10 and led to the choice of e = 20 for all the results

reported here on test networks.

Selective Updating and Restarting

Convergence can, in some cases, be assisted by the following simple restarting tech-

nique. If the linkflow constraints were being handled by an active set method, three index

sets, Iql , Iqb and Iqu would be defined as in Piller et al. (2020). Any linkflows at a con-

straint boundary for which the Lagrange multipliers are negative would be assigned to the

set Iqb , the set of linkflows which are updated during the iteration (linkflows in Iql and

Iqu which have non-negative Lagrange multipliers need not be updated since they already

satisfy the KKT complementary slackness conditions). Using a strategy which parallels

this was found useful to assist and accelerate convergence. A description of that strategy

follows.
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Recall that here all linkflows are in the interiors of their constraint intervals. Every

link for which the flow is su�ciently close to one of its constraint boundaries is identified.

Those close to the lower constraint bound are associated with the index set Iql and those

close to the upper boundary are associated with the index set Iqu . Their corresponding

energy imbalances are then computed:  = Gq � Ah � a for the flows in Iql and ⌫ =

�(Gq�Ah�a) for those in Iqu . The imbalances,  and ⌫, are approximate, or surrogate,

Lagrange multipliers. All links in Iql with j < 0 and links in Iqu with ⌫j < 0 then

have their flows reset to the midpoints of their constraint intervals. This strategy can

be considered a restarting of the iterative process and was found to assist in attaining

rapid convergence. For this purpose the linkflow qj was considered to be su�ciently close

to a constraint boundary if its distance to the boundary was smaller than the tolerance,

✏s(qmax,j � qmin,j), where ✏s is a modest multiple of ✏p: it was found that ✏s needs to

be at least one order of magnitude larger than the projection tolerance ✏p in order to

avoid inconsistent set assignments. The number of iterations required was approximately

halved by using restarting in those case study networks where direct convergence was

achieved (N1, N2, N3, N5 and N6) but where continuation was necessary (N4, N7, N8 and

N9) the number of iterations was about the same. This restarting strategy is therefore

recommended.

THE HYAI ALGORITHM

In this section the basic HYAI algorithm is described.

HYAI Algorithm Summary

Compute (i) ⌧min,j , ⌧max,j , for all j and (ii) the initial values q(0), h(0) and c
(0).

The iteration loop

For m = 0, 1, 2, . . . repeat steps (a) to (j) until the stopping test is satisfied

(a) Let nb denote the number of elements in Icb . Compute the matrix M
(m)
b 2 Rnb⇥nb .

(b) ⇢(m)
m  �AT

q
(m) � c

(m)

(c) Solve (28) for �h(m+1) and update the heads h(m+1) using (31).

(d) Use (29) to get �q(m+1) and, excluding any constrained links with (i) linkflows which

are su�ciently close to a boundary and (ii) have positive Lagrange multipliers, up-

date the pipe flows q(m+1) using (31) .

(e) Use (30) to get �c(m+1) and use (31) to update the nodal outflows c(m+1)
i for which

i 2 Icb .

(f) �(m+1)  �
⇣
h
(m+1) � hm � u

⌘

(g) µ
(m+1)  h

(m+1) � hs � u

(h) Update the index sets Icb , Icl , Icu .
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(i) c
(m+1)  max(min(c(m+1),d),o) (project any exterior outflows onto the constraint

boundaries)

(j) q
(m+1)  max(min(q(m+1), qmax � ⌧ ), qmin + ⌧ ) (project any linkflows not in the

interior of the constraint interval back into the interior)

It is evident that the HYAI method can be easily implemented as a simplification of the

ASMFC. The log barrier terms in (21) are added to the first block component of the

right-hand-side of the system and the terms shown in (19) are added to the diagonal F

matrix. No damping is required and there is no need to be concerned about violating the

LICQ.

Algorithmic Variations

The new method can be used in at least three di↵erent ways. If direct convergence is

achieved for su�ciently large t nothing more is necessary. If, however, direct convergence

is not possible for large enough t, then a quickly obtained low precision solution, that

can be used in one of two ways, is obtained for the largest value of t that gives direct

convergence. That solution can now be used to start the HYAI method for larger t and

repeating this process of continuation leads to a solution for the value of t required. Few

iterations are required after the first stage of this continuation process. Alternatively,

the quickly obtained low precision solution can be used to start the ASMFC method.

