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Abstract

Objective: To study associations between prenatal exposure to phthalates and fetal and postnatal 

growth up to age 5 years in male offspring.

Methods: Eleven phthalate metabolites were quantified in spot maternal urine samples collected 

during gestation among 520 women of the EDEN mother-child cohort who gave birth to a boy. 

Fetal growth was assessed from repeated ultrasound measurements and measurements at birth. We 

used repeated measures of weight and height in the first 5 years of life to model individual 

postnatal growth trajectories. We estimated adjusted variations in pre and postnatal growth 
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parameters associated with an interquartile range increase in ln-transformed phthalate metabolite 

concentrations.

Results: Monocarboxyisononyl phthalate (MCNP) was positively associated with femoral length 

during gestation and length at birth. High molecular weight phthalate metabolites were negatively 

associated with estimated fetal weight throughout pregnancy. Monoethyl phthalate (MEP) showed 

positive association with weight growth velocity from two to five years and with body mass index 

at five years (β=0.17 kg/m2, 95% confidence interval, 0.04, 0.30).

Conclusions: We highlighted associations between gestational exposure to some phthalates and 

growth in boys. The positive association between MEP and postnatal growth in boys was also 

reported in several previous human studies.
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1. Introduction

Pre- and post-natal growth patterns are associated with the risk of overweight or obesity later 

in life (Botton et al., 2008). In addition to factors such as maternal obesity or tobacco 

smoking, certain chemicals that exhibit affinity with nuclear receptors involved in lipid 

metabolism (Casals-Casas and Desvergne, 2011) have been suspected to affect growth and 

adiposity. This includes diesters of phthalic acid (phthalates). While three of them (di(2-

ethylhexyl) phthalate, DEHP; dibutyl phthalate, DBP and butylbenzyl phthalate, BBzP) have 

been banned from a few products in Europe (e.g., in toys intended to be placed in the mouth 

by children under three years), phthalates are still used in many consumer products (Hauser 

and Calafat, 2005). Low molecular weight (LMW) phthalates are mainly used in personal 

care products (perfumes, lotions, cosmetics) or as coating for pharmaceutical products to 

provide timed releases; high molecular weight phthalates (HMW) are used as plasticizers in 

polyvinylchloride floor and wall covering, food packaging, and medical devices (Hauser and 

Calafat, 2005). Widespread exposure has been reported in French pregnant women 

(Philippat et al., 2012) and in many other countries.

Fetal life and infancy are potentially critical periods for the health effects of phthalates, in 

part because detoxification path-ways (e.g. glucuronidation) may not be fully mature during 

these periods (Gow et al., 2001).

In humans, some studies have investigated the associations between urinary concentrations 

of phthalate metabolites during pregnancy and offspring size at birth. Urinary concentration 

of mono(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), a DEHP metabolite, was negatively 

associated with birth weight in a large cohort of 1250 term infants (Lenters and Portengen, 

2015), while other studies did not highlight any association between urinary concentration of 

phthalate metabolite and offspring size at birth (Philippat et al., 2012; Suzuki et al., 2010; 

Wolff et al., 2008). Only one study looked at associations with intra-uterine growth assessed 

by repeated ultrasound during pregnancy; authors reported a positive association between 

urinary concentration of monobenzyl phthalate (MBzP) and femoral length and a negative 
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association between mono-n-butyl phthalate (MBP) and head circumference (Casas et al., 

2015).

Regarding postnatal growth, one prospective study reported negative associations between 

prenatal urinary concentrations of metabolites of HMW phthalates and body mass index 

(BMI) gain during childhood in boys (Valvi et al., 2015). In another study, prenatal 

concentrations of non-DEHP metabolites were associated with lower BMI in boys (Maresca 

et al., 2016) In a pooled analysis of 707 US children, Buckley et al. reported a sex-specific 

association between monoethyl phthalate (MEP) during pregnancy and BMI at 4–7 years, 

which was negative in girls and positive (although not statistically significant) in boys 

(Buckley et al., 2016). In the same population, a similar trend was observed with fat mass, 

although the interaction test with child sex was not significant (Buckley et al., 2015). 

Finally, a study relying on a multi-pollutants analysis did not find any association between 

prenatal phthalates exposure and BMI at 7 years (Agay-Shay et al., 2015).

