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Abstract 23 
 24 

Digital Soil Mapping (DSM) can be an alternative data source for spatializing crop models 25 

over large areas. The objective of the paper was to evaluate the impact of DSM products and 26 

their uncertainties on a crop model’s outputs in an 80 km2 catchment in south India. We used 27 

a crop model called STICS and evaluated two essential soil functions: the biomass production 28 

(through simulated yield) and water regulation (via calculated drainage). The simulation was 29 

conducted at 217 sites using soil parameters obtained from a DSM approach using either 30 

Random Forest or Random Forest Kriging. We first analysed the individual STICS 31 

simulations, i.e., at two cropping seasons for 14 individual years, and then pooled the 32 

simulations across years, per site and crop season. The results show that i) DSM products 33 

outperformed a classical soil map in providing spatial estimates of STICS soil parameters, ii) 34 

although each soil parameters were estimated separately, the correlations between soil 35 

parameters were globally preserved, ii) Errors on STICS’ yearly outputs induced by DSM 36 

estimations of soil parameters were globally low but were important for the few years with 37 

high impacts of soil variations, iii) The statistics of the STICS simulations across years were 38 

also affected by DSM errors with the same order of magnitude as the errors on soil inputs and 39 

iv) The impact of DSM errors was variable across the studied soil parameters. These results 40 

demonstrated that coupling DSM with a crop model could be a better alternative to the 41 
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classical Digital Soil Assessment techniques. As such, it will deserve more work in the 42 

future.  43 

 44 

Keywords: Soil mapping, soil functions, digital soil assessment, crop model, machine 45 

learning, uncertainty analysis 46 

 47 

 48 

1. Introduction  49 

 50 
 Spatializing a crop model consists of applying the model over an area much larger 51 

than those over which it was developed (Faivre et al, 2004). Various reviews (Hartkamp et al, 52 

1999, Faivre et al, 2004, Ginaldi et al, 2019) provide examples of crop model spatialisation 53 

for a large range of purposes and at a large range of scales (from field to continental scales). 54 

Crop model spatialisation has been widely applied for assessing agricultural production and 55 

potentialities (e.g. Lal et al,1993), testing scenario about the impact of agricultural practices 56 

on water quality (e.g. Beaujouan et al, 2001), evaluating irrigation requirements (Sousa & 57 

Santos Pereira, 1999) or the impact of climate change on crop production (Wassenaar et al., 58 

2000; Deryng et al., 2016). Several crop models were used in these spatialisations, the most 59 

common being DSSAT (Jones et al. 2003), APSIM (Keating et al. 2003), CropSyst 60 

(Stöcke et al. 2003), EPIC (Williams et al.  1989) and STICS (Brisson et al, 2003). 61 

Among the different sources of uncertainty that may affect the spatialization of crop models, 62 

the estimation of the soil inputs is one of the most critical. Currently, the most common 63 

source of soil data used as input of crop models has been those provided by traditional 64 

choropleth soil maps (see e.g. table 1, Faivre et al., 2004). It is assumed that the best 65 

estimation of any soil property, and thus of soil inputs of the crop models, at an unvisited site 66 

covered by a soil map, is given by the soil mapping unit mean at all sites, often estimated by 67 

one so-called ‘representative’ soil profile. However, this assumption may generate a 68 

substantial uncertainty on soil inputs (Leenhardt et al., 1994a) that further propagates to the 69 

outputs of crop models (Leenhardt et al., 1994b). Alternative sources of soil data such as 70 

kriging of soil properties have been proposed (Faivre et al., 2004). However, to our 71 

knowledge, there has been no study in the literature using kriging of soil properties for 72 

spatializing a crop model beyond the field scale. 73 

Digital Soil Mapping (DSM) can be an alternative to choropleth soil maps for providing the 74 

crop model soil inputs. DSM was developed as an alternative to conventional soil survey for 75 



mapping soil properties at limited costs (McBratney et al., 2003, Lagacherie et al., 2007). 76 

McBratney et al. (2003) proposed the equation S = f(s,c,o,r,p,a,n) for summarizing the 77 

general principle of DSM. According to this equation, a soil property (S) can be predicted by 78 

a spatial inference function (f) using, as input, the existing soil information (s), the spatial 79 

covariates that map the different factors of soil formation early defined by Jenny (1941) 80 

(c,o,r,p,a, standing for climate, organisms, relief, parent material and age respectively) and 81 

the geographical location (n) that can highlight any spatial trends missed by the other 82 

covariates. Although DSM is as much limited as conventional soil survey by the availability 83 

of the existing soil information, it has several important advantages over conventional soil 84 

survey: i) it exploits a large range of spatial data on landscape provided by the spatial data 85 

infrastructures, ii) it provides a local estimation of the uncertainty of predictions which allows 86 

making a realistic use of the outputs and iii) its outputs can be easily updated if new data are 87 

collected. DSM has moved rapidly to operationality thanks to the launch of the 88 

GlobalSoilMap projects (Arrouays et al, 2014), which enhanced the release of a number of 89 

GSM products providing soil property predictions at fine resolution at the national (e.g. 90 

Mulder et al., 2016, Adhikari et al., 2013 ), continental (e.g. Ballabio et al., 2019) and global  91 

(Hengl et al., 2007) scales. 92 

 Despite the rapid development of operational Digital Soil Mapping across the globe, it 93 

has rarely been envisaged yet as a possible source of soil inputs for spatializing mechanistic 94 

models (Tavares Wahren et al., 2016; van Tol et al., 2020) and, to our knowledge, has never 95 

been envisaged for spatializing crop models.  96 

This paper aims to take the first step in filling this gap by evaluating the uncertainty of 97 

the outputs a crop model called STICS when it is simulated using soil inputs provided by a 98 

DSM approach compared to observed ones. The test was performed in an 80 km2 catchment, 99 

located in south India. The study compared STICS outputs using observed soil parameters 100 

from a set of 217 soil profiles in the catchment, or by using the parameters estimated from 101 