Again, few iterations are then required by the ASMFC. This second technique, which

will be designated PHYAI to suggest a pairing of the methods, turns out to be very

e↵ective, particularly on networks that challenge ASMFC. These variations are illustrated

and compared in the next section.

EXAMPLES AND DISCUSSION

The new HYAI method and the PHYAI methods were applied to the following prob-

lems:

(i) a small illustrative network with np = 10 links and nj = 8 nodes,

(ii) eight case study networks N1–N8 [four of which are available online in the ASCE Li-

brary (www.ascelibrary.org)], and which have between 934 and 19,647 links and between

848 and 17,971 nodes and

(iii) a larger network with np = 157, 044, nj = 150, 630, and four sources, nf = 4 (Sitzenfrei

et al. 2020).

(iv) the small network in Fig. 3. This example is explained in detail in the Appendix to

help clarify the process.

The networks in (i) and (ii) were used by the authors in Piller et al. (2020) and their

EPANET .inp files can be found in the Supplementary Materials to that paper.
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Denote the measures of the errors between successive q iterates by

�(m+1)
q = max

j

|q(m+1)
j � q(m)

j |

1 + |q(m+1)
j |

, (35)

with corresponding notation for the errors of the c and h iterates. In all cases

(i) the nominal demands were magnified by a factor of 5 to illustrate the behaviour of the

methods on PDM problems

(ii) the 1-side regularized Wagner POR was used (see (Deuerlein et al. 2019) for details)

(iii) the mid-interval starting scheme described above was used and

(iv) the iterations were run until the relative di↵erences between successive iterates

�(m+1)
q , �(m+1)

c , �(m+1)
h (36)

were smaller than the prescribed stopping tolerance ✏s = 10�10. This stopping tolerance

(even though it is smaller than would normally be used in practice) was chosen to ensure

that the quadratic convergence normally associated with Newton’s method was evident.

The iterations were stopped when (i) the stopping test was satisfied, (ii) the residuals were

too small to make any further computation practicable because the iterative correction

terms vanished, or (iii) the iteration stalled but left residuals that are su�ciently small.

The iteration counts reported below are certainly conservative: practical stopping toler-

ances, which would be considerably larger than 10�10, would require many fewer iterations

than are tabled below. A single iteration of the ASMFC method takes roughly the same

wall-clock time as one iteration of the HYAI method.

Except where otherwise stated, all the calculations reported in this paper were per-

formed using the authors’ own codes written for Matlab (2020a) which uses IEEE standard

double precision floating-point arithmetic. The tests for the case study networks N1–N8

were run on a PC with an i7-4700MQ CPU and those for N9 were run on a PC with an

i9-10880H CPU.

Small Illustrative Network Example

Figure 4 shows the small illustrative network and its steady-state solution when all

links are essentially unconstrained (none of the constraints are saturated) while Fig. 5

shows the same network when three constraints, all of which are active at steady-state,

are applied. The constraints on links 3 and 9 are acting as FCVs while the flow in link

10 is at the lower link flow constraint boundary and, since the corresponding multiplier

in this case can be interpreted as a negative head loss, this constraint can be seen to be

acting as a pump. The continuation technique is illustrated in Table 1. The initial value

of t, which corresponds to an exponent e = 12, takes six iterations to satisfy the stopping

test and for each subsequent value of t, each increasing by one order of magnitude, takes

only one iteration. For the last entry in the table, where t = 1020, HYAI and ASMFC

solutions agree relatively to about 14 decimal digits but for smaller values of t they match
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to fewer digits.

HYAI and PHYAI Methods on Larger Networks

The results of applying both the HYAI method and the PHYAI method (the paired

HYAI and ASMFC methods) to the nine case study networks are now discussed. In the

case of the PHYAI method there are two cases to consider: (i) direct convergence for the

required t or (ii) a continuation solution for the required t. In the case of direct conver-

gence, the HYAI iterations were stopped if either (i) the (more relaxed) stopping test with

✏s = 10�4 was satisfied or (ii) more than 12 HYAI iterations had been executed. The

solution thus produced was then used to start the ASMFC with ✏s = 10�10. Where con-

tinuation was required, the graded tolerances scheme which relates the stopping tolerance

to the value of t was used to terminate the HYAI stage of the PHYAI. As reported earlier,

the HYAI solution for the larger values of t required few iterations.