Our aim was to study the relationship between exposure to phthalates during pregnancy and 

prospectively assessed growth in boys, from the intra-uterine period to five years of age.

2. Methods

2.1. Population

The selection of the study population has been described elsewhere (Philippat et al., 2014). 

Briefly, 520 mother-boy pairs included in the French EDEN mother–child cohort were 

selected among the 998 mothers who delivered a boy. Recruitment in the cohort took place 

in the maternity wards of Poitiers and Nancy University hospitals, before the end of the 24th 

gestational week from April 2003 through March 2006 (Heude et al., 2015). We focused on 

males because a first assessment of phthalate exposure has been performed in the framework 

of a study on male congenital anomalies (Chevrier et al., 2012). Because sex-specific 

associations in relation with growth were plausible for EDCs (Casals-Casas and Desvergne, 

2011), including both genders would, for a given total sample size, have been less 

statistically powerful than focusing on one gender. We selected male births with complete 

data on growth (three ultrasound measures, birth parameters and at least three postnatal 

measurements).

The EDEN cohort received approval from the ethics committee of Kremlin-Bicêtre. Women 

gave written informed consent for themselves and their child. The involvement of the 

Centers for Disease Control and Prevention (CDC) laboratory was determined not to 

constitute engagement in human subjects research.

2.2. Outcomes

Biparietal diameter was assessed by ultrasonography three times during pregnancy at mean 

gestational weeks 12.6 (5th-95th centiles, 11.1–14.0), 22.5 (5–95th centiles, 20.7–24.4) and 

32.6 (5th-95th centiles, 30.6–34.2); head circumference, abdominal circumference and 

femoral length were assessed during the two last ultrasound examinations. Fetal weight was 

estimated using Hadlock formula (Hadlock et al., 1985) from abdominal circumference, 

femoral length, biparietal diameter and head circumference. Weight and length at birth were 
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extracted from hospital maternity records. Because head circumference can be distorted 

during labor, we relied on measures performed by midwives a few days after birth during the 

maternity stay.

A Jenss-Bayley mixed effects growth modeling approach was used to assess individual 

growth trajectories using weight and length or height measured at one, three and five years 

during study-specific examinations along with measures recorded in the child health booklet 

by health care practitioners. This model (Botton et al., 2014 Carles et al., 2016) allowed 

predicting weight and height at the same ages for all children (6, 12, 24, 36 and 60 months). 

We predicted growth velocities at 3, 6, 12, 24 and 48 months by calculating the first 

derivative of the individual equation (Botton et al., 2014), attempting to explore the timing 

of occurrence of any effect on growth. BMI at five years was computed as weight (in kg) for 

height (in m) squared.

2.3. Exposure assessment

Women collected the first morning urine void at home before the study visit between 22 and 

29 gestational weeks (mean=26; 5th-95th centiles, 24 −28); if they forgot, urine was 

collected during the study visit; exclusion of these mother-child pairs (n=61, 12%) from the 

main analyses had no substantial effect on the dose-response estimates (not detailed). Urine 

samples were stored at −80 °C. Creatinine, 11 phthalate metabolites (listed in Table 1) and 

nine phenols (including triclosan and parabens) were measured at CDC (Atlanta, Georgia, 

USA) at two periods (110 in 2008, 410 in 2012) using an enzymatic reaction (creatinine) 

and online solid-phase-extraction high-performance liquid chromatography-isotope dilution 

tandem mass spectrometry (phthalate metabolites (Silva et al., 2004), phenols (Philippat et 

al., 2014)).

We calculated:

1. The sum of molar concentrations of DEHP metabolites: mono(2-ethyl-5-

carboxypentyl) phthalate [MECPP], MEHHP, mono(2-ethylhexyl) phthalate 

[MEHP], mono(2-ethyl-5-oxohexyl) phthalate [MEOHP],

2. The sum of total LMW phthalate metabolites: monoethyl phthalate [MEP], 

mono-n-butyl phthalate [MBP], mono-isobutyl phthalate [MiBP]),

3. The sum of total HMW phthalate metabolites (monobenzyl phthalate [MBzP], 

monocarboxyisononyl phthalate [MCNP], monocarboxyisooctyl phthalate 

[MCOP], mono(3-carboxypropyl) phthalate [MCPP], DEHP metabolites.