DSM (Random Forest and Random Forest Kriging). We first analysed individual STICS 102 

simulations, i.e. at two crops seasons for 14 individual years and then pooled simulations 103 

across years, per site and crop season. We analysed two STICS outputs, which are essential 104 

for soil functions and ecosystem Services assessments at local sites (Adhikari & Hartemink, 105 

2016): the biomass production (through yield) and the water regulation (through drainage). 106 

 107 

2. Methods 108 

 109 



2.1. Digital Soil Mapping 110 

A classical Digital Soil Mapping approach was applied to map the soil properties required as 111 

inputs for the STICS soil crop model (denoted further the STICS soil inputs). This approach 112 

consisted in building a prediction function produced by a Random Forest (RF)  (Breiman et 113 

al, 2001) or by a Regression Kriging algorithm (RK) (Hengl et al, 2004) with RF as 114 

regression algorithm (Vaysse et al., 2017), from a limited number of sites at which both the 115 

soil properties and the spatial data envisaged for to predicting soil properties are available. In 116 

the following, we give some details on the algorithms and on the validation approach. 117 

 118 

2.1.1. Random Forest 119 

 Recent performance testing has found that the Random Forest was among the best 120 

models for predicting soil properties (Nussbaum et al., 2018), which confirmed a test 121 

performed on a wider range of machine learning applications (Caruana et al., 2006). We 122 

summarize hereafter the main principles of Random forest, using excerpts of Meinshausen 123 

(2006). More details are given on Random Forests in Breiman et al  (2001) and Meinshausen 124 

(2006). 125 

Let Y be a real-valued response variable and X be a covariate or predictor variable that is 126 

likely high-dimensional. A standard goal of statistical analysis is to infer the relationship 127 

between Y and X. Random Forests grow a large (>500) ensemble of trees using n independent 128 

observations (Yi ,Xi), i = 1, . . ., n. Each tree grows via a recursive partitioning of the source 129 

set using one predictor variable X. At each step, the source set is split into two subsets 130 

following a test on the value of X. When Y is a quantitative variable, the selected test is the 131 

one that minimizes the within-subset variance of Y (Breiman et al., 1984). The recursive 132 

partitioning is limited by a stopping rule, and the subsets are produced by the last split being 133 

the leaves of the tree. The ensemble of trees is produced by using a random sample of the 134 

training data and a random subset of the predictor variables for each tree.  135 

For the regression, the prediction ������of a single tree � of a Random Forest for a new data 136 

point x can be represented as the weighted average of the original observations Yi, i = 1, . . ., 137 

n:  138 

 139 

������ = ∑ 
����, �������    [4] 140 

 141 

where wθi(x,θ) is the weight vector given by a positive constant that is 1 if the observation 142 



Yiis part of the same leaf and 0 otherwise. 143 

By using Random Forests, the prediction is the average prediction of ksingle trees that were 144 

constructed as described above.  145 

������ =�
�������
�
���

																	�5�	147 

[5] 146 

with      
����� = ��� ∑ 
����, �����  148 

 149 

The Random Forest Algorithm has three hyperparameters that must be fitted to obtain the 150 

best possible result, i) the number of observations drawn randomly for each tree, ii) the 151 

number of variables drawn randomly for each split and iii) the minimum number of samples 152 

that a node must contain. For the present study, the ranger package (Wright and Ziegler, 153 

2017) was used for running the QRF algorithm in R environment.  154 

 155 

2.1.2. Regression kriging with Random Forest 156 

In Regression Kriging (RK), the estimated value at an unvisited site ������is given by 157 

summing the predicted value from regression  !����and the residuals (i.e. the regression 158 

errors) interpolated by ordinary kriging "̂����.  159 

 160 

������ = 	 !���� $		 "̂����														�6� 161 

 162 

In this application of RK, the trend function was obtained by calibrating a Random 163 

Forest (see above). The residuals were calculated at each observation point. An 164 

experimental variogram was then built from the residuals. If the visual inspection of the 165 

experimental variogram gave evidence of spatial structure, RK was applied for mapping the 166 

STICS soil input and the residuals were further interpolated onto the grid covering the study 167 

area by ordinary kriging. Otherwise, the prediction of RF was considered. 168 

 169 

2.2. Crop modelling with STICS  170 



STICS is a soil-plant simulation model, developed at INRA (France) in 1996 (Brisson et al, 171 

2003). STICS can simulate the water, C and N balances of various types of crops, both 172 

annual and perennial, herbaceous and woody. STICS represents the plant-soil system 173 

dynamics depending on soil characteristics, climate and crop management. It simulates water, 174 

nitrogen and carbon balances at a daily time step within the soil-plant system. The soil is 175 

modelled using a tipping-bucket approach. The crop development is mainly driven by 176 

temperature, while crop biomass accumulation depends strongly on radiation interception by 177 

leaves. For water balance, the approach uses potential evapotranspiration (PET) and crop 178 

Leaf Area Index (LAI) to determine maximum evaporation and transpiration; the actual ones 179 

depending also on the soil water available for root uptake. When requirements are not met, 180 

water stress affects crop growth and yield depending on the severity and timing of the 181 

stresses. In this study, the impact of N stress on crop was not considered, therefore soil 182 

parameters that impact the model output are the depth of the soil layers, and for each layer the 183 

bulk density, water content at field capacity and at wilting point and rock fragment 184 

proportion. The 0-30cm surface layer is also characterized by its clay content that influences 185 

actual evaporation. 186 

 187 

2.3. The case study 188 

2.3.1. Berambadi catchment  189 

 The study was carried out in the Berambadi catchment located in the Deccan Plateau 190 

of South India (Figure 1), and spread over 84 km² (11°43'49" to 11°48'11" N Latitude and 191 