Columns two to four of Table 2 show the number of links, nodes and sources. Every

cotree link for which the unconstrained flow was positive was constrained to [0,+10%] of

that flow while if the flow negative it was constrained to [�10%, 0] of its unconstrained

value. Any constraints for which the width of the constraint interval was smaller than

0.001 L/s was culled from the collection. The number of constraints that remained is

shown in column five. Column 6 shows the total nodal delivery as a percentage of the

total nominal demand.

Column seven gives the number of HYAI iterations required to satisfy the stopping test

(36) with ✏s = 10�10 and columns 8–10 show the three quantities �hq,h,c
def
= � log10 �q,h,c

for the HYAI method. They represent the number of decimal digits of agreement between

the last two HYAI iterates as measured by the relative error in (36).

Five of the networks N1,2,3,5,6, converged directly with between 12 and 23 iterations

for e = 20. Networks N4,7,8,9, on the other hand, all required continuation starting from

e = 12 (to achieve an e = 20 solution) because, if started with e = 20, they had not

satisfied the stopping test after more than 70 iterations.

Both HYAI and PHYAI methods took about the same number of iterations for networks

N1,2,3,5,6 but for networks N4,7,8,9 the HYAI method took about twice as many iterations as

PHYAI because of continuation. Column 11 shows the number, kph, of iterations required

by the HYAI stage of the PHYAI scheme and column 12 shows the number, kpa, of iterations

required for the ASMFC stage of the PHYAI scheme. Most networks required 3–7 ASMFC

iterations, one took 10 and the largest network, N9, took 18. Column 13 shows the sum,

kph + kpa and the following three columns show the numbers �aq,h,c which represent the

number of decimal digits of agreement between the last two ASMFC PHYAI iterates as

measured by the relative error in (36).

Column 17 shows the quantity ↵q which is defined by

↵q
def
= � log10

⇢
max

j

|qh,j � qa,j |
1 + |qa,j |

�
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and columns 18 and 19 show the corresponding quantities, ↵h for h and ↵c for c. These

numbers indicate, in decimal digits, the degree of agreement between the solutions of the

HYAI method and those of the PHYAI and they are entirely consistent with a stopping

tolerance of 10�10.

Thus, the PHYAI is the recommended method where speed is an issue in view of the

smaller number of iterations it required. But, one could start by using the HYAI method

and, in the event that continuation is required, switch to ASMFC to achieve convergence.

IPOPT AND EPANET ON THESE PROBLEMS

Exactly the same problems used to demonstrate the PHYAI and HYAI methods on

networks N1–N9 were solved using the Matlab Toolbox written by P. Carbonetto and

updated by Bertolazzi (2021) for the o↵-the-shelf package, IPOPT (Wachter & Biegler

2006). The objective function (8) subject to the equality constraints (9) and the variable

bounds (6) was optimized using IPOPT. The comparison with the authors’ Matlab codes

was performed to provide some indication of the e�ciency of the new method.

The ’mumps’ linear solver and the ’adaptive’ ’mu strategy’ options were used (see

https://coin-or.github.io/Ipopt/OPTIONS.html for details). In all cases the IPOPT

termination status for the stopping tolerance 10�10 (the same as was used on the PHYAI

and HYAI codes) was shown as “Optimal solution found”. The results of these tests are

shown in Table 3. Column 2 of Table 3 shows, kI , the number of IPOPT iterations required

to satisfy the termination test and column 3 shows the corresponding PHYAI number, kP .

Column 3 shows the optimal value of the objective function, C(q, c), column 5 shows the

final delivery fraction, ⇣ as a percentage. Column 6 shows, sI , the number of wall-clock

seconds for IPOPT to satisfy the stopping test and column 7, shows the number of PHYAI

wall-clock seconds to satisfy the stopping test. Column 8 shows the ratio of these times.

The PHYAI codes took fewer iterations than the IPOPT codes in all cases. But an

iteration count comparison in a case such as this does not necessarily tell the whole story.