2.4. Statistical analysis

We used instrumental reading values even for metabolite concentrations below the limit of 

detection. Ln-transformed concentrations were standardized for collection conditions, 

creatinine concentrations and analysis period using a two-step standardization method based 

on regression residuals (Mortamais et al., 2012; Philippat et al., 2014).

Effect estimates (β) are reported for an increase by one interquartile range (IQR) of ln-

transformed standardized phthalate metabolite concentrations. We present associations and 
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95% confidence intervals (CI) estimated at each considered ages; for each compound, we 

performed a global test for the effect of exposures on prenatal or postnatal growth separately. 

Statistical analyses were performed with SAS 9.3.

2.5. Associations with prenatal growth

We used the date of last menstrual period (LMP) to estimate the gestational age, except if 

the estimate by the obstetrician was different from the LMP-based estimate by more than 

two weeks (n=3 women). In that case, we used the gestational age assessed by the 

obstetrician. In the models using fetal measurements as outcomes, we coded gestational age 

with three terms (gestational age at the powers one, two and three). The associations 

between phthalate metabolite concentrations and prenatal growth measurements were 

characterized using linear mixed-effect models with random effects corresponding to the 

mother–child pair on intercept and on linear slope. To allow for the effect of exposures on 

growth to vary along pregnancy, we included interaction terms between the metabolites 

concentrations and gestational age. We tested the global effect of each phthalate metabolite 

concentration on fetal growth parameters using a maximum likelihood ratio test between 

nested models (i.e. with and without the exposure variable and the interaction terms 

involving the exposure variable). We used the SAS PROC MIXED to take account the 

repeated measurements within each fetus during pregnancy, with one model for each 

exposure-outcome combination and we predicted trimester-specific effect sizes (β) and 95% 

confidence intervals at the mean gestational age at which each of the three ultrasound 

measurements were conducted.

2.6. Associations with postnatal growth

Multiple linear regression models were used to study the relationship between the biomarker 

concentrations and observed birth weight or length (adjusting for gestational age) or BMI at 

five years (adjusting for exact age at measurement).

To study the associations between phthalate metabolite concentrations and model-predicted 

postnatal weight and height, we used repeated measurements models with an unstructured 

covariance structure between the exact time-points. To allow for the effect-measure of 

exposures to vary along infancy and early childhood, we included interaction terms between 

metabolite and the time-point dummy-variable.

In supplementary analyses, we explored the associations with measured weight and length or 

height at birth, one, three and five years (study examinations) instead of model-predicted 

values, and with head circumference as well. These models were additionally adjusted for 

child age at the examination.

2.7. Confounding factors and estimated effect size

Directed acyclic graphs (DAG) were used to define adjustment factors (Figs. S1 and S2). 

Models were adjusted for recruitment center, maternal height (continuous), BMI using self-

reported prepregnancy weight (continuous), smoking during pregnancy (active, mean 

number of cigarettes per day over the pregnancy and passive, yes/no), education level (three 

categories), age (continuous), weight gain during pregnancy (continuous) and parity (no 
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previous birth, one, more than one). As paternal anthropometry is associated with postnatal 

growth (Regnault et al., 2010), postnatal models were additionally adjusted for paternal 

height (continuous) and BMI (continuous). As growth patterns differ according to 

gestational age at birth, models were also adjusted for this variable. As we selected the 

children with available postnatal growth data, there were very few missing values (see 

Supporting Information, Table S1, maximum number=7) and in the absence of any 

information, they were imputed using the modal value of the distribution.

2.8. Sensitivity analyses

Pre- and postnatal weight growth models were adjusted for height or length measurements in 

the main analyses and not in the supplementary analyses. Within the same study population, 

maternal urinary concentration of the antibacterial agent triclosan has been negatively 

associated with fetal growth measurements late in pregnancy and parabens have been 

positively associated with weight at birth and until 36 months (Philippat et al., 2014). 

Because exposure to these chemicals and phthalates might co-occur, we adjusted the 

prenatal associations for triclosan concentration and the postnatal associations for the molar 

sum of paraben concentrations. We tested the impact of adjusting prenatal models for 

maternal total caloric intake and postnatal weight models for breastfeeding or child caloric 

intake at eight months (available for 78% of the 520 children), computed based on a three-

day dietary record.

3. Results

Average maternal age was 29.7 years; 26% of women were overweight or obese (BMI ≥25 

kg/m2) and 5% developed gestational diabetes. Women in the present study were more 

educated and smoked less compared to the whole group of EDEN mothers who gave birth to 

a boy (Table S1). Other characteristics were similar.