76°32'31" to 76°36'14"). It belongs to the Kabini Critical Zone Observatory (CZO) (Sekhar et 192 

al., 2016), the Indian site of the SNO M-TROPICS (https://mtropics-fr.obs-mip.fr/), which is 193 

part of the OZCAR Research Infrastructure (Gaillardet et al. 2018; https://www.ozcar-ri.org). 194 

The elevation of the catchment ranges from 720 to 1362 m above mean sea level. The annual 195 

precipitation (2005-2018) is 993 mm, in which around 55% rainfall is received during the 196 

southwest monsoon (June to September) and 25% during the north-east monsoon (October to 197 

December). According to this rainfall distribution, agricultural practices are organized around 198 

two main cropping seasons: Kharif (May-August) and Rabi (September-December) (Sharma 199 

e al., 2018). Indeed, in the Berambadi catchment, the early start of the Kharif cropping season 200 

(before the onset of the SW monsoon) is possible because frequent convective storms occur 201 

in April and May. The average annual temperature is 22.6 °C. The soil moisture regime is 202 

ustic and soil temperature regime is isohyperthermic. The bedrock is granitic gneiss. Red 203 



soils (Alfisols) developed from Granitic parent material are found in uplands and hillslopes 204 

while Black soils (vertisols and its intergrades) are found in the valleys (Shivaprasad, 1998). 205 

 206 

207 
Figure 1. Study area, sampling locations (yellow dots) and climatic station (green dot)  208 

 209 

2.3.2. Datasets  210 

2.3.2.1. Soil data 211 

We used soil observations from 217 soil profiles in the Berambadi catchment in sites selected 212 

for representing at best the soil variations (Figure 1, bottom right). A part of the sites was 213 

provided by the Sujala III project ( http://watershed.kar.nic.in/SujalaIII_Doc.htm). The spatial 214 

sampling was completed by a soil survey carried out during April-May 2017 to fill the gaps. 215 

All the soil observations were performed following the protocol that is currently applied in 216 

India (NBSS&LUP staff, 2016). Each site was documented with the required soil properties for 217 

calculating the considered STICS soil inputs (see details below). 218 

 219 

2.3.2.2. Soil Covariates 220 

 In Digital Soil Mapping, soil properties are predicted from a set of spatial data that are 221 

available over the whole study area, namely the soil covariates. A set of candidate soil 222 



covariates was provided as input of the DSM regression algorithm (here RF) (Table.1). A 223 

Digital elevation model (DEM) with 10 m resolution was obtained from Cartosat-1 and 224 

processed using ArcGIS10 data management toolbox. The first and secondary derivates of 225 

DEM like elevation, slope, aspect, curvatures (plan and profile) and topographic position 226 

index (TPI), Multi-resolution Index of Valley Bottom Flatness (MrVBF) and Multi-resolution 227 

Ridge Top Flatness (MrRTF) were derived by using Saga-GIS 2.3.1 version. Landform and 228 

soil order are derived from Legacy soil datasets of Chamrajnagar district (1: 50,000 scale). 229 

Normalized Difference Vegetation Index (NDVI) was extracted from satellite data for 230 

modelling. In addition, 10 bands of sentinel-2 data (Date of Acquisition : 24th April 2017) 231 

were used as covariates.  232 

 233 

Source name Description 

 

 

 

 

 

 

 

Cartosat DEM (10m) 

elevation Elevation 

Slope Local Slope gradient  

Aspect Local Slope Aspect  

Northeastness Sin (Aspect + 45°) 

Northwestness Cos( Aspect + 45°) 

Profile Curv Curvature parallel to slope direction 

Plan Curfature Curvature perpendicular to slope direction 

MRVBF Multi Resolution Valley Bottom Flatness Index 

(Gallant & Dowling, 2003),  

MRRTF Multi Resolution ridege Top Flatness Index 

(Gallant & Dowling, 2003),  

TPI Topographical Position Index (mean difference 

of elevation with neighbouring pixels) 

TWI Topographical Wetness Index (Sorensen et al, 

2006) : Ln a/ tan b, with a the upstream area 

and b the slope gradient 

Resourcesat-2 data (5.8m) NDVI Normalised Difference Vegetation index  

Sentinel 2 Bands 2 to 8A 

and 11, 12 

Different bands from Visible to NIR (10-20 m 

resolution) 

1:50 000 Soil Map (KSRSAC, 

2016) 

landform Landform 

Soil Order USDA soil order 

Table 1. Covariates used for DSM Model 234 

 235 



 236 

2.3.2.3. Climate data 237 

Daily values of rainfall, air humidity, wind velocity, maximum, minimum and mean air 238 

temperatures, precipitation and global radiation, that are required by STICS, were obtained 239 

from an automatic weather station (CIMEL, type ENERCO 407 AVKP from 2005 to 2015, 240 

and OTT type WS501 from 2016 to 2018) located in the study area (Figure 1). 241 

 242 

2.4. The experiment 243 

The two STICS outputs considered to assess the uncertainty when using the soil inputs 244 

provided by a DSM approach, crop yield and drainage, were selected for their importance in 245 

representing important soil functions (agricultural production and water regulation) and for 246 

their expected sensitivity to the soil inputs that could be mapped in the Berambadi catchment. 247 

Any other sources of uncertainty of STICS outputs, i.e. related with climate, agricultural 248 

practices and modelling errors, were removed from the experiment. In the following, we 249 

provide some details about the experiment designed accordingly. 250 

 251 

2.4.1. The considered STICS soil parameters 252 

The STICS soil layers were selected as those effectively observed by the soil surveyors in the 253 

field, namely, from top to bottom, the cultivated layer (A horizon), the horizon with 254 

pedogenic processes (B horizon) and the regolith till the occurrence of rock or paralithic 255 

contact (C horizon). For each layer, the following STICS soil inputs were considered: horizon 256 

thickness, clay content and albedo at the soil surface, bulk density, water content at Field 257 