Here, wall-clock times are more revealing. The IPOPT method takes about the same

wall-clock time as the PHYAI method in two cases, about 2–4 times as long in five others

and 7 and 9 times as long in the remaining two cases. For the largest network the savings

in real time are significant: about 4 minutes for PHYAI as opposed to about 34 minutes

for the IPOPT codes.

The nine test networks were also run with the latest release of EPANET (version 2.2

from July, 23rd, 2020) which includes the simulation of pressure dependent demands. Flow

control is, to the knowledge of the authors, treated by valve-state heuristics as in previous

versions. In general, the results are promising for the smaller test networks (N1–N6).

For networks N7, N8 and N9 EPANET fails to converge after 500 iterations. This may be

because of the heuristics used for tackling flow control devices. The status report file shows

a huge number of state switches over the iterations. Another problem is that EPANET

cannot handle positive lower bounds on flows which are required in the design and control

of pumps. It is restricted to FCV upper bounds and check valves (one-directional flows,
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q > 0).

CONCLUSIONS

The authors’ ASMFC, which solves for the heads, linkflows and outflows of a PDM

WDS, uses an active set method to enforce both the PDM constraints on the outflows

and the modelling constraints on the linkflows. The method has been shown to be rapid

and robust when applied to eight case study networks, N1–N8, with up to 60 linkflow

constraints, some of which are equality constraints. Deeper investigations revealed that

when every one of the (up to ⇡1700) links in the networks’ co-trees were constrained to

±10% of their unconstrained values, six of the networks converged rapidly and without

di�culty with the ASMFC but two of the networks, N4 and N7, failed to converge.

A new hybrid method, HYAI, which combines active set principles and log barrier

IPM principles has been presented which overcomes these convergence di�culties: the

constraints on outflows inherent in PDM WDSs are handled by an ASM and the linkflow

constraints required to model flow control devices are handled by a log barrier IPM. Imple-

mentation details concerning projection, continuation, restarting and selective updating

have been outlined which improve the performance of the method. The following points

are noted.

(a) Unlike external penalty methods HYAI does not require the computational burden

of damping but it may require continuation which typically increases the number of

iterations.

(b) Whereas with external penalty methods it can be very hard to cause iterates which

move far away from the constraint interval back to approach the constraint interval,

the HYAI linkflow iterates are always within the constraint intervals.

(c) Implementing HYAI requires only a very simple modification of the ASMFC method.

The new HYAI method and the continuation strategy were demonstrated on a small

illustrative network and then used to find the steady-state heads, linkflows and outflows

of all eight previously used case study networks and one other, much larger network. The

HYAI method achieved direct convergence with five of the nine networks but the other four

required continuation. Thus, the HYAI method succeeded in finding steady-state solutions

where the ASMFC had not. But on those networks which challenged the ASMFC and

some others, the HYAI method on its own took about twice as many iterations as the

PHYAI. Pairing the HYAI and ASMFC methods, the PHYAI method, which uses low

precision HYAI solutions to start the ASMFC was found to solve the challenging systems

in fewer iterations overall. Three di↵erent approaches are available: (i) attempt a solution

with HYAI seeking direct convergence. If that fails (ii) use a low precision HYAI solution

to start the ASMFC or (iii) use the low precision solution to initiate a continuation process

that leads to a HYAI solution for the required t. An alternative is to begin by finding a

low precision HYAI solution and using that to start ASMFC. This strategy will reduce the
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average number of iterations required over a range of networks. The new method was also

illustrated in detail on a small example network to help clarify the method for readers.

The same problems that were used to illustrate the new method were solved with the

freely available interior point optimization package IPOPT. The IPOPT method takes

about the same wall-clock time as the PHYAI method in 2 cases, about 2–4 times as long

in 5 others and 7 and 9 times as long in the remaining 2 cases. For the largest network

the savings in real time are significant: about 4 minutes for PHYAI as opposed to about

34 minutes for the IPOPT codes.

The authors would, in future work, like to extend this technique to handle pressure

control problems and to more deeply investgate the use of capacity analysis in WDS design

and in optimal network control.

SUPPLEMENTARY MATERIAL

Network parameter summary statistics and summary solution statistics for those net-

works which are in the public domain (N1, N3, N4 and N7) are avaiable from the ASCE

as material supplementary to this paper.