Phthalate metabolites were detected in more than 97% of the samples (Table 1). MEP had 

the largest median (96 μg/L, IQR=51, 195). DEHP metabolites represented the largest 

proportion of HMW phthalates. Among non-DEHP HMW phthalates, MBzP had the highest 

median (18 μg/L, IQR=11, 33). Correlations among LMW phthalates were modest (Table 

S2, below 0.12 for MEP). MEP was the phthalate metabolite most strongly associated with 

triclosan (r=0.23) and with the sum of molar concentrations of parabens (r=0.25).

Maternal MCNP concentration was associated with increased fetal femoral length (Table 2, 

global adjusted p-value 0.04) at the second (β, 0.20 mm, 95% CI, 0.00, 0.39 for each IQR 

increment) and third trimesters of pregnancy (0.24 mm, 95% CI, 0.01, 0.47). This chemical 

was also associated with increased length at birth (0.19 cm, 95% CI, −0.01, 0.38). A similar 

trend was observed between MCPP and fetal femoral length (global adjusted p-value 0.07) 

but not birth length.

Six of the eight HMW phthalate metabolites (including the four DEHP metabolites) tended 

to be negatively associated with estimated fetal weight (Table 3, p-values from 0.04 to 0.13) 

and with biparietal diameter (Table S3) but not with birthweight. Changes associated with 

one IQR variation in the sum of HMW metabolites concentration were −3.3 g (95% CI, 
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−7.7, 1.2) and −13.6 g (95% CI, −35, 7.8) for EFW at the second and third trimesters, 

respectively (global p-value, 0.03), −14.1 g (95% CI, −44.8, 16.6) for birth weight and −0.45 

mm (95% CI, −0.73, −0.17) and −2.3 mm (95% CI, −3.8, −0.68) for biparietal diameter at 

first and third trimester, respectively (global p-value, 0.01). Similar trends were observed for 

prenatal head circumference (Table S3). Adjusting for triclosan or maternal total caloric 

intake did not change these results (data not shown)

After birth, MBzP was positively associated with height in the two first years of life (Table 

2, global p-value, 0.04, β at one year, 0.24 cm, 95% CI, 0.02, 0.45). We observed a positive 

association between MBzP, MiBP and height growth velocity at three months (Table S5), 

consistent with their association with length at one year.

After adjustment for height, we did not observe any strong global association between any 

phthalate metabolite concentration and postnatal weight (Table 3, p-values >0.15). When 

specific time points were considered, a positive association between MEP and weight 

adjusted for height was observed at three (132 g, 95% CI, −9, 273) and five years (234 g, 

95% CI, 21, 446). MEP was positively associated with BMI at the 5-year clinical 

examination (Fig. 1, 0.17 kg/m2, 95% CI, 0.04, 0.30). A positive association between MEP 

and weight growth velocity was observed at two and four years (β, 4.2 g/month, 95% CI, 

0.6, 7.6, global p-value=0.35). Positive associations were observed between MBzP and 

weight at earlier ages (e.g. 126 g, 95% CI, 19, 234 at 2 years). MBzP tended to be positively 

associated with weight growth velocity (Table 4, global p-value=0.07), especially at early 

ages (e.g. β at three months, 11.7 g/month, 95% CI, 2.6, 20.8). Postnatal head circumference 

was not significantly associated with any phthalate metabolite (Table S3).

We generally observed similar patterns of associations using observed measures of length or 

height and weight (Table S4) instead of the model-predicted growth parameters. Adjusting 

postnatal growth models for parabens concentrations did not change the results (data not 

shown). The models were robust to the adjustment for breastfeeding and child caloric intake 

at eight months.

4. Discussion

In our population of boys followed from intra-uterine life onwards, maternal urinary 

concentrations of metabolites of HMW phthalates were negatively associated with EFW and 

biparietal diameter assessed during pregnancy, but not with birthweight. MCNP, a metabolite 

of di-isodecyl phthalate, was positively associated with prenatal femoral length and birth 

length. MEP, the main diethyl phthalate metabolite, was positively associated with weight 

growth velocity from two years onwards, with weight at 3 and 5 years and BMI at five years. 