Capacity (FC) and at Permanent wilting point (PWP).  258 

Horizon thicknesses were directly derived from the soil profile observations. In the absence 259 

of laboratory measurements, clay contents were determined from the observed soil classes by 260 

taking the within-soil-class mean that were calculated from 20 soil profiles of the Berambadi 261 

catchment having particle size analysis. A similar approach was applied for estimating bulk 262 

density from existing datasets in the southern Deccan Plateau. Water contents at FC and PWP 263 

were determined from the observed textural classes using the following local pedotransfer 264 

function (PTF)s, established by using a dataset of 70 samples from the Berambadi catchment: 265 

FC fine earth = -4.7744+0.5403*clay              [7] 266 

PWP fine earth = -0.9054 +0.6265*clay          [8] 267 



These pedotransfer functions provided FC and PWP as percentages of the fine earth, which 268 

may differ from the percentage of the whole soil layer for layers with non-null and variable 269 

rock fragment contents. In the STICS model, FC and PWP expressed in percentages of fine 270 

earth were converted into FC and PWP expressed in percentage of the whole soil layers, 271 

involving rock fragment contents (RFC) as follows: 272 

FCsoil layer = FCfine earth x (100 – RFC)/100          [9] 273 

PWPsoil layer = PWPfine earth x (100 – RFC)/100 [10] 274 

 275 

The soil albedo was calculated from the Munsell soil color value recorded for the first 276 

described soil horizon, using the following PTF, developed by Post et al. (2000): 277 

 Soil albedo (0.3-2.8 µm) = 0.069(colour value) - 0.114  (R2=0.93)   [11] 278 

 279 

For all the remaining STICS parameters for which no data were available, we used the same 280 

values for all the 217 sites. STICS simulations were further designed accordingly to avoid 281 

any artefact related with this choice (see below). Finally, the 217 sets of STICS soil 282 

parameters derived from the observed soil properties were used to run STICS simulations, 283 

considered here as “ground truth”. 284 

 285 

2.5. Spatial estimations of STICS soil parameters 286 

The STICS soil parameters presented before were also estimated at the 217 sites with the 287 

DSM approach, from the set of soil covariates (section 3.2.2.) and using Random Forests 288 

(RF) or regression kriging (RK) (section 2.2.). For the STICS soil parameters derived from 289 

pedotransfer functions, the soil properties used as inputs of these functions were first 290 

estimated and then converted into STICS parameters by applying the corresponding PTFs. 291 

Consequently, the sets of estimated STICS parameters at the 217 studied sites were obtained 292 

from spatial estimations of the following properties of the three soil layers A, B and C: Soil 293 

layer thickness, Clay content, Rock Fragment, Field Capacity and Permanent Wilting point. 294 

In order to obtain realistic results, the estimated STICS soil parameters at a given site had to 295 

be predicted from a DSM model (RF or RK) that was not calibrated from a dataset that 296 

included this site. To fulfil this requirement, a 10-fold cross-validation approach was repeated 297 

20 times. At each of the 217 sites, the estimated values of the soil parameters were calculated 298 

as the mean of the 20 predicted values obtained when the site was not in the set of sites used 299 

for calibrating the DSM model. 300 



 301 

2.6. STICS scenario simulations  302 

The selected cropping system scenario was maize monoculture over the two main cropping 303 

seasons observed in the catchment, namely Kharif (from May to August, comprising early 304 

rains from convective storms followed by the South-West monsoon) and Rabi (from 305 

September to December, with rains from the North-East monsoon). We considered 14 306 

climatic years available from the weather station, from 2005 to 2018. We assumed that 307 

considering the large inputs of N fertilizers in the catchment (Buvaneshwari et al., 2017), 308 

crops were sufficiently provided in nitrogen and we did not activate the module simulating N 309 

stress in the model. We selected Maize monoculture for all the simulations for three main 310 

reasons. First, itis very common in the Berambadi catchment and can be cultivated on all the 311 

local soil types. Second, as a rainfed crop, maize is expected to be very sensitive to water 312 

conditions that are in turn driven by the soil properties – and because of its deep rooting 313 

system, it is more sensitive to soil properties at depth than shallow-rooted crops. Last but not 314 

least, maize was among the few crops already calibrated in the STICS model for the same 315 

area (Sreelash et al., 2017).  316 

According to the selected scenario, maize was assumed to be cultivated as follows: in Kharif, 317 

maize was sown on the 1st of May, and harvested on the 23rd of August. In Rabi, maize was 318 

sown on the 1st of September and harvested on the 19th of December.  The simulations were 319 

initialized with soils at field capacity on the 1st of January of the first year, then were run 320 

continuously over the 14 years to better consider the effect of inter-annual variability of 321 

climate on soil water status and its impacts on crop production. 322 

We considered 3038 (i.e. 14 years x 217 sites) couples of STICS outputs consisting of yield 323 

(t/ha) and drainage (mm). Furthermore, STICS outputs across years were summarized at each 324 

of the 217 sites by computing mean values, standard deviations, 25%, and 75% quartiles.  325 

All these STICS outputs were computed twice, i.e from the observed STICS soil parameters 326 

(the ground truth) and from the estimated STICS soil parameters (see section 2.5.) 327 

  328 

2.7. Evaluation protocol  329 

The spatial estimations of the soil properties used to derive STICS soil parameter estimations 330 

(see section 2.5) and the STICS outputs ( see section 2.6.) were compared to the same values 331 

obtained from observed soil properties using classical statistical indicators: Mean error (ME) 332 

or bias, Root Mean Square Error (RMSE) and the Mean Square Error Skill Score (SSMSE, 333 



Nussbaum et al., 2018). When positive, SSMSE expresses the percentage of explained variance 334 

by the predictive model. The definitions of these statistical indicators are provided below: 335 

&' = ∑ �(� − *���� + 																											�12� 336 

.&/' = 0∑ �(� − *���� 1
+ 																					�13� 337 

//345 = ∑ �(6 − *6�+6 2
∑ �*� − *7�1�� 	= 	 .&/'189:69+;"�*�										�14�								 338 