DATA AVAILABILITY STATEMENT

Some or all data, models, or code generated or used during the study are proprietary

or confidential in nature and may only be provided with restrictions (e.g. anonymized

data). The four networks N2, N5, N6 and N8 are not available either because they are

proprietary or because of security concerns.

Some or all data, models, or code used during the study were provided by a third

party. (N9). Direct request for these materials may be made to the provider as indicated

in the Acknowledgments.

EPANET .inp files for the network shown in Fig. 4 and networks N1, N3, N4 and N7

are available from the ASCE library (www.ascelibrary.org) as material that is supplemen-

tary to Deuerlein et al. (2019).

In addition, EPANET .inp files for the network shown in Fig. 3 and networks N1, N3,

N4 and N7 with the flow constraints used in the tests reported here (flow control valves

and check valves) are available from the ASCE library as material that is supplementary

to this paper.
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APPENDIX

UNIQUNESS OF THE SOLUTION AND THE LICQ

The matrix bC = (AT
S

T
b ) of (33) has full rank if A has full rank. This fact is

established if ✓
A

Sb

◆
x =

✓
o

o

◆
) x = o

and this is immediate since the first block equation is Ax = o and the full rank of A

ensures that this is so. In fact the matric bC and the LICQ matrix C have the same rank,

as can be seen by the following argument. Recall that the HYAI LICQ matrix is

C =

0

B@

np nj

nj A
T

I

ncl O �Scl

ncu O Scu

1

CA

Denote S
T
a = (�ST

cl S
T
cu ). Then, we can rewrite

C =

✓
A

T
I

O Sa

◆
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C has full rank if
✓
A O

I S
T
a

◆✓
x1

x2

◆
=

✓
o

o

◆
) x1 = o, x2 = o.

The block equations are Ax1 = o and x1 + S
T
ax2 = o. Assume these equations hold.

Multiplying the second block equation on the left by A gives AS
T
ax2 = o and x2 = o i↵

AS
T
a has full rank. Now, Sa

bC = (SaA
T

O ) by the orthogonality of Sa,and Sb. So the

ranks of C and bC are both determined by the rank of SaA
T : the rows of AT that are

selected by Sa must form a linearly independent set. This will always be true if A has

full rank but it must hold if A has less than full rank: the set of active POR constraints

must be such that the corresponding rows of AT form a linearly independent set.

Thus, the LICQ is never violated in the ASM solution of a PDM problem if the NAIM

has full rank and there are no linkflow constraints. If LICQ is not violated then unique

Lagrange multipliers exist and a feasible solution exists.

AN EXAMPLE IN DETAIL

The flows are, in what follows, quoted in L/s except where otherwise stated. The

network shown in Fig. 3 was solved using the PHYAI method to illustrate the workings

of the method in detail. It has ANIM

A =

0

B@
1 �1
�1 0

0 �1

1

CA

and

(a) all links have length 500 m, diameters 250 mm, roughnesses 0.03 mm,

(b) nodes 1 and 2 have zero elevation and the tank at node 3 has an elevation of 15 m,

(c) node 1 has demand 10 L/s and node 2 has demand 15 L/s,

(d) the flow in L/s through link 1 when no links are constrained is q1 = 2.0023 L/s,

(e) the flow in link 1, the network’s only co-tree link, is constrained to lie between zero

and 1 L/s,

(f) the Wagner POR was chosen for this example (Wagner et al. 1988),

(g) the minimum pressure head, hm = 0, and the service pressure head, hs = 20 m.

The outflow constraints (6) for this case are �c1,2  0, c1  10, c2  15 and the linkflow

constraints are q1 � 1  0 and �q1  0. Thus, w1 and w2 each have two components

and w3 and w4 each have one. At start all of the outflows are at the midpoints of their

constraint intervals so none of their constraints are saturated: c1 = 5, c2 = 7.5. Thus,