MBzP, a metabolite of BBzP, tended to be positively associated with both weight and height 

growth velocities before one year.

Our study is the first to explore the effects of early life exposure to phthalates on growth 

during both the prenatal and postnatal periods. We relied on repeated measurements of 

growth during fetal and early postnatal life in a relatively large sample size of boys. The 

prospective design allowed exposure to be assessed during a toxicologically-relevant 
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window, the fetal period, although repeated urine collection would have provided more 

accurate exposure estimates. Sex-specific effects have been reported for phthalates and we 

chose to focus on boys to maximize statistical power, in a context where total sample size 

was limited.

Phthalate metabolites were measured in one spot urine sample at 26 weeks of gestation on 

average, which is after the first assessment of biparietal diameter, and concurrently or before 

the other fetal growth measurements. Depending on the toxicologically-relevant exposure 

window (which is unknown), the bias in the dose-response function may be larger for the 

growth parameter assessed before the time of urine collection. The model allowed 

associations between metabolite concentrations and each outcome to change with the time of 

the assessment of the growth parameter. Moreover, due to the phthalates short half-life and 

to the likely episodic nature of the exposures, reliance on a single urine sample to assess 

exposure leads to exposure misclassification (Adibi et al., 2008; Cantonwine et al., 2014; 

Perrier et al., 2016). Assuming a classical-type error structure and a monotonous association, 

the resulting bias in the dose-response function is expected to correspond to attenuation 

(Perrier et al., 2016), although we cannot exclude sampling fluctuation leading to significant 

associations by chance. Intraclass correlation coefficients (ICC) were generally low for 

MCNP (ICC=0.05–0.09) and DEHP metabolites (ICC=0.08–0.36), and slightly higher for 

MBzP (ICC=0.25–0.65) and MEP (ICC=0.30–0.56) (Adibi et al., 2008; Braun et al., 2012; 

Cantonwine et al., 2014; Dewalque et al., 2015), suggesting that exposure misclassification 

would be higher for MCNP and DEHP metabolites, compared to MBzP and MEP. Finally, 

we cannot exclude a residual bias in the associations due to unmeasured confounders. Note 

that, as we collected the first morning voids, this could have favored some sources of 

exposure (e.g. diet on the previous evening compared to cosmetic use on the morning).

MBzP was positively associated with birth length (Wolff et al., 2008) and femoral length in 

a study using ultrasound measurements during pregnancy (Casas et al., 2015), a result we 

did not confirm. In our population, this is MCNP, another HMW phthalate metabolite not 

considered in these studies, which was positively associated with fetal femoral length and 

birth length. The positive trend between MCNP and birth length had already been described 

in a study including part of our population sample (Philippat et al., 2012). Note that this 

metabolite has the lowest ICC among the ones studied (Cantonwine et al., 2014). No other 

phthalate metabolite was associated with birth length in our study. We observed negative 

associations between HMW metabolites and prenatal biparietal diameter and EFW.

Birth weight has been considered in a few previous studies (Casas et al., 2015; Lenters and 

Portengen, 2015; Philippat et al., 2012; Wolff et al., 2008). No phthalate metabolite was 

clearly associated with birth weight adjusted for birth length in our study. Two birth cohort 

studies, including ours (Philippat et al., 2012; Wolff et al., 2008), did not find any 

statistically significant association with birth weight (n=404 and 287 mother-newborn pairs), 

but DEHP metabolites concentration was associated with lower birth weight in a study of 

1250 term singleton infants from three studies (Lenters and Portengen, 2015) and prenatal 

MBzP was positively associated with birth weight in boys (Casas et al., 2015).

Botton et al. Page 8

Environ Res. Author manuscript; available in PMC 2021 March 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Several epidemiological studies considered the effect of prenatal phthalate exposure assessed 

using urinary biomarkers on postnatal weight growth or child overweight (Agay-Shay et al., 

2015; Buckley et al., 2016, 2015; Maresca et al., 2016; Valvi et al., 2015). Overall, there 

were generally few statistically significant associations, and effect modifications by sex have 

been highlighted. One of our results that was the most consistent with the literature was the 

one observed between prenatal MEP, the metabolite of the most prevalent LMW phthalate, 

and postnatal growth. Although this association did not appear as significant in all the 

studies, a positive trend in boys was observed in several of them (Buckley et al., 2016; Valvi 

et al., 2015), as well as in our study. Buckley et al. observed a heterogeneity by sex with a 

negative association in girls and a positive trend in boys (β, 0.07, 95% CI, −0.07, 0.21). 