 339 

With O the observed value and P the predicted value 340 

Besides this classical evaluation method, we also evaluated the DSM models for their ability 341 

to conserve the relationships between the parameters that were used together in the STICS 342 

simulations. Indeed, predicting separately each STICS soil parameters conveyed the risk of 343 

producing “pedo-chimeras” (e.g. a horizon with PWP greater than FC) that could have 344 

hampered the simulation results. The predicted correlations between STICS soil inputs were 345 

then evaluated by comparing them with the observed ones for each couple of parameters. 346 

 347 

3. Results 348 

 349 

3.1. STICS soil parameters 350 

3.1.1. Observed soil data  351 

Basic statistics of the STICS soil parameters as estimated from observations or from their 352 

pedotransfer function inputs are presented in Table. 2. The most variable soil properties 353 

across the Berambadi catchment (CV > 90%) were the rock fragment contents of B and C 354 

horizons, the thickness of the C horizons and the soil albedo. The least variable soil 355 

properties (CV < 30%) were the thickness of A horizons and the Field capacity of B and C 356 

horizons. The variations of the STICS soil parameters that were directly observed on the soil 357 

profiles (horizon thicknesses, rock fragment contents) were globally higher than those of the 358 

STICS soil parameters derived from the pedotransfer functions (Clay, FC, PWP).  359 

 360 

Table 2. Summary statistics of STICS soil parameters  361 

Soil properties 

Layer 

Min Max Mean Stdev 

CV 

(%) 

Clay content (%) A 13.4 49.4 27.3 13.3 48.7 



Soil albedo A 0.04 0.30 0.14 0.05 100.0 

Thickness (cm) A 6.0 43.0 17.8 5.0 28.1 

 B 8.0 240.0 87.0 59.0 67.8 

 C 0 140.0 28.0 27.0 96.4 

Water at field capacity (%vol) A 11.4 32.4 19.6 7.7 39.3 

 B 11.4 32.4 21.9 5.8 26.5 

 C 11.4 32.4 19.7 4.7 23.9 

Water at wilting point (%vol) A 3.8 19.3 9.8 5.7 58.2 

 B 3.8 19.3 11.6 4.8 41.4 

 C 3.8 19.3 9.9 3.5 35.4 

Rock fragment (%) A 0.0 50.0 18.4 10.9 59.2 

 B 0.0 80.0 19.6 20.6 105.1 

 C 0.0 80.0 21.1 22.8 108.1 

 362 

 363 

 364 

 365 

 366 

Table 3. Performance of digital soil mapping approach and conventional soil mapping approach 367 

(between parenthesis) in prediction of different soil inputs. RK and QRF mean regression Kriging and 368 

Random Forest Respectively.  369 

Soil properties Layer Model SSMSE  RMSE Bias 

Clay content (%) A RK 0.36 (0.18) 10 (12) -0.03 

Soil albedo A RK 0.26 (0.1) 0.04 (0.05) 0.0002 

Thickness (cm) A RK 0.06 (0.1) 4 (4.65) -0.01 

 B RK 0.40 (0.08) 45 (57) -0.03 

 C RK 0 (0.04) 28.5 (26) -0.07 

Water at field capacity 

(%vol) 

A QRF 0.37 (0.16) 6.1 (7.3) -0.01 

B QRF 0.33 (0.06) 4.8 (6.1) -0.12 

C QRF 0.0 (0.08) 4.8 (11.7) -0.79 

Water at wilting point 

(%vol) 

A QRF 0.36 (0.17) 4.5 (5.6) 0.03 

B QRF 0.36 (0.09) 3.8 (4.7) 0.03 

C QRF 0 (0.07) 3.6 (6.3) -0.55 

Rock fragment (%) A RK 0.37 (0.13) 9 (10) -0.004 

 B RK 0.35 (0.19) 16 (19) -0.01 

 C RK 0.41(0.25) 17 (20) -0.002 

 370 

 371 

3.1.2. Estimated soil data by DSM 372 



Random forest and Regression Kriging were applied to build prediction functions for 373 

all STICS soil parameters. Their evaluations over the 217 sites with soil observation using a 374 

ten-fold cross validation repeated 20 times (section 2.5.) allowed to select, for each STICS 375 

soil parameters, the best function. Regression Kriging model was selected for 8 out of the 14 376 

mapped STICS soil parameters. For such parameters, the spatial interpolation of spatially 377 

structured residuals after RF predictions improved the results. 378 

Most of the STICS soil parameters were predicted with negligible biases and moderate 379 

accuracy (between 33% and 41% of explained variance for 69 % of STICS outputs). The 380 

worst predictions (percentage of explained variance < 2%) were obtained for hydric 381 

properties of layer C and for the thickness of layer A.  It is worth noting that these parameters 382 

also had the lowest standard deviations. The predictions of soil albedo had intermediate 383 

performances (26% of explained variance). Nevertheless, for all soil parameters, the 384 

comparisons with the R2 and RMSE values obtained when using the mean values per soil 385 

mapping unit (digits between parenthesis in table 3) showed clearly that the DSM predictions 386 

clearly outperformed the soil map ones. 387 

 388 

 389 

 390 
Figure 2. Observed  correlation coefficient vs predicted correlation coefficient for each couple of 391 

predicted parameters 392 



 393 

The comparisons between observed and predicted correlations between STICS soil inputs 394 

revealed an overall agreement (Figure 2). This means that, although the soil properties were 395 

predicted separately by different DSM models, the holistic vision of soils at each site was 396 

preserved without creating “pedo-chimeras” having unrealistic associations of soil property 397 

values.  398 

 399 

3.2. STICS output statistics 400 

We first analysed the STICS outputs obtained from observed soil inputs. Overall, the global 401 

impact of soil variations on the simulated results was weak to moderate depending on the 402 

output variables and seasons (figure 3). As expected, the impact of soil variability on yield 403 

was strongly correlated with the impact of soil variation on water stress (figures S1 and S2, 404 

supplementary materials). The mean over years of the standard deviations due to soil 405 

variations varied from about 2.5% to 10% of the global mean. However, results plotted per 406 

year (figure 4) show that this impact was extremely variable depending on the year. It was 407 

very low for yield in Kharif 2018 (standard deviation of 0.004 t ha-1) whereas it was very 408 

high in Rabi 2017 (standard deviation of more than 0.8 t ha-1). This impact was very low for 409 

drainage in Kharif 2011 (standard deviation of about 1 mm), whereas it was very high in 410 