S
(0)
b in (18) is an identity matrix. The initial flow in link 1 is q1 = 0.5 (the midpoint of
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its constraint interval) so its constraint is also not saturated at start. The other two links

have initial flows, qj , j = 1, 2, given by qj = ⇡
12D

2
j = 16.4 which correspond to velocities

of 1/3 m/s. The initial point is therefore inside the problem’s feasible region. The KKT

conditions (12) to (17) now read

⇠1 � h1 + h2 �
1

t
v1 = 0

⇠2 + h1 � 15 = 0

⇠3 + h2 � 15 = 0

h(c1)� h1 � �1 + µ1 = 0

h(c2)� h2 � �2 + µ2 = 0

�q1 + q2 � c1 = 0

q1 + q3 � c2 = 0

��1c1 = 0

��2c2 = 0

�µ1(c1 � d1) = 0

�µ2(c2 � d2) = 0

�1,2 � 0, µ1,2 � 0

The system (18) is, dropping iteration subscripts and noting that since no constraints

are saturated the Lagrange multipliers �1,2 = µ1,2 = 0,

0

BBBBBBBBBBB@

f1 -1 1 0 0

f2 1 0 0 0

f3 0 1 0 0

-1 1 0 0 0 -1 0

1 0 1 0 0 0 -1

0 0 0 -1 0 h0(c1)

0 0 0 0 -1 h0(c2)

1

CCCCCCCCCCCA

0

BBBBBBBBBB@

�q1

�q2

�q3

�c1

�c2

�h1

�h2

1

CCCCCCCCCCA

= �

0

BBBBBBBBBB@

⇠1 � h1 + h2

⇠2 + h1 � 15

⇠3 + h2 � 15

� q1 + q2 � c1

q1 + q3 � c2

h(c1)� h1

h(c2)� h2

1

CCCCCCCCCCA

where the fi represent the frictional head loss derivatives on the diagonal of the matrix F

in (18). We remind the reader that h(c) here is the inverse POR defined in (5).

The log barrier terms of (19) and (21) now need to be added to this system to get the

system which is to be solved. Thus, f1 is to be replaced by bf1 = f1+
1
t z1 = f1+

1
t(q1�1)2+

1
tq21

and the first component of the right-hand-side vector now has 1
t v1 =

1
t(q1�1)+

1
tq1

subtracted
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from it, giving the system to be solved at this step as

0

BBBBBBBBBBB@

f1 +
1
t z1 -1 1 0 0

f2 1 0 0 0

f3 0 1 0 0

-1 1 0 0 0 -1 0

1 0 1 0 0 0 -1

0 0 0 -1 0 h0(c1)

0 0 0 0 -1 h0(c2)

1

CCCCCCCCCCCA

0

BBBBBBBBBB@

�q1

�q2

�q3

�c1

�c2

�h1

�h2

1

CCCCCCCCCCA

= �

0

BBBBBBBBBB@

⇠1 � h1 + h2 � 1
t v1

⇠2 + h1 � 15

⇠3 + h2 � 15

� q1 + q2 � c1

q1 + q3 � c2

h(c1)� h1

h(c2)� h2

1

CCCCCCCCCCA

The modification required to the system in (18) to get the system (25) for solution is thus

seen to be minimal.

Rather than solve this system as a whole the smaller dimension system of (28) is solved

for the heads, h1, h2, and then (29) and (30) are used to find the corresponding linkflows,

q1, and outflows, c1, c2. Once the updated unknowns are found using (31), the Lagrange

multipliers, �1,2 and µ1,2 are found using (32). Of course, there are no Lagrange multipliers

for the linkflow constraints.

The HYAI and ASMFC phases each took 4 iterations to satisfy the stopping test with

a stopping tolerance of 10�14 when t = 1010. The final heads were h1 = 14.92 m and

h2 = 14.88 m. The final outflows were c1 = 8.64 L/s and 12.94 L/s. The final linkflows

q1,2,3 were 1.00, 9.64, 11.94 L/s, respectively so the flow constraint on link 1 was saturated

at the upper bound. Its final Lagrange multiplier was ⌫1 = 0.0378. The set assignments

did not change after the first iteration.
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TABLES

Table 1: Convergence data for the HYAI method with continuation applied to the network
shown in Fig. 4 .