Valvi et al. (2015) reported a positive trend between prenatal urinary concentrations of 

LMW phthalate metabolites and BMI z-score (Valvi et al., 2015) among 205 seven years old 

Spanish boys from INMA cohort (β, 0.21, 95% CI, −0.08, 0.50). In this study, they also 

found a negative association in boys between prenatal urinary HMW phthalate concentration 

and weight gain in the first six months (Valvi et al., 2015). In our study, MBzP, but not the 

sum of HMW metabolites, was positively associated with infant height and weight growth 

velocity in the first year. Maresca et al. (Maresca et al., 2016) showed a negative association 

in boys between non-DEHP metabolites (factor including LMW and HMW phthalates) 

measured prenatally and BMI at five and seven years in a minority cohort in New York City 

(β=−0.30, 95% CI: −0.50, −0.10, n=156), but not with MEP (Maresca et al., 2016). Finally, 

Agay-Shay et al. did not find any association between prenatal phthalate metabolites 

concentrations (analyzed by a multi-pollutant approach) and weight at 7 years (Agay-Shay 

et al., 2015); in that study as there was no significant interaction by sex the results were 

pooled and can therefore not be compared to our results obtained specifically in boys.

Several mechanisms could explain an effect of prenatal exposure to select phthalates on 

human growth. Phthalates can stimulate adipogenesis in vitro (Taxvig et al., 2012). For 

instance, MEHP activates peroxisome proliferator-activated receptor (PPAR) α and PPARγ 
nuclear receptors, which are implied in lipid metabolism; MEHP induces adipocyte 

differentiation and lipid accumulation (Taxvig et al., 2012). Another possible mechanism is 

an action of phthalates through thyroid metabolism. Thyroid hormones, which are involved 

in early growth regulation, have been associated with phthalate metabolite concentrations in 

children (Boas et al., 2010). Epigenetic modulation induced by a suboptimal fetal 

environment has also been hypothesized to explain the relationship between intra-uterine 

exposure to EDCs and the later risk of obesity (LaRocca et al., 2014; Zhao et al., 2014). 

First trimester exposure to LMW phthalates in humans was associated with methylation 

level of IGF2 paternally expressed and H19 maternally expressed non-coding genes, which 

play major roles in embryonic and placental growth (Zhao et al., 2014).

Anti-androgenic associations of postnatal urinary concentrations of several phthalate 

metabolites (including MEP, MBP and MEHP) with serum testosterone have been described 

in a cross-sectional study of 8–15 year-old boys (Xie et al., 2015). There is a gender-specific 

association between 3-month weight growth velocity and adolescent fat-free mass (Botton et 

al., 2008) that previously led us to postulate that the peak of testosterone in early infancy in 

boys might be implicated in that relationship. As testosterone is known to induce lipolysis, 
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this might explain the positive associations observed between MBzP and/or MEP and 

postnatal weight growth.

5. Conclusion

Our study is among the first and the largest to relate pregnancy urinary concentrations of a 

large range of phthalate metabolites to pre- and postnatal growth. Under certain hypotheses, 

the reliance on spot urine samples to assess exposure could have led to an underestimation of 

any association with growth (Perrier et al., 2016). Future studies should rely on repeated 

urine samples (possibly pooled within subjects) to limit bias and increase power, in 

particular for the compounds with the largest intra-individual variability. The association we 

report between exposure to diethylphthalate, the precursor of MEP, with postnatal weight 

and BMI was robust to adjustment for maternal weight and postnatal caloric intake and is 

consistent with the literature. Early exposure to this highly prevalent chemical might 

contribute, among many other factors, to the development of childhood overweight among 

boys.
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Fig. 1. 
Associations between ln-transformed phthalate metabolite urinary concentrations and 

offspring’s BMI at 5 years. Results are expressed as beta regression coefficient and 95% 

confidence interval for one interquartile range increase in exposure variable adjusted for 

maternal and paternal height and BMI, maternal active and passive smoking during 

pregnancy, maternal education level, recruitment center, maternal age, gestational age at 

birth, weight gain during pregnancy and parity. LMW, low molecular weight; HMW, high 

molecular weight; DEHP, molar sum of DEHP metabolites.
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