Kharif 2007 (standard deviation of more than 25 mm in Kharif 2007). This means that, for 411 

some years, the levels of yield and drainage largely depended on the soil characteristics. 412 

Characterizing the years for which soil properties had a larger impact was not 413 

straightforward: while there was a clear relationship between the water balance and the mean 414 

and median values of yield and drainage (figure 4), it was not the case with their standard 415 

deviation (reflecting the impact of variations in soil properties). The effect of soil properties 416 

depended on complex intra-seasonal dynamics simulated by the model, as illustrated for the 417 

years 2005 and 2011 - (Figure S3, supplementary materials), which, despite similar seasonal 418 

water budgets, displayed contrasted impacts of soil properties on crop yield and drainage. 419 

 420 



 421 

Figure 3. Mean of standard deviations over all years of simulation divided by the global mean (in %) 422 

for the different simulated variables.  423 

 424 

 425 

 426 

 427 

 428 



Figure 4. Variations with respect to soil inputs of simulated yield (above) and drainage over the 429 

growing season (below), per years, ordered from lowest to highest water availability, calculated as: 430 

Soil Water Content at sowing + (Rainfall – PET) over the growing season. 431 

 432 

 433 

 434 
Figure 5. Simulated variables obtained from DSM soil inputs versus simulated variables obtained 435 

from observed soils. SS_MSE stands for Mean Square Error Skill Score (eq. 15). 436 

 437 

 438 

3.3. DSM error impacts on STICS outputs  439 

 440 

Errors induced by DSM estimations of STICS soil inputs were globally low with respect to 441 

the variations of the simulated variables (see R² and relative RMSE and biases given in % in 442 

figure 5). However, some of the yields simulated by STICS were far from the ones obtained 443 

with observed soil parameters.  444 

To analyse this in more details, Figure 6 shows the impact of soil parameters variations (i.e. 445 

standard deviations per year of simulated results obtained on observed soils) on the 446 

simulation errors (RMSE per years). The RMSE was directly linked with the standard 447 

deviations of the simulated reference: the higher the impact of the soil, the higher the impact 448 

of soil parameters errors. For the years with the lowest soil impacts (left parts of the graph), 449 

the DSM errors on STICS outputs were close to their standard deviations, which means that 450 

DSM did not provide any insight on their spatial variation. However, beyond a given 451 

threshold of variation, the DSM errors were lower than standard deviations which means that 452 

the variations of STICS outputs related with the soil parameters were partially captured by 453 

DSM estimations as soon as they became important.  454 

 455 



 456 

 457 

Figure 6. RMSE per year VS standard deviation of results obtained on observed soil per year. Left : 458 

yield (T/ha), right: drainage (mm) 459 

 460 

3.4. Input-output errors correlations 461 

 We performed correlation analysis between residuals of STICS soil parameters and 462 

STICS outputs, to identify the soil parameters for which errors have the larger impact on the 463 

error of STICS outputs. Clay content on layers B and C and rock fragments were added to the 464 

analysis, although they were not direct STICS soil parameters, because they were involved in 465 

the PTF used for calculating FC and PWP, and thus were expected to strongly impact the 466 

STICS outputs values (see 4.1.). 467 

The correlations between the residuals of STICS parameters and the STICS outputs 468 

were highly variable (Table 4). The water retention properties errors (water content at field 469 

capacity and wilting point) exhibited greater correlations than rock fragment errors and 470 

horizon depths errors, for all STICS outputs and the horizons. The errors on the B horizons 471 

parameters were the most correlated with STICS outputs, whatever the seasons and the 472 

outputs, with the noticeable exception of the rock fragment that exhibited a better correlation 473 

in the A horizon than in the B one. It is also apparent that the errors on drainage during the 474 

Rabi season were less correlated with STICS soil inputs than the other STICS outputs. 475 

Table 4. Correlations between absolute errors on STICS outputs for different seasons and absolute 476 

errors on soil STICS inputs 477 

Soil properties Layer 
Kharif Rabi 

Yield Drainage Yield Drainage 

Clay content (%) A 0.38** -0.53** 0.53** 0.06 

Thickness (cm) A 0.12 -0.11 0.09 -0.09 

 B 0.37** -0.40** 0.36** -0.20** 

 C 0.06 -0.03 -0.01 -0.07 



Water at field capacity (%vol) A 0.39** -0.53** 0.54** -0.04 

 B 0.68** -0.72** 0.73** -0.44** 

 C 0.40** -0.39** 0.40** -0.28** 

Water at wilting point (%vol) A 0.38** -0.53** 0.53** 0.06 

 B 0.58** -0.63** 0.64** -0.35** 

 C 0.41** -0.40** 0.41** -0.29** 

Rock fragment (%) A -0.21** 0.25** -0.23** 0.00 

 B -0.11 0.10 -0.08 0.06 

 C -0.04 0.05 -0.07 0.01 

 Soil albedo A -0.12 0.20** -0.22** 0.03 

 478 

3.5. DSM error impacts on pooled STICS outputs per sites 479 

 480 
The two STICS outputs were aggregated to provide their observed vs simulated distributions 481 

across the simulation period for each of the 217 sites. Different statistical indicators were 482 

used to describe these distributions outputs: mean, variance, 25% quartile and 75% quartile. 483 