k e �(k)h �(k)q �(k)c

1 12 6.298900e� 01 4.506700e� 01 2.839100e� 01

2 12 5.112000e� 01 8.036900e� 01 9.616300e� 02

3 12 1.953100e� 01 5.618000e+ 00 1.234900e� 01

4 12 9.981000e� 02 6.948300e� 01 4.075300e� 02

5 12 1.918700e� 02 5.451400e� 03 7.863300e� 03

6 12 7.781600e� 04 2.985700e� 04 7.923300e� 04

1 13 7.309900e� 05 2.684000e� 05 9.161300e� 05

1 14 3.206800e� 06 1.181400e� 06 3.846000e� 06

1 15 6.226300e� 09 2.295200e� 09 7.469500e� 09

1 16 5.038500e� 14 5.592700e� 13 6.243100e� 13

1 17 5.012200e� 15 5.590300e� 14 6.255000e� 14

1 18 6.415700e� 16 5.358600e� 15 5.957200e� 15

1 19 6.490100e� 15 7.314800e� 15 7.148600e� 15

1 20 6.497500e� 14 7.312400e� 14 7.386900e� 14
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Table 2: The parameters for the nine case study networks, the convergence results for the
HYAI and PHYAI methods and the agreement between the solutions for the two methods.

HYAI PHYAI

ID np nj nf nc ⇣% kh
h �h

q �h
h �h

c kp
h kp

a
kp
h

+kp
a

�p
q �p

h �p
c ↵q ↵h ↵c

N1 934 848 8 84 69.8 12 13 16 18 11 3 14 13 16 18 14 8 12

N2 1118 1039 2 74 15.3 15 12 16 19 12 3 15 11 12 18 14 10 12

N3 1976 1770 4 205 51.8 23 11 16 17 15 5 20 11 16 17 14 9 10

N†
4 2465 1890 3 558 7.8 54 11 16 17 15 10 25 11 11 17 14 9 8

N5 2508 2443 2 61 26.4 13 12 16 18 10 4 14 11 16 18 14 10 12

N6 8584 8392 2 188 20.0 17 10 11 13 14 4 18 11 16 18 14 10 11

N†
7 14830 12523 7 1763 12.3 51 12 15 17 15 6 21 10 11 14 14 9 8

N†
8 19647 17971 15 1667 25.9 54 10 16 18 15 7 22 11 16 18 14 8 10

N†
9 157044 150630 4 5955 5.1 58 10 15 17 15 18 33 10 15 18 14 9 8

†
required continuation to achieve a solution for e = 20.

Table 3: PHYAI and IPOPT iteration numbers and wall clock times compared.
ID kI kP C⇤(q, c) ⇣% sI sP sI/sP

N1 33 14 �8.931 69.8 1.2 0.5 2.4

N2 34 15 �0.229 15.3 0.7 0.3 2.3

N3 51 20 �67.064 51.8 2.9 0.4 7.2

N4 39 25 �169.188 7.8 0.9 0.8 1.1

N5 16 14 �1.023 26.4 0.4 0.3 1.3

N6 34 18 �1.690 20.0 4.3 1.2 3.6

N7 50 21 �43.346 12.3 11.8 3.0 3.9

N8 39 22 �27.563 25.9 17.5 4.9 3.6

N9 80 33 �123.043 5.1 2016.0 221.7 9.1
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Figure captions.

1 Representational plots of the log barrier function �(q) of (7) and its first

two derivatives. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 A representational plot of a function made up of a link head loss, ⇠(q),

together with the corresponding log barrier term, v(q)/t. . . . . . . . . . .

3 The figure for the network in the detailed example showing the solution

heads, (m), linkflows (L/s) and delivery fractions. The linkflow constraint

is shown in parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 The (essentially) unconstrained solution for the small network discussed in

the text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 The constrained solution for the small network discussed in the text . . . .
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Figure 1: Representational plots of the log barrier function �(q) of (7) and its first two
derivatives.
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Figure 2: A representational plot of a function made up of a link head loss, ⇠(q), together
with the corresponding log barrier term, v(q)/t.

cwex: f = 5, g = 0.1, (h0 = 15)

1
q=1.0

2
q=9.6

3
q=11.9

(0,  1)

1d=10.0
86.4% h=14.9

2d=15.0
86.2% h=14.9

3

h0=15

Figure 3: The figure for the network in the detailed example showing the solution heads,
(m), linkflows (L/s) and delivery fractions. The linkflow constraint is shown in parentheses.
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zctrlDW: f = 5, g = 1, (h0 = 250)
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Figure 4: The (essentially) unconstrained solution for the small network discussed in the
text.

zctrlDW: f = 5, g = 1, (h0 = 250)
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Figure 5: The constrained solution for the small network discussed in the text.
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