Because of their contrasted climatic conditions, the results obtained for the two cropping 484 

seasons – Kharif and Rabi – were considered separately. 485 

Figures 8 and 9 show contrasted results across seasons, STICS outputs, and statistical 486 

indicators with a limited range of R2 (from 0.05 to 0.40) similar to those obtained for STICS 487 

soil parameters (Table 3). The scatterplots clearly show that the overall variability across sites 488 

was underestimated when the DSM estimated soil parameters were used instead of the 489 

observed ones. The lower values of all statistical parameters for yield were particularly 490 

underestimated showing that DSM did not simulate soils as limiting as to the observed ones 491 

(Figure 7).  Conversely, the statistical parameters of drainage estimations were generally 492 

overestimated (Figure 8) 493 

 494 

 495 

 496 



497 

  498 

Figure 7. Mean, variance, 1st and 3rd quartile computed per soil, i.e. over years, of YIELD values 499 
simulated from DSM soil inputs VS equivalent but computed on values simulated from observed soils. 500 
SS_MSE stands for Mean Square Error Skill Score (eq. 15).  501 

 502 

 503 

  504 

 505 

 506 

 507 

 508 



 509 
Figure 8. Mean, variance, 1st and 3rd quartile computed per soil, i.e. over years, of drainage values 510 

simulated from DSM soil inputs VS equivalent but computed on values simulated from observed soils. 511 
SS_MSE stands for Mean Square Error Skill Score (eq. 15). 512 

 513 

All the statistical indicators of yield were better predicted in Rabi seasons than in Kharif 514 

season. Drainage showed opposite results with better performances for predicting statistical 515 

indicators in Kharif season than in Rabi seasons, with, here again, the noticeable exception of 516 

variance that did not exhibit significant differences between seasons. Mean and variance were 517 

generally better predicted than quartiles, which confirmed that DSM could not generate 518 

STICS parameters corresponding to extreme soil properties. 519 

 520 

 521 

4. Discussion 522 

 523 

4.1. Limiting factors of DSM performances  524 

 The present model captured only a part of the spatial variability for most of the soil 525 

properties. These results were not unexpected when looking at the DSM literature. For 526 

example, De Carvalho Jr et al. (2014) and Nussbaum et al. (2018) obtained SSMSE
 values 527 

between 0 and 0.37 and between 0.08 and 0.28 respectively for particle size and rock 528 

fragment content predictions over Brasilian and Swiss areas of comparable extents and spatial 529 

densities of soil observations.  530 

For all soil properties, the mapping errors were first due to the important sources of 531 

uncertainties that could affect the soil observations.  532 

• Most of the observations were deduced from field determinations, without 533 

quantitative soil analysis, which induced uncertainty.  534 

• The observations were affected by the variations of soil properties that can be 535 

observed at the profile scale, and that could be imperfectly described by a single 536 

value for a given soil property.  537 



• the sampling of soil observations was too sparse to capture the part of the soil 538 

variations that occur at short distances. Indeed, as shown by several authors 539 

(Somarathna et al., 2017, Wadoux et al., 2018, Lagacherie et al., 2020), the spatial 540 

density of soil observations strongly impacts the performances of the DSM models.  541 

•  the presence of residuals after random forest analysis that justified the use of RK 542 

showed that the covariables used for explaining the variability of the soil input data 543 

were also not sufficient. New soil covariates should be added to capture the 544 

variability of soil properties better. 545 

Finally, it should be noticed that these performances were measured for a prediction of soil 546 

properties at a point level, which is rarely required by end-users. Spatial aggregation of such 547 

predictions at larger spatial supports that make sense for user’s decision, (e.g. fields) would 548 

dramatically decrease such error (Bishop et al., 2015; Vaysse et al., 2017). 549 

Although the DSM estimations of soil parameters had important errors, it must be noticed 550 

that all these DSM estimations largely outperformed the spatial estimations of STICS soil 551 

parameters obtained from the existing soil map of the Berambadi (table 3). Furthermore, 552 

despite performing separate estimations of individual soil parameters and soil layers, we 553 

observed that the correlations between soil properties and layers were correctly predicted 554 

(Figure 2), which prevented from predicting pedo-chimera. This leads to prefer Digital Soil 555 

Mapping products to classical soil maps as sources of soil parameters for spatialising soil 556 

models.  557 

 558 

4.2. Impacts of soil properties on STICS outputs.  559 

Our experiment showed that the overall impact on yearly STICS outputs of soil variations in 560 

the Berambadi catchment was low (Figure 5). This result can be explained by the fact that, on 561 

one hand, the soils of the Berambadi catchment were quite deep (about 130 cm when 562 

including layer C, see table 2), and, on the other hand, because maize is a relatively deep-563 

rooted crop, both factors buffering the soil-related variability in STICS output under ordinary 564 

climate conditions observed in the study area. Using a shallow-rooted crop in our simulations 565 

would have probably increased the impact of soil properties of the shallow horizons but it 566 

would have reduced even more the impact of deeper ones.  567 

Interestingly, for few simulation years, soil variations had a greater impact on STICS results 568 

(Figure 4). These impacts of soils on crop yields could be significant enough to dramatically 569 

impact farmers' livelihood, considering the socio-economic vulnerability of farming systems 570 



in semi-arid regions of India (Singh et al., 2019). Moreover, we saw that such situations were 571 

linked with the complex dynamics of rain distribution and crop needs within the season, 572 

particularly the occurrence of drought periods early in the cropping season. Indeed, such 573 

situations might become more frequent in the future, as current projections for the Indian 574 

monsoon indicates increasing variability in monsoon rainfall and more frequent and severe 575 

drought spells (e.g. Sharmila et al., 2015) 576 

This suggests that, in our case study, while crop models do not necessarily require an 577 

accurate representation of the distribution of soil properties for predicting the variations of 578 

yield and drainage across years, such information could become crucial for assessing the 579 

resilience of cropping systems in a changing climate.  580 

 581 

4.3. Impact of DSM produced soil parameters errors 582 

 Our results showed that the spatialisation errors on the STICS soil parameters had an 583 

overall low impact on STICS simulation errors (figure 5) because of the low overall impact 584 

of soil variations on STICS outputs. However, a few simulations were strongly impacted by 585 

soil variations (see above), which in turn induced, for these situations, stronger impacts of 586 

DSM errors on the STICS outputs (figure 6). These impacts propagated to the statistical 587 

indicators that describe the behaviour of the sites across years (figure 7). It is interesting to 588 

note that the errors obtained on these statistical indicators were of the same order of 589 

magnitude as the spatialisation errors of soil parameters by DSM (table 3), showing neither 590 

smoothing nor amplifications of these spatialisation errors. Although the impact of soil 591 

estimations on crop model outputs have already been measured when using classical 592 

choropleth soil maps (Leenhardt et al., 1994b; Constantin et al., 2019; Hoffmann et al., 593 

2016), to our knowledge, this was not been done yet when using DSM products. The level of 594 

error obtained with DSM being comparable to many DSM applications described in the 595 

literature (see 5.1.), this study can be considered a first reference for the use of crop 596 

modelling from DSM products. However, more studies will be necessary to get a complete 597 

picture of the interest and limitation of this new source of soil data. 598 

Yet, this study only addressed a part of such errors. First, only perennial morphological and 599 

physical soil properties were addressed. The chemical soil properties that are also STICS soil 600 

inputs (i.e. pH, organic nitrogen) need to be considered in future studies. Furthermore, 601 

Permanent Wilting Point (PWP) and Field Capacity (FC) were not directly measured in the 602 

field but estimated from pedotransfer functions (PTF). The errors associated with these 603 



functions were not considered in this testing since the “observed” values of STICS outputs 604 

were produced from inputs that used also these functions. However, it has been shown 605 

(Roman-Dobarco et al., 2019) that the impact of PTF errors on the mapping of Soil Available 606 

Water Capacity was much lower than the mapping errors and thus could be neglected in most 607 

situations.  608 

 609 

4.4. Most impacting soil characteristics  610 

For the years for which soil variations matter (see the previous section), the same soil 611 

parameter errors affected  STICS outputs differently at different seasons (Table 4).  612 

Correlation analysis also revealed that some STICS soil parameters errors affected the STICS 613 

outputs more than others. In some cases, these differences can be easily explained. For 614 

example, the predominant impact of the parameter related to the layer B on STICS parameter 615 

errors is probably because it represents the main part of the soil (87 cm against 18 and 28 cm 616 

for layer A and C, respectively), and the main source of water for root uptake across the 617 

cropping season. As the STICS model simulates a progressive increase of rooting depth 618 

across the vegetative phase of the crop, it was also expected that the parameters of horizon B 619 

related to the water holding capacity (FC and WP) would have had more impact on STICS 620 

outputs than its thickness. However, other differences are more difficult to interpret, such as 621 

the absence of impact of soils parameters on drainage for the Rabi season or the significant 622 

impact of rock fragments on both drainage and yield for horizon A but not for horizon B. 623 

Overall, these results suggest that the impact of errors associated with simulated soil 624 

characteristics on the studied outputs, as modelled by STICS, is particularly complex. 625 

Sensitivity analysis methods may help in better understanding these impacts (Varella et al., 626 

2010). Estimating relevant sensitivity indices would require considering the multivariate 627 

distributional properties of these errors and, in particular, the potentially complex dependency 628 

structure between them. This is still a challenge in the sensitivity analysis (Razavi et al, 2021) 629 

beyond the scope of this study. 630 

 631 

4.5. Coupling DSM and crop models 632 

Our study constitutes the first step in spatializing soil models using Digital Soil Mapping. 633 

Maps of statistical parameters of STICS output could be provided to users by using as STICS 634 

inputs the predicted parameters obtained by the DSM algorithms at the nodes of a regular 635 

grid covering the study area. Such maps would constitute an interesting alternative to the 636 



current maps of production functions of the soil that were derived from static combinations of 637 

soil properties (Kidd et al. 2015, Harms et al., 2015). Indeed, using a crop model to 638 

characterize such soil function would allow modulating soil assessment according to the 639 

spatial variations of other factors than soil, e.g. climate and agricultural practices (Ellili 640 

Bargaoui et al, 2021). 641 

Apart from providing better soil parameter estimations than the ones provided by classical 642 

soil maps, DSM has the advantage of producing ex-ante estimations of the uncertainty of the 643 

soil property estimations (Heuvelink, 2014). Following error propagation techniques, such 644 

estimations could be propagated through STICS simulations (Vaysse et al; 2017). This would 645 

allow identifying the critical locations where the soil data are insufficient to estimate the 646 

required STICS soil parameters.  647 

 648 

5. Conclusions 649 

 650 

A first experiment of spatializing a crop model (STICS) using Digital Soil mapping was 651 

carried out in the Berambadi Catchment (India). The main lessons of this experiment are the 652 

following: 653 

• Digital Soil mapping outperformed soil maps for spatializing STICS soil parameters 654 

while preserving correlation between soil parameters. 655 

• Although the impact of DSM estimated soil parameters errors on yearly STICS 656 

outputs were on average low, some particular years exhibited strong differences 657 

between STICS outputs derived from observed vs DSM estimated soil parameters. 658 

The statistics of STICS simulations across years at each site giving a view of the crop 659 

production potential were also sensitive to DSM mapping errors 660 

• The impact of DSM errors was variable across the involved soil parameters. Whereas 661 

some differences of impact could be easily explained, others would need a more 662 

thorough sensitivity analysis. 663 

• Coupling DSM with a crop model represents an interesting alternative to the classical 664 

Digital Soil Assessment techniques. As such, it will deserve more work in the future.  665 

 666 

 667 
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